
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.053632

ARTICLE

A Novel Quantization and Model Compression Approach for Hardware
Accelerators in Edge Computing

Fangzhou He1,3, Ke Ding1,2, Dingjiang Yan3, Jie Li3,*, Jiajun Wang1,2 and Mingzhe Chen1,2

1State Key Laboratory of Intelligent Vehicle Safety Technology, Chongqing, 401133, China
2Foresight Technology Institute, Chongqing Changan Automobile Co., Ltd., Chongqing, 400023, China
3School of Computer Science and Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China

*Corresponding Author: Jie Li. Email: jieli@cqust.edu.cn

Received: 06 May 2024 Accepted: 14 July 2024 Published: 15 August 2024

ABSTRACT

Massive computational complexity and memory requirement of artificial intelligence models impede their deploy-
ability on edge computing devices of the Internet of Things (IoT). While Power-of-Two (PoT) quantization is pro-
posed to improve the efficiency for edge inference of Deep Neural Networks (DNNs), existing PoT schemes require
a huge amount of bit-wise manipulation and have large memory overhead, and their efficiency is bounded by the
bottleneck of computation latency and memory footprint. To tackle this challenge, we present an efficient inference
approach on the basis of PoT quantization and model compression. An integer-only scalar PoT quantization (IOS-
PoT) is designed jointly with a distribution loss regularizer, wherein the regularizer minimizes quantization errors
and training disturbances. Additionally, two-stage model compression is developed to effectively reduce memory
requirement, and alleviate bandwidth usage in communications of networked heterogenous learning systems.
The product look-up table (P-LUT) inference scheme is leveraged to replace bit-shifting with only indexing and
addition operations for achieving low-latency computation and implementing efficient edge accelerators. Finally,
comprehensive experiments on Residual Networks (ResNets) and efficient architectures with Canadian Institute
for Advanced Research (CIFAR), ImageNet, and Real-world Affective Faces Database (RAF-DB) datasets, indicate
that our approach achieves 2×∼10× improvement in the reduction of both weight size and computation cost in
comparison to state-of-the-art methods. A P-LUT accelerator prototype is implemented on the Xilinx KV260 Field
Programmable Gate Array (FPGA) platform for accelerating convolution operations, with performance results
showing that P-LUT reduces memory footprint by 1.45×, achieves more than 3× power efficiency and 2× resource
efficiency, compared to the conventional bit-shifting scheme.

KEYWORDS
Edge computing; model compression; hardware accelerator; power-of-two quantization

1 Introduction

The new era of the IoT enables a smart society by interconnecting cyberspace with the physical
world. At the same time, artificial intelligence (AI) is widely spread in a variety of business sectors and
industries. A number of revolutionary applications in computer vision, games, speech recognition,

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.053632
https://www.techscience.com/doi/10.32604/cmc.2024.053632
mailto:jieli@cqust.edu.cn

3022 CMC, 2024, vol.80, no.2

medical diagnostics, and many others are reshaping our everyday lives. Traditionally, IoT devices
would send data to a centralized cloud server for processing and analysis. However, this approach can
lead to delays due to data transmission and processing times. To address this issue, edge computing in
IoT devices is proposed, referring to the practice of processing data closer to its source on the edge of
the network, near the devices that generate the data. This approach aims to minimize latency, reduce
bandwidth usage, enhance privacy and security, and improve overall system efficiency. By deploying
computing resources closer to where data is generated, it enables faster decision-making, critical for
applications that require real-time responses (e.g., industrial automation, autonomous vehicles, and
healthcare monitoring).

Despite the myriad advantages inherent in edge computing, it grapples with multifaceted chal-
lenges. The foremost challenge lies in resource constraints. Edge devices often have limited com-
putational power, memory, and storage capacity compared to centralized servers. This restricts the
complexity and scale of computations that can be performed at the edge. Therefore, edge computing
in IoT devices calls for not only low-power chips for energy efficient processing at the edge but also a
model with low latency and less accuracy reduction. To address this issue, a variety of low-precision
quantization methods are emerged to reduce model size and arithmetic complexity.

Quantization attempts to reduce data bit-width in IoT devices’ local computing, shrink model size
for memory saving, and simplify the operations for compute acceleration. Low-precision quantization
has caught plenty of attention, wherein inference acceleration is to substitute intricate 32-bit floating-
point (FP32) multiplication for fewer-bit multiplication. An integer-arithmetic inference framework
is introduced to quantize full-precision weights and activations into 8-bit integer values, while bias
parameters remain 32-bit to maintain baseline accuracy [1]. The performance of this approach is
demonstrated on Qualcomm Hexagon and Advanced Reduced Instruction Set Computer (RISC)
Machine (ARM) New Engine for Next Generation Objects (NEON) hardware platforms, achieving
up to 50% latency reduction and −1.8% accuracy loss on objection detection tasks. To close the
accuracy gap between the low-bit and FP32 model, fixed-point quantization is proposed, where
the fractional length is optimized during retraining to enforce different layers adapting to different
mantissa [2]. While a lot of effective quantization schemes have been published in recent years targeting
different domains and applications, we in this paper primarily focus on low-precision (e.g., 3–6 bit)
approaches that are hardware-friendly in the perspective of less computational resource demand,
memory efficiency, and low inference latency.

On the one hand, extreme low-precision quantization is an intriguing area of research that converts
full-precision values into representations using a minimal number of bits, thus requiring the least
computation. Learned Step Size Quantization Plus (LSQ+) improves low-bit quantization via learning
optimal offsets and using better initialization for parameters [3]. A block mini-float representation
is proposed to reduce the expensive training at FP32 precision by a narrow floating-point format
(e.g., 4–8 bit), which shows Residual Networks (ResNet) with 6-bit on ImageNet has no accuracy loss,
achieving 16× energy reduction compared to FP32 model [4]. Likewise, Progressive-Freezing Iterative
Training (PROFIT) adapting a novel training method is introduced for efficient model architecture
(e.g., MobileNet) at extremely low precision [5].

On the other hand, the PoT paradigm is widely explored and serves as a promising approach
to bridging the gap between computing acceleration and accuracy degradation. PoT introduces bit-
shifting operations in computation in order to achieve higher numerical resolution. In earlier works,
group-wise PoT quantization with iterative retraining is adopted to quantize the pre-trained FP32
model into its low-precision representation, where weights are quantized uniformly [6]. A learning

CMC, 2024, vol.80, no.2 3023

approach with adaptive FP32 hyper-parameters is utilized to select suitable clipping and scaling
factors, which provides the advantage for the quantizer to tolerate the scale of quantization input
[7]. It is proved that for extremely low precision (less than 4-bit), uniform quantizer suffers from
great accuracy loss whereas non-uniform quantizer is more robust and adaptive to different input
distributions [8]. A non-uniform PoT scheme is introduced in conjunction with re-parameterization
(e.g., FP32 scaling) on clipping function for which the threshold is effectively optimized to adapt to the
dynamics of weight and activation distribution in retraining [8]. In contrast, the quantization approach
in Deepshift retrains the FP32 model and converts weights to shift-arithmetic units as quantized
values directly, which incorporates two distinct stages for the transformation. First, logarithmic trans-
formation and nearest-rounding operation maps FP32 models to their low-precision counterparts.
Second, a learning strategy for bit-shift operations is used to directly learn low-bit weights which
are successively optimized throughout the retraining process, and activations are quantized by a
customized floating-point scheme due to serious loss of accuracy [9]. Furthermore, a quantization
framework adapting trainable look-up tables (LUTs) is proposed to learn dictionaries and assessment
matrices for quantization projection, in which different quantization schemes (including PoT) can
be realized by different configurations, and low-precision models are obtained via dictionaries and
assignment matrices, while it resorts to fixed-point activations to gain higher accuracy [10].

However, general researches based on the PoT scheme require substantial bit-wise operations
and rely heavily on either computational/memory-expensive FP32 hyper-parameters or fixed-point
quantization on activations to achieve acceptable accuracy performance [8–10]. With the abundance
of bit-shifting and high-precision parameters, the computing hardware takes a lot of cycles to complete,
and inference latency would become a bottleneck limiting both the utilization and throughput of
hardware. Therefore, the achievable performance of existing PoT schemes on inference acceleration
and memory efficiency is sub-optimal, especially on IoT devices with edge computing.

To achieve low-latency inference and resource/memory-efficient computation at the edge of the
IoT, we propose an end-to-end efficient inference approach that encapsulates Internetworking Oper-
ating System-Cisco (IOS)-PoT quantization, two-stage model compression, and P-LUT inference. To
address the practical needs of IoT scenarios, a hardware accelerator with our approach is developed
using Verilog Hardware Description Language (HDL) and deployed on Field Programmable Gate
Array (FPGA) platforms with a camera. First, the 32-bit width values from the original model undergo
IOS-PoT quantization. Then, we use Verilog HDL to efficiently develop register-transfer level (RTL-
level) hardware code for the accelerator and deploy the inference method on the Xilinx KV260 FPGA
platform. This process is illustrated in Fig. 1. IOS-PoT replaces all FP32 hyper-parameters with only
few-bit integers. The main contributions of this paper are summarized as follows:

1. We present an end-to-end quantization and efficient inference approach, realized by hardware-
friendly IOS-PoT quantization, model compression, and P-LUT, which is dedicated to effec-
tively deploying deep neural models on edge learning devices with limited resources and power
budget, and implementing efficient acceleration infrastructure.

2. To shrink the model size, IOS-PoT quantization and two-stage model compression are
proposed to map a full-precision model to low bit-width representation, where a jointly
designed distribution-loss regularizer is introduced to minimize the mismatch problem between
quantization inputs and outputs, and signed-Huffman (S-Huff) is introduced for improving
memory efficiency.

3. To reduce the bottleneck of computing latency and hardware-resource overhead, P-LUT
inference is proposed to substitute matrix multiplication with only value indexing and addi-
tion, in which P-LUT is shared among low-precision weights and activations at inference.

3024 CMC, 2024, vol.80, no.2

Furthermore, an inference accelerator prototype based on the P-LUT scheme for convolution
operations on FPGA is developed.

Figure 1: The architecture of quantization and model compression for hardware accelerators in edge
computing

2 Related Work

Due to the complex architecture, Deep Neural Networks (DNNs) suffer from huge memory con-
sumption and computation powers as well as considerable inference latency. As embedded computing
systems are rapidly proliferating every aspect of human endeavor today, these drawbacks pose a huge
challenge to deploying deeper models on edge platforms. To address this issue, a bulk of works have
emerged, while allowing for tolerable performance degradation. Existing works include but are not
limited to network pruning, low-precision quantization, and weight compression.

2.1 Weight Compression

Weight compression refers to reducing the memory requirement of model parameters, in which
efficient encoding schemes are usually employed to decrease memory access and storage size. A
network compression pipeline is introduced, which combines pruning, quantization, weight sharing,
and Huffman coding to achieve a remarkable compression ratio. Pruning attains the highest compres-
sion ratio around 10×, while quantization and encoding provide an additional 2×∼4× [11]. Vector
quantization achieves a good balance between model size and recognition accuracy by applying k-
means clustering algorithms to weights, which has proved to be most effective for densely connected
layers [12,13]. Some prior works on model compression are mainly targeted at efficient inference for
edge platforms [14–16].

2.2 PoT Quantization

Assume that a pre-trained full-precision (e.g., 32-bit floating-point) convolutional neural network
(CNN) is represented by {W l : 1 ≤ l ≤ L}, where Wl denotes weights of the lth layer, and L indicates
the number of layers in the network. Kernels in a convolutional layer are indicated by a 4D tensor
W l ∈ RCout×Cin×K×K , where Cin and Cout are input and output channels, and K constitutes the kernel size.
The quantized weights are represented by:

W̃
l =

∏
Ω(δ,b)

⌊
Wl, δ

⌉
(1)

CMC, 2024, vol.80, no.2 3025

where δ is a real number and represents the clipping range, �·� stands for the nearest-round operation,
and the clipping function �., δ� constraints weights to [−δ, δ].

∏
(·) projects elements of Wl onto low-

precision quantization levels. Ω (δ, b) refers to quantization levels which all weights can be projected
onto, where b is the bit-width for each quantized weight of W̃

l
.

In order to boost hardware efficiency and lower latency at the inference phase for DNNs, uniform
PoT quantization is introduced by restricting all weights to be PoT values or zeros as shown:

Ω (δ, b) = δ ×
{

0, ±2−2b−1+1, ±2−2b−1+2, . . . , ±2−1, ±1
}

(2)

As PoT quantization is non-uniform, it has a good resolution for weight approximation owing
to the exponential property. Quantization levels are represented by PoT values, which means that
multiplication operations between a PoT number 2r and an operand m are simply realized by
bit manipulation rather than computationally intensive operations such as digital multipliers. The
intricate multiplication operations replaced with bit-wise shifting are represented mathematically as:

2rm =

⎧⎪⎨
⎪⎩

m, if r = 0
m � r, if r > 0
m � r, if r < 0

(3)

where � and � denote left and right shift operation, respectively.

2.3 Distribution Regularizer

Quantization which maps high-precision numbers to low-precision representations is inherently
leading to deviations. In quantized neural networks (QNNs), the objective is to ensure acceptable
prediction accuracy is achieved, on which the degree of quantization errors has a direct impact.
A variety of methods for optimizing quantization loss to achieve good final accuracy are emerged
[17–20]. A distribution-loss function is proposed to minimize the Kullback-Leibler (KL) divergence
between full-precision and quantized binary models [21]. The compensated-DNN approach in QNNs
is developed in [22], where they optimize QNNs’ retraining by first-order derivative approximation on
quantization errors with well-structured compensation values that are computationally inexpensive.
A more recent approach (named Vector Quantization (VecQ)) introduces vectorized quantization
with vector loss to mitigate quantization disturbances [23], which has proved to be more adaptive.
Besides, distribution loss can be applied to data distribution of input samples, where it approximates
the fluctuation dynamics of inputs, e.g., a clustering algorithm employing this type of distribution loss
to learn the statistical characteristics of input data [24].

2.4 LUT Inference

One approach in literature to achieve PoT quantization is via learning look-up tables (weight
assignment tensors and dictionaries) [10]. It has captured a broad range of different quantization
schemes as the learning dynamics can easily be updated by pre-set configurations, e.g., binary and
ternary models. Despite its flexibility in realizing different quantization schemes, the achievable PoT
quantization scheme relies on substantial bit-shifting at the inference phase. In [25], LUT resources
in FPGA are used as the fundamental logic for performing DNN computations, where matrix
multiplications are implemented with either XNOR logic or complex K-input boolean operations. This
method effectively utilizes FPGA native resources to address area and resource efficiency problems of
DNN inference.

3026 CMC, 2024, vol.80, no.2

To summarize, our approach has three distinctions compared with previous methods. (1) With
IOS-PoT, tensor scaling at runtime is simply achieved by bit-shifting operation, omitting division
operations as in prior PoT methods. (2) We utilize a two-stage compression pipeline to reduce memory
requirement, where the S-Huff encoding and decoding hardware are leveraged to reduce memory
footprint at inference. (3) In our product look-up table (P-LUT) scheme, multiplications are not
required at runtime. Thus, indexing and addition are two main operations for computing matrix
products, breaking the bottleneck of computation latency and hardware-resource overhead.

3 Proposed Approach

The proposed method consists of IOS-PoT quantization, distribution-loss regularizer, model
compression, and P-LUT inference scheme (illustrated in Fig. 2). Firstly, IoT devices collect data
and centrally train models to get FP32 weights and activation. Secondly, IOS-PoT is developed
to quantize FP32 weights and activations to fully PoT representations, with joint optimization on
distribution loss to reduce quantization errors. Thirdly, model compression techniques are introduced
to relieve memory requirements. Finally, the P-LUT inference scheme built on our quantization and
compression framework is proposed for accelerating inference on edge computing devices of IoT.

Figure 2: The architecture of the proposed approach

3.1 Integer-Only Scalar Power-of-Two Quantization

IOS-PoT quantization is introduced to remove the computation overhead arising from the
adoption of FP32 scaling parameters, for which the required arithmetic operations are mere bit-
shift and addition. Quantization is performed on weights and activations to project full-precision
values onto low-precision representations during the forward pass, and then the prediction accuracy is
calculated, while FP32 weights and gradients are kept for gradient descent during the backward pass.

To avoid matrix multiplication involving full precision numbers at inference, the quantized model
is subject to full PoT representation in IOS-PoT. For low-bit projection, the clipping threshold is
defined as δk where k is predefined, and δ is a learnable parameter, instead of clipping inputs
directly to [−k, k]. This new version has better range representation ability and more robust to
quantization errors. The scaling operation of quantization input is utilized to assist minimizing the
gap between quantization levels and inputs, as seen in [7]. Since the scaling operation is based on
a real number δ which is not computationally efficient, a transformation is introduced to restrict it
to a PoT value. Hence, the scaling operation is simple bit-shifting. In the quantization procedure,

CMC, 2024, vol.80, no.2 3027

all weights/activations are scaled down, and subsequently projected to low-bit PoT levels. Then, the
learned parameter δ, k, and low-bit PoT weights are stored. At the inference stage, weights/activations
multiply by PoT coefficient 2�log2|δ|� to approximate the FP32 values, where �·� and |·| refer to the nearest
rounding and absolute value operation, respectively. Therefore, FP32 numbers are not included, and
all multiplications are realized by bit-wise operations, which substantially relieves the computational
complexity and inference latency. To simplify explanation, unsigned weights for quantization (quan-
tization on activations follows the same approach) are only considered in subsequent discussions.

In IOS-PoT quantization, each level is defined by the equation as shown below:

Ω (λ, d × m) = {λ × {
∑m

i=1
pi}}, where p_i ∈ {{0, 2−(i), 2−(i+m), . . . , 2−(i+(2k−2)m) (4)

where λ controls the magnitude of each PoT term contribution. The bit-width for each pi is determined
by d, and m refers to the number of addition operations. Thus, the final bit-width for quantized weight
is represented by d × m.

Considering the quantization flow during retraining, the clipping function is firstly performed on
weights with a PoT scaling factor 2�log2|δ|�, and [−δk, δk] is the clipping range. Secondly, weights are
projected to low-precision PoT levels. Finally, quantized weights in conjunction with coefficients are
saved. The IOS-PoT quantization formula is shown:

W̃
l = Qm

(
Wl; δ; dm

) = 2�log2|δ|� ×
∏

Ω(λ,d×m)
Clamp

(
Wl

2�log2|δ|� , δk
)

(5)

where Wl is the input weight tensor in lth layer, and W̃
l

is the quantized output tensor. d × m is the
bit-width for each w̃ of W̃

l
, δ is the learned scaling factor, and k is the predefined threshold. Clamp is

the clipping function.

Stochastic gradient descent (SGD) is applied to jointly optimize the scaling factor δ and weights
during retraining. Gradients remain in a floating point in the backward pass for updating weight
parameters. As gradients of the projection function are zeros almost everywhere, a straight-through
estimator (STE) [26] is adopted for the back-propagation. To simplify the illustration, let denote
Θ = 2�log2|δ|�, so the gradient of δ is calculated as:

∂W̃
∂δ

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Θ

δ
× sign

(
W
Θ

)
, if |W| > δk

Θ

δ
× ∏

Ω(λ,d×m)

(
W
Θ

)
− W

δ
, if |W| ≤ δk

(6)

where W is the full-precision weight tensor. W̃ is the weight tensor after quantization. Note that
gradients of weights that exceed the clipping threshold are considered, so both clipping and projection
errors are taken into account to optimize retraining.

3.2 Distribution-Loss Regularizer

A regularizer on distribution loss is developed to alleviate the mismatch between full-precision
and low-precision weights. Gradients of weights during backpropagation do not always contribute to
diminishing the gap between quantized outputs and inputs, leading to severe accuracy degradation
and model divergence. By employing distribution loss, the mismatch problem is steadily reduced.

3028 CMC, 2024, vol.80, no.2

Consider a general non-linear DNN consisting of L layers. Let W1, W2,..., WL denote full-precision
weights in 1 to L layers, respectively. Likewise, A1, A2,..., AL represent full-precision activations. The
regularizer for both weights and activations is expressed as:

Rm (W; A) =
∑L

l=1

[
Wl − Q

(
Wl; δw; dmw

)]2 + [
Al − Q

(
Al; δa; dma

)]2
(7)

where m refers to the number of PoT terms for each quantization level, and δw and dmw are the clipping
threshold and bit-width for quantized weights. Similarly, δa and dma are the clipping threshold and bit-
width for quantized activations.

In addition, a learnable hyper-parameter η is introduced for the regularizer, which controls trade-
offs between objective loss and the magnitude of penalty. Conventionally, this parameter is set to
a constant factor before training. However, this strategy is not optimal. Hence, a penalty term,
−log (c × η) for (c×η) > 0, is designed as an automatic optimization to seek a good trade-off solution
during retraining. Therefore, the final objective loss function to optimize is represented by:

C (X ; W; A) = E(X ;Q(W; δw);Q(A; δa)) + ηR(W; A) − log(c × η) (8)

where Q(W; δw) and Q(A; δa) are low-precision weights and activations in a quantized layer, whose
clipping thresholds are δw and δa, respectively. E(X ;Q(W; δw);Q(A; δa)) is the target loss function
evaluated on training dataset X . η is the learnable coefficient, and c denotes the magnitude of penalty.
In back propagation, the calculation of gradients for η is shown as:

∂C(X ; W; δw; A; δa)

∂η
= R(W; A) − 1

η
(9)

3.3 Model Compression and P-LUT Inference

Model compression and inference schemes based on P-LUT are designed jointly with the IOS-
PoT quantization scheme, to facilitate reducing computations and memory requirements, and to
enable efficient implementations of specialized accelerators. Ahead of deployment, codebooks of low-
precision weights and activations are generated and compressed by S-Huff with the sign-encoding
technique. At runtime inference, codebooks are unpacked and loaded onto memory banks while
activations are quantized to low precision by special hardware logic in real time.

3.3.1 Compression

Weight sharing and S-Huff encoding methods constitute the first stage for weight reduction, while
the last stage (named post compression) is implemented by a standard compression algorithm. In
IOS-PoT quantization, weights and activations are projected onto low bit-width quantization levels
with different optimized integer scaling parameters. We observe that a great deal of zeros exist in
weights. To remove inconsequential memory storage, the sign bit is separated from weight values, and
for weights whose values are zero, only sign bits are kept. Hence, weight sharing and Huffman encoding
are applied to non-zero weights exclusively to generate a lightweight model. Then, PoT quantization
levels are effectively encoded to produce P-LUT for inference. Post compression based on traditional
compression algorithm is adopted to reduce the size of generated codebooks, e.g., Lempel-Ziv-Markov
chain Algorithm (LZMA) [27]. This compression stage enables less requirement of storage and internet
bandwidth, which is suitable for networked edge learning applications. As the algorithm is identical
to a fine file compressor, it does not affect prediction accuracy.

CMC, 2024, vol.80, no.2 3029

To sum up, the compression flow is realized by a two-stage pipeline: (1) Weight sharing and S-Huff
encoding, (2) Specialized compressing algorithm. The details are illustrated in Fig. 2.

3.3.2 P-LUT Inference

Matrix multiplication is fundamental in realizing DNN computation, in which the complexity
of multiplication determines inference latency and energy efficiency. For the classic PoT scheme,
matrix multiplication requires a substantial amount of bit-shifting and addition operations, e.g., LUT-
Net which adopts look-up tables for mapping full-precision model to PoT representation directly
[10]. In our work, an efficient inference approach for matrix multiplication is carried out by using
offline P-LUT codebooks, which is made possible by the novel IOS-PoT quantization together with
effective indexing techniques on shared quantization levels of low precision. The P-LUT of the low-
bit-width matrix product is 2-dimensional and computed offline. Thus, only 2 indexing and 1 addition
necessitate complete multiplication between 2 operands. To illustrate the matrix multiplication between
weights and activations built upon P-LUT, assume both weights and activations are quantized to 3-bit
precision (1-bit sign and 2-bit value) by IOS-PoT. For clarification, let’s define W and A as 2 matrices
shown:

W =

⎡
⎢⎢⎣

0
1
8

1
4

1
2

⎤
⎥⎥⎦

2×2

A =

⎡
⎢⎢⎣

1
2

1
4

1
8

1
2

⎤
⎥⎥⎦

2×2

(10)

Matrix product obtained via P-LUT is equivalent to the values obtained from standard multiply-
add accumulations (MACs), more efficient, and only at the small cost of extra memory space. The
matrix multiplication performed upon P-LUT is exemplified in Fig. 3. Low precision codebooks are
generated by the first compression stage after the quantization retraining is converged. Then, each
low bit-width value in the codebook is multiplied by the remaining values of the same codebook to
generate the product matrix which serves as the final P-LUT codebooks for inference. Since the P-
LUT codebook is symmetric, only half of the storage is required. For matrix multiplication, indexing
operations on codebooks are carried out by W and A, and subsequent additions are executed to obtain
the final product. Taken the vector multiplication between the first row of W and the first column of
A for example, the indices of the 2 vectors are (0, 1) and (3, 1), and their product indices are (0, 3) and
(1, 1), respectively. With performing indexing in product LUT by the product indices and one addition

operation, the result is obtained
1
64

= 0 + 1
64

.

Figure 3: Matrix multiplication with product Look-UP table

3030 CMC, 2024, vol.80, no.2

To assess the memory overhead and computation efficiency of P-LUT, an analysis is presented.

Given 4-bit quantized weights and activations (1-bit for sign and 3-bit for value), the dimension
of the product matrix of P-LUT is 8 × 8 = 23 × 23, where each element of the matrix is represented by
32-bit fixed-point in the design. Since a single P-LUT matrix is shared among all layers at inference,
the negligible memory cost of P-LUT is 2048-bit in total. For computation assessment, let assume
the quantized PoT weight and activation is w = (

2−1 + 2−3
)

and a = (
2−4 + 2−3

)
, respectively. The

multiplication of w and a can be represented by w×a = 2−5 +2−4 +2−7 +2−6. As the product in P-LUT
is computed offline, the cost of computation is a single operation. By contrast, the bit-shifting PoT
approach is prohibitively expensive, with up to 25 operations.

4 Experiments

Comprehensive experiments are conducted to justify the efficacy of the proposed approach with
comparisons to prior methods. Furthermore, the datasets we select are closely with the IoT scenario.
Firstly, image classification tasks on CIFAR10/100 and ImageNet datasets are selected for evaluation
[28,29], with the ResNet model architectures. Secondly, facial expression recognition experimented
on the RAF-DB dataset is also employed for comparison [30], with novel self-attention to verify the
robustness of quantization methods towards extremely low bit-width. Finally, the hardware efficiency
of the proposed P-LUT inference is evaluated and compared with conventional bit-shifting PoT
schemes and general-purpose platforms, central processing unit (CPU), and graphics processing unit
(GPU).

4.1 Evaluation Metrics

32-bit floating-point models are trained from scratch as the baseline metrics for performance
evaluation. The accuracy performance is evaluated based on Top-1 and Top-5 metrics as following the
conventional assessment standards [9,11]. For indicators of compression rate, it is defined as:

CR = SP
SN

(11)

where CR is the compression rate. SP and SN refers to the original and compressed size.

To assess computational complexity, a bit-operation scheme is employed to calculate the amount
of computation under different low bit-width, as introduced in [8,31] where 1 FIXOPS is defined
as the operations between 8-bit weight and 8-bit activation, consuming 64 binary operations in a
quantized scheme. The FIXOPS for the multiplication between 2 FP32 real numbers is calculated

as 16 = 32 × 32
8 × 8

, whereas the addition between them is viewed as 1 FIXOPS. Open-source tools [32]

are also used to calculate computations of DNN models.

4.2 Datasets and Implementation Details

4.2.1 CIFAR10

The CIFAR10 dataset consists of 60,000 RGB (Red, Green, Blue) images, and the size of each
image is 32×32 with 10 classes including airplanes, automobiles, birds, cats, deers, dogs, frogs, horses,
ships, and trucks. The dataset is partitioned into two sub-datasets, with 500,000 images for the training
dataset and 10,000 images for validation, respectively. Normal data augmentation is applied: padding
of 4 pixels on each side of the images, random cropping, and random horizontal flipping.

CMC, 2024, vol.80, no.2 3031

4.2.2 CIFAR100

The CIFAR100 is similar to the CIFAR10 but has a lot more image categories. Image classification
on CIFAR100 is more challenging. There are 100 classes which are grouped into 20 super-classes, each
of which comes with a “fine” label (the class to which it belongs), and a “coarse” label (the super-class
to which it is closely related). Each class is comprised of 600 images, with 500 images used for training
and 100 images for testing.

4.2.3 ImageNet

ImageNet (ILSVRC12) is a much more difficult task to deal with, which contains approximately
1.2 million training and 50 k validation 256 × 256 images with 1000 categories. Random cropping
and random horizontal flipping were used as augmentation methods in the retraining stage. In the
experiment, 224 × 224 center cropping is used for evaluation.

4.2.4 RAF-DB (Real-World Affective Faces Database)

RAF-DB contains 30,000 facial images annotated with basic or compound expressions by 40
trained human coders. In the experiment, only images with six basic expressions (neutral, happiness,
surprise, sadness, anger, disgust, fear) and neutral expressions are used which leads to 12,271 images
for training and 3068 images for testing. All images are resized to 224 × 224 for both training and
testing.

4.2.5 Implementation Details

DNN models are simulated under the Pytorch framework, and all models with full precision
are trained from scratch as initialization. The quantization for low bit-width starts with pre-trained
models, and then iteratively retrains low-bit weights to recover accuracy loss. Weight normalization is
adopted before quantization to assist stabilizing weight distribution [33]. Both weights and activations
are converted into the same low bit-width. Since the first and last layers are sensitive towards low-bit
quantization, the proposed quantization scheme adopts a higher precision quantization algorithm
(i.e., fixed-point quantization with 8 bit-width) for these two layers, as following the convention
[34,35]. For the compression of weight parameters, we calculate the weight size based on the same
low precision scheme for all comparison methods under quantization, e.g., 4-bit width achieves 4×
memory efficiency as compared to 32-bit precision. The details of hardware platform are as follows:
CPU running on Intel Core (TM) i3-2120 3.30 GHz, and GPU running on NVIDIA RXT3060 12 GB.

4.3 Ablation Study

In this section, the proposed approach is quantitatively analyzed from both software and inference
hardware aspects. Firstly, the efficacy and influence of IOS-PoT quantization and model compression
are validated on ResNet18 with the CIFAR100 dataset. Secondly, the inference efficiency and
performance of different hardware implementations built on the FPGA platform are thoroughly
investigated.

4.3.1 IOS-PoT Quantization

The right part of Fig. 4 gives details of weight distribution to show the effectiveness of the IOS-
PoT quantization scheme. FP32 is presented in (a). The effect of the FP32 scalar is illustrated in (b)
for which the numerical values of quantization levels are irregular, and it requires more bit-width to

3032 CMC, 2024, vol.80, no.2

reserve accurate precision when performing computation, e.g., 0.719 and 1.079. Therefore, this leads
to requiring floating-arithmetic hardware designs, which is energy inefficient.

Figure 4: Distribution difference between FP32 and Integer scaling factors. (a) FP32 weight. (b) FP32
scalar. (c) Integer scalar

In contrast, the quantization levels from integer scalar exhibit regularities of simple PoT terms,
e.g., −1.5 = − (

21 + 2−1
)

and 2.0 = 21, such that the computations for these numerical values can be
exclusively implemented by shift-add logic, and the proposed P-LUT inference design as illustrated in
Fig. 3. To realize efficient inference based on a bit-shifting scheme, the multiplication between weight
values of 1.5 and 2.5, for instance, can be achieved with only addition and bit-wise operations. A simple
example in Eq. (12) illustrates the computation procedure, where the computations on exponents are
performed by shifting, e.g., 2−1 = (1 � 1) and 2 = (1 � 1).

1.5 × 2.5 = (
20 + 2−1 × 21 + 2−1

) = 2 + 2−1 + 1 + 2−2 (12)

4.3.2 Distribution-Loss Regularizer

The impact of distribution-loss regularizers is carefully investigated on ResNet18. Different
settings are demonstrated in the experiment, i.e., no regularization applied (a), fixed-parameter (b),
and the proposed approach choosing a learning strategy (c). The retraining settings are as: 0.04 for
learning rate with a decay factor of 0.1 at epoch (60, 120, 160, 200, and 260), 300 epochs of total
training, and 128 for batch size. The coefficient λ in the proposed method is initialized to 1, and the
coefficient η of the distribution-loss regularizer is set to ex with 5 for c.

The results are plotted based on convergence curves (retraining, testing Top-1 and Top-5 accu-
racy), in Fig. 5. It is evident from the figure that the regularization almost has no impact on training
convergence, and instead, its influence has a direct impact on the validation performance. There exist
large fluctuations under quantization retraining if no regularization is applied, as shown in Fig. 5a of
the graph. A conventional approach to set the regularization coefficient η with a fixed value (e.g., 0.1,
0.5, and 0.8) causes disturbance as shown in Fig. 5b. By contrast, a stable convergence with a learnable
η for validation dataset is achieved, shown in Fig. 5c.

From the graph, the observation is that stable convergence achieved by learnable regularization
offers the benefits of reducing retraining overhead without losing prediction accuracy. The training
overhead and accuracy results are presented in Table 1. One interesting fact is that the accuracy
of fixed regularization is almost identical to no-regularization and that no-regularization has fewer
quantization disturbances than fixed regularization with less training overhead (20 epochs less). The
reason is that a fixed regularization is not flexible enough to accommodate quantization errors at

CMC, 2024, vol.80, no.2 3033

different training stages. Hence, a learnable approach solves this problem. IOS-PoT with learnable
regularization achieves 0.3% improvement in Top-1 accuracy and saves 40 epochs on retraining.

Figure 5: Retraining convergence curves with distribution-loss regularizer. (a) Original. (b) Fixed η
(0.1, 0.5, and 0.8). (c) Learnable η

Table 1: Accuracy and training overhead between fixed (0.5) and learning regularizer on ResNet18
with CIFAR100

Method Precision (W/A) Top-1 Top-5 Epoch

FP32 32/32 74.08% 92.26% 300
IOS-POT (original) 4/4 74.20% 92.05% >180
IOS-POT (fixed η) 4/4 74.21% 92.00% >200
IOS-POT (learnable η) 4/4 74.51% 92.21% 160

4.3.3 Analysis of Compression Efficiency

To demonstrate the efficacy of the proposed model compression, a comprehensive investigation
regarding Huffman encoding is presented on ResNet18 after retraining converged, where FP32, Non-
Huffman which only considers low bit-width weights without using additional compression methods,
and S-Huff approach are compared under APoT and the proposed IOS-PoT scheme. Furthermore, the
performance of two-stage model compression is analyzed. Table 2 gives the baseline of FP32 weights
on three convolution layers, in which weights and zero weights represent the total weight parameters
and zero weights, respectively. We use KB to express the memory consumption of parameters in
convolution layers, with 3-bit (2-bit value and 1-bit sign) precision for quantization.

We find that a great deal of weights tend to be zeros when the quantized model is converged, and
thus, employing an efficient encoding method to reduce the memory consumption of these weights
is of significant importance. This fact is evidenced in Table 2 of our experiment, where the number
of zero weights is steadily increasing as layers have more neurons. Therefore, we further improve the
compression rate of Huffman encoding by introducing S-Huff which removes zero-valued weights,
with performance results shown in Fig. 6, where both Huffman and Non-Huffman enjoy further
improvement. To evaluate with/without Huffman encoding, the memory usage of APoT and the IOS-
PoT scheme is obtained on three convolution layers, where APoT follows conventional PoT without
sign encoding. The results indicate that IOS-PoT gains 1.5×∼2× improvement for memory saving over
APoT with/without Huffman when layers have more parameters.

3034 CMC, 2024, vol.80, no.2

Table 2: Baseline convolution layers and weight parameters on ResNet18

Layer Weight shape Weights Zero-weights FP32 (KB)

Conv3

⎧⎪⎨
⎪⎩

[128, 64, 3, 3]
3 × [128, 128, 3, 3]
[128, 64, 1, 1]

⎫⎪⎬
⎪⎭ 524,288 63,293 2,048

Conv4

⎧⎪⎨
⎪⎩

[256, 128, 3, 3]
3 × [256, 256, 3, 3]
[256, 128, 1, 1]

⎫⎪⎬
⎪⎭ 2,097,152 230,420 8,192

Conv5

⎧⎪⎨
⎪⎩

[512, 256, 3, 3]
3 × [512, 512, 3, 3]
[512, 256, 1, 1]

⎫⎪⎬
⎪⎭ 8,388,608 1,616,156 32,768

Figure 6: Weight reduction on 4-bit precision and two-stage compression on ResNet18

4.3.4 Hardware Efficiency of P-LUT and SHIFT Scheme

The utilization of hardware resources for P-LUT and bit-shifting (SHIFT) arithmetic is simulated
on Xilinx KV260 FPGA whose available resources are presented in Table 3. For fairness in com-
parison of computational efficiency, only LUT resources of FPGA are enabled for simulation, with
benchmarks of LUT utilization after post-synthesis (SYNTH.) and post-implementation (IMPLI.).
Different kernel sizes (3 × 3 and 7 × 7) for convolution operations are named: Conv3 × 3 and
Conv7 × 7. Then, 3 types of processing engines (PE) for simulation are built, P-LUT PE, SHIFT PE,
and SHIFT FP32 SCALAR PE (FP32 scaling parameters used), respectively. The LUT’s consumption
of these PEs is shown in Fig. 7, where the usage of hardware resources for the SHIFT scheme tends
to be exponentially larger than P-LUT as the total number of PEs increases (PE4 × 4 represents the
total of 16 PE units). The resource-efficient capability of the P-LUT approach owes to the shared

strategy on their look-up tables. The SHIFT saves resources approximately
1

10
compared to SHIFT

FP32 SCALAR which requires more logic to carry out floating-point operations.

CMC, 2024, vol.80, no.2 3035

Table 3: Xilinx KV260 FPGA platform

Part # Xck26sfvc784-2LV-c

Node 28 nm
LUTs 117,120
D flip-flops (DFFs) 234,240
Block random access memories (BRAMs) 5184 KB
Ultra random access memories (URAMs) 18,432 KB
Digital signal processors (DSPs) 1248
Double data rate fourth generation synchronous dynamic
random access memory (DDR4)

19 GB/s

CPU Quad-Core ARM Cortex®-A53 64-bit

Figure 7: Consumption of FPGA LUTs for different inference schemes, P-LUT PE, SHIFT PE, and
SHIFT FP32 SCALAR PE. (a) Conv3 × 3. (b) Conv7 × 7. (c) Conv3 × 3 (FP32 Scalar)

4.4 CIFAR10/100

We first compare the proposed method with prior PoT methods on CIFAR datasets, where
residual deep neural models are used for performance evaluation. Then, experiments on efficient
model architectures (e.g., SqueezeNet and ShuffleNetV2) are analyzed and compared with state-of-
the-art (SOTAs) approaches to further examine the quantization method.

4.4.1 ResNets

The performance of ResNet20 (RES20) and ResNet56 (RES56) on CIFAR10 is investigated,
while ResNet18 is experimented on the CIFAR100 dataset [36,37]. Compared PoT methods include
APoT, Learned Quantization Net (LQ-Net), DeepShift, and PACT which we implement following
their original works, [7–9,38]. Among them, DeepShift uses a higher-precision (8-bit fixed-point) for
activation quantization in the experiment as following their original work, due to the large accuracy
drop. The initial settings of hyper-parameters for all methods are the following: an initial learning rate
of 0.04, retraining 300 epochs, and 128 for batch size. The learning rate starts from 0.04 with a decay
factor of 0.1 at epochs (60, 120, 160, 200, and 260). The standard SGD optimization is used with a
momentum of 0.9 and weight decay of 0.0004. For the proposed IOS-PoT, the retraining is 260 epochs
(less overhead than compared methods). The coefficient λ of the projection function is initialized with

3036 CMC, 2024, vol.80, no.2

1. For our distribution-loss regularizer, the coefficient η is set to ex with 5 for c. Instead of learning η

directly, we choose to learn x as ex is always positive which is easier for backpropagation.

The results on CIFAR10/100 are given in Tables 4 and 5, with notations: Method, Precision W/A
(bit-width for weights and activations), Accuracy (Top-1 and Top-5), Weight Size, Delta (Acc-1 and
Acc-5 impact), FIXOPS (the number of operations), and Comp.Rate (compression rate on weights
and FIXOPS, respectively). Some observations can be summarized as follows:

1. The proposed approach achieves the most promising compression rate among all selected PoT
methods with a negligible loss in prediction accuracy compared to the full-precision baseline
model. On ResNet20/56 with 3-bit precision, our method achieves 23× weight size reduction
which is 2-fold the compression rate other methods achieve, whereas an average of 1.5×
improvement is obtained on ResNet18. It should be pointed out that previous methods (APoT,
LQ-Net, DeepShift, and Production Analysis Control Technique (PACT)) are among the
categories of conventional PoT, where the compression strategy on weights and computations
follows the standard bit-shifting. In terms of computational efficiency, the proposed inference
scheme is 2×∼3× faster than prior works, and nearly 8× faster than the baseline model on
3-bit precision.

2. Most of the Top-1 and Top-5 performances of the proposed approach surpass others, while
few exceptions do exist, wherein our method only introduces accuracy loss of less than 0.2%,
e.g., Top-1 accuracy of APoT outperforming the proposed approach by 0.06% on ResNet18
under 5-bit precision. Among the tested methods, APoT is ranked as the second best algorithm
to achieve competitive accuracy performance, while PACT and DeepShift result in substantial
accuracy drop under low-precision such as 3-bit, causing more than a 3% decline in Top-1
accuracy. Overall, the proposed quantization scheme maintains good accuracy with almost
no loss of accuracy while achieving a significant reduction in both memory requirement and
computation overhead. Our method is still accuracy competitive even under extreme low-
precision (e.g., 3/4-bit), gaining huge improvement in acceleration efficiency.

Table 4: Performance comparison on ResNets with CIFAR10 dataset

Method Precision Accuracy Weight Delta FIXOPS Comp.Rate
(W/A) Top-1 Top-5 Size Acc-1 Acc-5 Weight FIXOPS

FP32 (RES20) 32/32 92.36% 99.78% 1.2 MB – – 744 M – –
APoT 4/4 92.52% 99.81% 148 KB 0.16% 0.03% 194 M 8× 3.8×
LQ-Net 4/4 90.81% 99.63% 148 KB −1.55% −0.15% 200 M 8× 3.7×
DeepShift 4/8 89.93% 99.69% 148 KB −2.43% −0.09% 266 M 8× 2.8×
PACT 4/4 89.88% 99.62% 148 KB −2.48% −0.16% 200 M 8× 3.7×
Ours 4/4 92.61% 99.79% 136 KB 0.25% 0.01% 106 M 9× 7×
APoT 3/3 92.00% 99.74% 111 KB −0.36% −0.04% 174 M 11× 4.3×
LQ-Net 3/3 90.61% 99.74% 111 KB −1.75% −0.04% 180 M 11× 4.1×
DeepShift 3/8 86.20% 99.47% 111 KB −6.16% −0.31% 240 M 11× 3.1×
PACT 3/3 89.46% 99.73% 111 KB −2.90% −0.05% 180 M 11× 4.1×
Ours 3/3 92.24% 99.83% 53 KB −0.12% 0.05% 103 M 23× 7.2×
FP32 (RES56) 32/32 93.64% 99.73% 3.4 MB – – 2287 M – –
APoT 4/4 93.73% 99.81% 537 KB 0.09% 0.08% 572 M 8× 4×

(Continued)

CMC, 2024, vol.80, no.2 3037

Table 4 (continued)

Method Precision Accuracy Weight Delta FIXOPS Comp.Rate
(W/A) Top-1 Top-5 Size Acc-1 Acc-5 Weight FIXOPS

LQ-Net 4/4 91.73% 99.69% 537 KB −1.91% −0.04% 578 M 8× 3.9×
DeepShift 4/8 91.97% 99.70% 537 KB −1.67% −0.03% 768 M 8× 3×
PACT 4/4 90.11% 99.59% 537 KB −3.75% −0.14% 578 M 8× 3.9×
Ours 4/4 93.73% 99.90% 178 KB 0.09% 0.17% 299 M 20× 7.6×
APoT 3/3 92.78% 99.67% 432 KB −0.86% −0.06% 510 M 10× 4.5×
LQ-Net 3/3 91.65% 99.72% 432 KB −1.99% −0.01% 516 M 10× 4.4×
DeepShift 3/8 87.24% 99.35% 432 KB −6.40% −0.38% 686 M 10× 3.3×
PACT 3/3 89.19% 99.67% 432 KB −4.45% −0.06% 516 M 10× 4.4×
Ours 3/3 93.01% 99.89% 154 KB −0.63% 0.16% 291 M 23× 7.9×

Table 5: Performance comparison on ResNet18 with CIFAR100 dataset

Method Precision Accuracy Weight Delta FIXOPS Comp.Rate

(W/A) Top-1 Top-5 Size Acc-1 Acc-5 Weight FIXOPS

FP32 32/32 74.08% 92.26% 43.9 MB – – 677 M – –
APoT 6/6 74.29% 92.00% 9963 KB 0.21% −0.26% 210 M 4.5× 3.2×
LQ-Net 6/6 72.01% 91.17% 9963 KB −2.07% −1.09% 245 M 4.5× 2.7×
DeepShift 6/8 73.83% 91.98% 9963 KB −0.25% −0.28% 325 M 4.5× 2.1×
PACT 6/6 70.13% 90.32% 9963 KB −3.95% −1.94% 245 M 4.5× 2.7×
Ours 6/6 74.32% 92.17% 7893 KB 0.24% −0.09% 103 M 5.7× 6.6×
APoT 5/5 74.23% 92.28% 8586 KB 0.15% 0.02% 193 M 5.2× 3.5×
LQ-Net 5/5 72.05% 91.15% 8586 KB −2.03% −1.11% 227 M 5.2× 2.9×
DeepShift 5/8 73.53% 91.77% 8586 KB −0.55% −0.49% 300 M 5.2× 2.3×
PACT 5/5 70.79% 90.49% 8586 KB −3.29% −1.77% 227 M 5.2× 2.9×
Ours 5/5 74.17% 92.26% 6565 KB 0.09% 0.00% 101 M 6.8× 6.7×
APoT 4/4 74.39% 92.20% 7210 KB 031% −0.06% 175 M 6.2× 3.9×
LQ-Net 4/4 71.66% 91.25% 7210 KB −2.42% −1.01% 210 M 6.2× 3.2×
DeepShift 4/8 74.07% 92.80% 7210 KB −0.01% −0.54% 270 M 6.2× 2.5×
PACT 4/4 70.05% 90.32% 7210 KB −4.03% −1.94% 210 M 6.2× 3.2×
Ours 4/4 74.51% 92.21% 5178 KB 0.43% −0.05% 98 M 8.7× 6.9×
APoT 3/3 74.40% 91.89% 5834 KB 0.32% −0.37% 158 M 7.7× 4.3×
LQ-Net 3/3 71.55% 90.97% 5834 KB −2.53% −1.29% 193 M 7.7× 3.5×
DeepShift 3/8 59.30% 85.85% 5834 KB −14.78% −6.41% 250 M 7.7× 2.7×
PACT 3/3 70.00% 90.25% 5834 KB −4.08% −2.01% 193 M 7.7× 3.5×
Ours 3/3 74.38% 92.07% 3718 KB −0.30% −0.19% 96 M 12× 7.1×

3038 CMC, 2024, vol.80, no.2

4.4.2 EfficientNets

Quantization of efficient neural architectures is often a challenging task, and experiments on such
architectures are vitally important for low-precision quantization research. To verify the performance,
experiments are performed on CIFAR100, where SqueezeNet and ShuffleNetV2 DNN models are
selected and quantized under 3/4-bit precision, [39,40]. SOTA methods, including block-mini float
(BM-float) and PROFIT, are compared [4,5]. The experiment starts with training the FP32 model for
300 epochs as the baseline and applying it to initializing low-precision models, where experimental
settings in the previous section are adopted for retraining. In the experiment, the first/last layer of
DNN models is not quantized for all methods following [4], due to the significant performance impact.

The performance evaluation is presented in Table 6. Overall, the proposed quantization outper-
forms state-of-the-art (SOTA) approaches by a large margin for the reduction of computation and
memory requirement on all tested models, with slight accuracy loss in comparison to compared
methods.

Table 6: Performance comparison of efficient architectures with the CIFAR100 dataset

Method Precision Accuracy Weight Delta FIXOPS Comp.Rate

(W/A) Top-1 Size Acc-1 Weight FIXOPS

FP32 (ShuffleNetV2) 32/32 70.10% 5.5 MB – 820 M – –
BM-float 4/4 64.95% 1221 KB −5.15% 194 M 4.6× 4.2×
PROFIT 4/4 64.90% 1221 KB −5.20% 212 M 4.6× 3.8×
Ours 4/4 65.00% 1031 KB −5.10% 135 M 5.5× 6.1×
BM-float 3/3 46.00% 1067 KB −24.10% 176 M 5.2× 4.6×
PROFIT 3/3 63.08% 1067 KB −7.02% 190 M 5.2× 4.3×
Ours 3/3 63.45% 890 KB −6.65% 132 M 6.3× 6.2×
FP32 (SqueezeNet) 32/32 68.72% 3.1 MB – 987 M – –
BM-float 4/4 65.50% 653 KB −3.22% 266 M 4.8× 3.7×
PROFIT 4/4 68.82% 653 KB 0.10% 287 M 4.8× 3.4×
Ours 4/4 68.79% 559 KB 0.07% 199 M 5.7× 4.9×
BM-float 3/3 41.00% 563 KB −27.72% 246 M 5.6× 4.0×
PROFIT 3/3 67.18% 563 KB −1.54% 262 M 5.6× 3.7×
Ours 3/3 66.92% 476 KB −1.80% 196 M 6.7× 5.0×

For computation efficiency, our approach on average is two orders of magnitude with respect to
others (6× to FP32 model), while the memory requirement is reduced by a factor of 1.5× (5×∼7×
for FP32 model). The accuracy degradation is more severe on ShuffleNetV2, which indicates that
the architecture has fewer redundant features, and is more sensitive to low-precision quantization,
resulting in a large accuracy gap between the FP32 baseline and quantized model. Our quantization
still achieves better accuracy than BM-float and PROFIT as shown in the table. For the BM-float
method, the accuracy decrease is dramatic in 3-bit precision (−24% loss), which shows that fewer bits
of exponent and mantissa are difficult for the method to converge. On SqueezeNet, PROFIT slightly
outperforms the proposed approach for prediction accuracy, e.g., 0.03% and 0.26% improvement for
4-bit and 3-bit, respectively.

CMC, 2024, vol.80, no.2 3039

4.5 ImageNet

Experiments on representative ImageNet datasets are also conducted. In this experiment, the
proposed approach is evaluated on a commonly used ResNet18 neural network, with a comparison
to newly published SOTA methods in the literature, e.g., block-mini float (BM-float) [4], LSQ+
[2]. The performance of the FP32 model is selected as the baseline, while other selected methods
are for comparison. Different low-precision quantization (e.g., 6, 5, 4, and 3 bit) is tested and
validated. It should be pointed out that DeepShift utilizes 8-bit precision for activation quantization
for all experiments as following its original work, due to the instability of its quantization causing
retraining divergence. We use a pre-trained FP32 model (training from scratch with 120 epochs) as the
initialization for all quantized models, where initialization settings are the following: a learning rate of
0.04 with a decay factor of 0.1, training for 60 epochs, and 128 for batch size. The SGD optimization
is set with a momentum of 0.9 and weight decay of 0.0004. The settings for our distribution-loss
regularizer are the same as those of the CIFAR experiments in this paper. Due to the huge size of
the ImageNet dataset and the computation cost of training, a more powerful hardware facility is used,
with details: NVIDIA A10 GPU 24 GB, Intel(R) Xeon(R) Gold 6342 CPU @ 2.80 GHz.

Table 7 shows the performance details of the compared approaches, including APoT, DeepShift,
BM-float, and LSQ+, where accuracy (Top-1), model size, accuracy drop (Delta), computation cost
(FIXOPS), and compression rate of model size and computations, are rigorously examined. The
accuracy performance in the original papers of BM-float, DeepShift, and LSQ+, is referenced in
the comparison experiment. We can observe from experimental results that our method even in low-
precision (e.g., 5, 4, and 3-bit) still achieves acceptable Top-1 accuracy (less than 1% loss), while it
improves the accuracy by 0.57% at 6-bit precision, compared to the baseline. The compression ratio
on our model size outperforms SOTAs by 1×∼2×, while the reduction of computation overhead is
more promising, several orders of magnitude higher than others (3× ∼ 7×). Among the compared
methods, DeepShift is inferior to others in terms of the performance on computation cost due to 8-bit
precision for activations.

Table 7: Performance comparison on ResNet18 with ImageNet dataset

Method Precision Accuracy Weight Delta FIXOPS Comp.Rate
(W/A) Top-1 Size Acc-1 Weight FIXOPS

FP32 32/32 69.75% 43.9 MB – 32.76 G – –
APoT 4/4 70.10% 9963 KB 0.35% 5.8 G 4.5× 5.6×
BM-float 4/4 69.00% 8115 KB −0.75% 5.1 G 5.5× 6.4×
Ours 4/4 70.32% 7893 KB 0.57% 1.4 G 5.7× 23.4×
APoT 3/3 69.11% 8586 KB −0.64% 4.7 GM 5.2× 7×
DeepShift 5/8 69.56% 8586 KB −0.19% 7.5 G 5.2× 4.4×
BM-float 3/3 66.80% 6762 KB −2.95% 4.1 G 6.6× 8×
Ours 3/3 69.33% 6565 KB −0.42% 1.2 G 6.8× 27×
APoT 4/4 69.00% 7210 KB −0.75% 4 G 6.2× 8.2×
DeepShift 4/8 69.56% 7210 KB −0.19% 6.4 G 6.2× 5.1×
LSQ+ 4/4 70.80% 5674 KB 1.05% 3.7 G 7.9× 8.9×
Ours 4/4 69.35% 5178 KB −0.40% 1 G 8.7× 32.7×
APoT 3/3 68.55% 5834 KB −1.20% 3.1 G 7.7× 10.6×

(Continued)

3040 CMC, 2024, vol.80, no.2

Table 7 (continued)

Method Precision Accuracy Weight Delta FIXOPS Comp.Rate
(W/A) Top-1 Size Acc-1 Weight FIXOPS

LSQ+ 3/3 69.40% 4323 KB −0.35% 2.7 G 10.4× 12.1×
Ours 3/3 68.95% 3718 KB −0.80% 986 M 12.1× 37×

4.6 RAF-DB

Furthermore, a task on facial expression recognition is used to validate the robustness of
quantization methods, with Self-Cure-Network [41] on the RAF-DB dataset, where the experimental
settings are the same as in the CIFAR experiment. Performance results on 4-bit and 3-bit precision
are illustrated in Table 8. Our method outperforms APoT on both Top-1 and FIXOPS, with accuracy
improvement by 0.46% over the baseline model on 4-bit while introducing −0.16% on 3-bit. Regarding
FIXOPS, the proposed approach achieves 32× and 37× computation speedup, which is nearly 4-fold
of APoT.

Table 8: Performance comparison on facial expression recognition task with RAF-DB dataset

Method Precision Accuracy Delta FIXOPS Comp.Rate

(W/A) Top-1 FIXOPS

FP32 32/32 76.69% – 32.76 G –
APoT 4/4 76.86% 0.17% 4 G 8×
Ours 4/4 77.15% 0.46% 1 G 32×
APoT 3/3 75.85% −0.84% 3.1 G 11×
Ours 3/3 76.53% −0.16% 896 M 37×

4.7 Hardware and Inference Simulation

In this section, we target implementing an efficient CNN accelerator. The hardware accelerator
of the proposed P-LUT inference scheme is developed on the Xilinx KV260 FPGA platform by
using Verilog HDL. Then, the efficiency of our implementation is evaluated and compared against
a conventional bit-shifting scheme (adopted by prior PoT methods), as well as general-purpose
computing hardware (Intel Core (TM) i3-2120 3.30 GHz and NVIDIA RXT3060 12 GB).

The overall architecture of the P-LUT accelerator is shown in Fig. 8, which is implemented to
support 4-bit precision of 3×3 convolution. It consists of the P-LUT Complex, input/output buffer, S-
Huff decoder, double Line-Buffer for input feature/weight, controller, Advanced eXtensible Interface
(AXI), and Direct Memory Access (DMA). P-LUT Complex is the core computing engine and is
designed to support 8 input/output channels in parallel computation, where each channel processes 8
convolutions (3 × 3) in the pipeline. Hence, a total of 64 convolutions (3 × 3) in parallel are achieved
for high throughput. In the design, a double buffer for input/output is also used to cache data from
external memory to hide the latency of data transfer (4-byte bus). The S-Huff decoder is particularly
developed to decode compressed weights for reducing memory footprint. To evaluate the efficacy
of P-LUT, a PoT-SHIFT accelerator adapting the same top design is constructed for performance

CMC, 2024, vol.80, no.2 3041

comparison, in which the S-Huff decoder is omitted. With skillful design practices, the two accelerators
are synthesized by Xilinx Vivado electronics design automation tools (2021.1 version) and run at
300 MHz frequency.

Figure 8: The P-LUT accelerator architecture

The performance of memory footprint, decoding overhead of S-Huff, and computation efficiency
of the proposed accelerator benchmarks on ResNet18 with ImageNet dataset, where the convolution
operations are performed on the CNN accelerator, and ARM CPU manages the transfer and control
schedule. Overall, P-LUT achieves 2× more resource efficiency, reduces memory footprint by 1.45×,
and 3× more computation efficiency, in comparison to PoT-SHIFT. The resource utilization of the
P-LUT and PoT-SHIFT accelerator on FPGA is given in Table 9. Indicators on LUT and D flip-
flop (DFF) resources show that the P-LUT scheme is 2× more resource-efficiency than PoT-SHIFT,
while the cost on LUTRAM and BRAM incurs 101 and 21, due to the circuitry of the S-Huff.
From Table 10, the S-Huff decoder reduces memory access by roughly 1.45× compared to PoT-
SHIFT. The latency cost of the S-Huff decoder is 218, 1139, and 4134 μs for Conv3/4/5. Although
the latency overhead of the S-Huff decoder is inevitable, this cost can be amortized by using a double
buffer as in our architecture. We use the on-board power meter with Xilinx xmutil command tools to
measure the power consumption of the whole device. Table 11 demonstrates the performance results
of latency, computation efficiency (Giga Operations Per Second (GOPS)/W), and power usage of
different platforms. In terms of latency, P-LUT hardware is approximately 4× faster than PoT-SHIFT,
and 20× than CPU, whereas GPU outperforms all others due to its massive parallel computing ability
(20× faster than ours). For computation efficiency, P-LUT achieves 3× greater than PoT-SHIFT,
225× than CPU, and 2× than GPU.

Table 9: Resource utilization of P-LUT and PoT-SHIFT accelerator

LUT LUTRAM DFF BRAM DSP

Avail. 117,120 57,600 234,240 144 1248
PoT-SHIFT 40,546 1740 54,030 66 0
P-LUT 19,267 1841 23,753 87 0

3042 CMC, 2024, vol.80, no.2

Table 10: Memory efficiency of P-LUT and PoT SHIFT on ResNet18

Layer Accesses S-Huff decoder

P-LUT PoT SHIFT Efficiency Latency (μs)

Conv3 46,080 65,536 1.42× 281
Conv4 181,760 262,144 1.44× 1139
Conv5 721,920 1,048,576 1.45× 4134

Table 11: Computation and power efficiency on ResNet18 with ImageNet

Layer P-LUT PoT SHIFT CPU GPU

Latency (ms)

Conv3 25.7 102.3 406 2.7
Conv4 20.4 80 380 2.5
Conv5 20.4 81.4 380 2.1
POWER (W) 4 4.2 65 170
GOPS/W 90 28 0.4 44

5 Conclusion

In this paper, we expounded the superiority and limits of edge computing on IoT devices, investi-
gated PoT quantization based on bit-shifting logic, and discovered that the computation and memory
efficiency of prior schemes is not optimal, and difficult for AI models applying to resource-limited
edge computing devices with intensive communications in IoT scenario. To tackle this challenge,
we proposed a P-LUT inference approach with IOS-PoT quantization and compression techniques.
We found that the mismatch problem between quantization inputs and outputs can be mitigated by
employing a tailored distribution-loss regularizer which assists in quantization convergence. Efficient
inference is achieved by P-LUT with weight sharing and S-Huff encoding, which reduces memory
footprint and eliminates multiplication operations for acceleration. Comprehensive experiments
were conducted on ResNets and efficient architectures (i.e., ShuffleNetV2 and SqueezeNet). With
CIFAR10/100, ImageNet, and RAF-DB datasets to validate the efficacy of the proposed approach.
Our approach outperformed existing PoT and SOTA methods by several orders of magnitude in weight
and computation reduction, achieving 2×∼10× improvement while achieving competitive prediction
accuracy. Additionally, we implemented a P-LUT accelerator for convolution operations on the Xilinx
KV260 FPGA platform and evaluated the performance against the bit-shifting approach, ×86 CPU,
and GPU. Performance results proved that the P-LUT accelerator reduces memory footprint by 1.45×,
is 3× more power efficiency and 2× resource efficiency than the prior bit-shifting scheme, and is 225×
and 2× more efficient than CPU and GPU, respectively.

Acknowledgement: The authors would like to acknowledge the financial support of State Key Labora-
tory of Intelligent Vehicle Safety Technology, Chongqing Municipal Education Commission, and the
technical support of Foresight Technology Institute, Chongqing Changan Automobile Co., Ltd., and
School of Computer Science and Engineering, Chongqing University of Science and Technology.

CMC, 2024, vol.80, no.2 3043

Funding Statement: This work was supported by Open Fund Project of State Key Laboratory of
Intelligent Vehicle Safety Technology by Grant with No. IVSTSKL-202311, Key Projects of Science
and Technology Research Programme of Chongqing Municipal Education Commission by Grant
with No. KJZD-K202301505, Cooperation Project between Chongqing Municipal Undergraduate
Universities and Institutes Affiliated to the Chinese Academy of Sciences in 2021 by Grant with
No. HZ2021015 and Chongqing Graduate Student Research Innovation Program by Grant with No.
CYS240801.

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design: Fangzhou He, Dingjiang Yan, Jie Li; data collection: Dingjiang Yan, Ke Ding, Jiajun
Wang, Mingzhe Chen; analysis and interpretation of results: Fangzhou He, Dingjiang Yan, Jie Li;
draft manuscript preparation: Fangzhou He. All authors reviewed the results and approved the final
version of the manuscript.

Availability of Data and Materials: The datasets that support the findings of this study are openly
available and have been cited from reference.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] B. Jacob et al., “Quantization and training of neural networks for efficient integer-arithmetic-only inference,

Quantization and training of neural networks for efficient integer-arithmetic-only inference,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Salt Lake City, UT, USA, Jun. 18, 2018, pp. 2704–2713.

[2] Q. Jin et al., “F8Net: Fixed-point 8-bit only multiplication for network quantization,” arXiv preprint
arXiv:2202.05239, 2022.

[3] Y. Bhalgat, J. Lee, M. Nagel, T. Blankevoort, and N. Kwak, “LSQ+: Improving low-bit quantization
through learnable offsets and better initialization,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
Workshops, Seattle, WA, USA, Jun. 14, 2020, pp. 696–697.

[4] S. Fox, S. Rasoulinezhad, J. Faraone, D. Boland, and P. Leong, “A block minifloat representation for
training deep neural networks,” in Int. Conf. Learn. Represent., May 3, 2021.

[5] E. Park and S. Yoo, “Profit: A novel training method for sub-4-bit mobilenet models,” in Comput. Vis.–
ECCV 2020: 16th Eur. Conf., Glasgow, UK, Springer, Aug. 23–28, 2020, pp. 430–446.

[6] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network quantization: Towards lossless cnns
with low-precision weights,” arXiv preprint arXiv:1702.03044, 2017.

[7] J. Choi, Z. Wang, S. Venkataramani, P. I. -J. Chuang, V. Srinivasan and K. Gopalakrishnan, “PACT:
Parameterized clipping activation for quantized neural networks,” arXiv preprint arXiv:1805.06085, 2018.

[8] Y. Li, X. Dong, and W. Wang, “Additive powers-of-two quantization: An efficient non-uniform discretiza-
tion for neural networks,” arXiv preprint arXiv:1909.13144, 2019.

[9] M. Elhoushi, Z. Chen, F. Shafiq, Y. H. Tian, and J. Y. Li, “Deepshift: Towards multiplication-less neural
networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Nashville, TN, USA, Jun. 20, 2021,
pp. 2359–2368.

[10] F. Cardinaux et al., “Iteratively training look-up tables for network quantization,” IEEE J. Sel. Top. Signal
Process., vol. 14, no. 4, pp. 860–870, May 2020. doi: 10.1109/JSTSP.2020.3005030.

[11] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding,” arXiv preprint arXiv:1510.00149, 2015.

https://doi.org/10.1109/JSTSP.2020.3005030

3044 CMC, 2024, vol.80, no.2

[12] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep convolutional networks using vector
quantization,” arXiv preprint arXiv:1412.6115, 2014.

[13] Y. Choi, M. El-Khamy, and J. Lee, “Universal deep neural network compression,” IEEE J. Sel. Top. Signal
Process., vol. 14, no. 4, pp. 715–726, 2020. doi: 10.1109/JSTSP.2020.2975903.

[14] Y. Ko, A. Chadwick, D. Bates, and R. Mullins, “Lane compression: A lightweight lossless compression
method for machine learning on embedded systems,” ACM Trans. Embedded Comput. Syst. (TECS),
vol. 20, no. 2, pp. 1–26, 2021. doi: 10.1145/3431815.

[15] K. Bhardwaj, C. -Y. Lin, A. Sartor, and R. Marculescu, “Memory- and communication-aware model
compression for distributed deep learning inference on IoT,” ACM Trans. Embedded Comput. Syst.
(TECS), vol. 18, no. 5s, pp. 1–22, 2019.

[16] M. Samragh, M. Javaheripi, and F. Koushanfar, “EncoDeep: Realizing bit-flexible encoding for deep
neural networks,” ACM Trans. Embedded Comput. Syst. (TECS), vol. 19, no. 6, pp. 1–29, 2020. doi:
10.1145/3391901.

[17] N. Yang, Z. Zheng, and T. Wang, “Model loss and distribution analysis of regression problems in machine
learning,” in Proc. 2019 11th Int. Conf. Mach. Learn. Comput., Zhuhai, China, Feb. 22, 2019, pp. 1–5.

[18] T. Hu and Y. Lei, “Early stopping for iterative regularization with general loss functions,” J. Mach. Learn.
Res., vol. 23, pp. 1–36, 2022.

[19] W. Wan, Y. Zhong, T. Li, and J. Chen, “Rethinking feature distribution for loss functions in image
classification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Salt Lake City, UT, USA, Jun. 18,
2018, pp. 9117–9126.

[20] D. Li, Y. Liu, and L. Song, “Adaptive weighted losses with distribution approximation for efficient
consistency-based semi-supervised learning,” IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 11,
pp. 7832–7842, 2022. doi: 10.1109/TCSVT.2022.3186041.

[21] S. Zhang, F. Ge, R. Ding, H. Liu, and X. Zhou, “Learning to binarize convolutional neural networks with
adaptive neural encoder,” in 2021 Int. Joint Conf. Neur. Netw. (IJCNN), Shenzhen, China, IEEE, Jul. 18,
2021, pp. 1–8.

[22] S. Jain, S. Venkataramani, V. Srinivasan, J. Choi, P. Chuang and L. Chang, “Compensated-DNN: Energy
efficient low-precision deep neural networks by compensating quantization errors,” in Proc. 55th Annu.
Des. Automat. Conf., San Francisco, CA, USA, Jun. 24, 2018, pp. 1–6.

[23] C. Gong, Y. Chen, Y. Lu, T. Li, C. Hao and D. Chen, “VecQ: Minimal loss DNN model compression
with vectorized weight quantization,” IEEE Trans. Comput., vol. 70, no. 5, pp. 696–710, 2020. doi:
10.1109/TC.2020.2995593.

[24] Z. Wang, Y. -H. Shao, L. Bai, C. -N. Li, and L. -M. Liu, “General plane-based clustering with
distribution loss,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 9, pp. 3880–3893, 2020. doi:
10.1109/TNNLS.2020.3016078.

[25] E. Wang, J. J. Davis, P. Y. Cheung, and G. A. Constantinides, “LUTNet: Rethinking inference in fpga soft
logic,” in 2019 IEEE 27th Annu. Int. Symp. Field-Programmable Custom Comput. Mach. (FCCM), San
Diego, CA, USA, Apr. 28, 2019, pp. 26–34.

[26] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradients through stochastic neurons
for conditional computation,” arXiv preprint arXiv:1308.3432, 2013.

[27] A. Lempel and J. Ziv, “Lempel-ziv–markov chain algorithm,” Accessed: Dec. 7, 2023. [Online]. Available:
https://en.wikipedia.org/wiki/Lempel-Ziv-Markov_chain_algorithm

[28] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,” Accessed: Dec. 7,
2023. 2009. [Online]. Available: http://www.cs.utoronto.ca/∼kriz/learning-features-2009-TR.pdf

[29] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li and L. Fei-Fei, “ImageNet: A large-scale hierarchical image
database,” in 2009 IEEE Conf. Comput. Vis. Pattern Recognit., Miami Beach, FL, USA, Jun. 22, 2009,
pp. 248–255.

[30] S. Li, W. Deng, and J. Du, “Reliable crowdsourcing and deep locality-preserving learning for expression
recognition in the wild,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Honolulu, HI, USA, Jul. 22,
2017, pp. 2852–2861.

https://doi.org/10.1109/JSTSP.2020.2975903
https://doi.org/10.1145/3431815
https://doi.org/10.1145/3391901
https://doi.org/10.1109/TCSVT.2022.3186041
https://doi.org/10.1109/TC.2020.2995593
https://doi.org/10.1109/TNNLS.2020.3016078
https://en.wikipedia.org/wiki/Lempel-Ziv-Markov_chain_algorithm
http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf

CMC, 2024, vol.80, no.2 3045

[31] Z. Liu, B. Wu, W. Luo, X. Yang, W. Liu and K. -T. Cheng, “Bi-real Net: Enhancing the performance of 1-
bit CNNs with improved representational capability and advanced training algorithm,” in Proc. Eur. Conf.
Comput. Vis. (ECCV), Munich, Germany, Sep. 8, 2018, pp. 722–737.

[32] V. Sovrasov, “ptflops: A flops counting tool for neural networks in pytorch framework,” Accessed: Dec.
7, 2023. 2020. [Online]. Available: https://github.com/sovrasov/flops-counter.pytorch

[33] T. Salimans and D. P. Kingma, “Weight normalization: A simple reparameterization to accelerate training
of deep neural networks,” in Adv. Neur. Inf. Process. Syst., Barcelona, Spain, Dec. 5, 2016, vol. 29.

[34] S. Jung et al., “Learning to quantize deep networks by optimizing quantization intervals with task
loss,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Long Beach, CA, USA, Jun. 16, 2019,
pp. 4350–4359.

[35] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional neural networks using logarithmic data
representation,” arXiv preprint arXiv:1603.01025, 2016.

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Las Vegas, NV, USA, Jun. 30, 2016, pp. 770–778.

[37] Y. Idelbayev, “Proper ResNet implementation for CIFAR10/CIFAR100 in PyTorch,” Accessed: Dec. 7,
2023. 2020. [Online]. Available: https://github.com/akamaster/pytorch_resnet_cifar10

[38] D. Zhang, J. Yang, D. Ye, and G. Hua, “LQ-Nets: Learned quantization for highly accurate and compact
deep neural networks,” in Proc. Eur. Conf. Comput. Vis. (ECCV), Munich, Germany, Sep. 8, 2018,
pp. 365–382.

[39] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally and K. Keutzer, “SqueezeNet: AlexNet-
level accuracy with 50x fewer parameters and <0.5 mb model size,” arXiv preprint arXiv:1602.07360, 2016.

[40] N. Ma, X. Zhang, H. -T. Zheng, and J. Sun, “ShuffleNet v2: Practical guidelines for efficient CNN
architecture design,” in Proc. Eur. Conf. Comput. Vis. (ECCV), Munich, Germany, Sep. 8, 2018,
pp. 116–131.

[41] K. Wang, X. Peng, J. Yang, S. Lu, and Y. Qiao, “Suppressing uncertainties for large-scale facial expression
recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Seattle, WA, USA, Jun. 13, 2020,
pp. 6897–6906.

https://github.com/sovrasov/flops-counter.pytorch
https://github.com/akamaster/pytorch_resnet_cifar10

	A Novel Quantization and Model Compression Approach for Hardware Accelerators in Edge Computing
	1 Introduction
	2 Related Work
	3 Proposed Approach
	4 Experiments
	5 Conclusion
	References

