
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.053564

ARTICLE

A Pre-Selection-Based Ant Colony System for Integrated Resources
Scheduling Problem at Marine Container Terminal

Rong Wang1, Xinxin Xu2, Zijia Wang3,*, Fei Ji1 and Nankun Mu4

1School of Electronic and Information Engineering, South China University of Technology, Guangzhou, 510641, China
2School of Computer Science and Technology, Ocean University of China, Qingdao, 266100, China
3School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou, 510006, China
4School of Computer Science, Chongqing University, Chongqing, 400044, China

*Corresponding Author: Zijia Wang. Email: zijiawang@gzhu.edu.cn

Received: 04 May 2024 Accepted: 01 July 2024 Published: 15 August 2024

ABSTRACT

Marine container terminal (MCT) plays a key role in the marine intelligent transportation system and international
logistics system. However, the efficiency of resource scheduling significantly influences the operation performance
of MCT. To solve the practical resource scheduling problem (RSP) in MCT efficiently, this paper has contributions to
both the problem model and the algorithm design. Firstly, in the problem model, different from most of the existing
studies that only consider scheduling part of the resources in MCT, we propose a unified mathematical model for
formulating an integrated RSP. The new integrated RSP model allocates and schedules multiple MCT resources
simultaneously by taking the total cost minimization as the objective. Secondly, in the algorithm design, a pre-
selection-based ant colony system (PACS) approach is proposed based on graphic structure solution representation
and a pre-selection strategy. On the one hand, as the RSP can be formulated as the shortest path problem on the
directed complete graph, the graphic structure is proposed to represent the solution encoding to consider multiple
constraints and multiple factors of the RSP, which effectively avoids the generation of infeasible solutions. On the
other hand, the pre-selection strategy aims to reduce the computational burden of PACS and to fast obtain a higher-
quality solution. To evaluate the performance of the proposed novel PACS in solving the new integrated RSP model,
a set of test cases with different sizes is conducted. Experimental results and comparisons show the effectiveness
and efficiency of the PACS algorithm, which can significantly outperform other state-of-the-art algorithms.

KEYWORDS
Resource scheduling problem (RSP); ant colony system (ACS); marine container terminal (MCT); pre-selection
strategy

1 Introduction

With the accelerated development in the world economy and trade, the importance of marine
container terminals (MCT) rapidly increases due to the rise in imported and exported goods.
According to the review of maritime transport by the United Nations Conference on Trade and
Development (UNCTAD), the total volumes of international seaborne trade have reached 163 million
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twenty-foot equivalent units (TEUs) in 2022 [1]. In particular, large MCT has huge throughput. For
example, the total container throughput of the Shanghai port with more than 1000 berths has reached
47.3 million TEUs in 2022 [2]. A reasonable efficient deployment schedule of existing resources and
equipment of MCT leads to an improvement of efficiency in the MCT. This efficiency will in turn
enhance the competitiveness and economic performance of the MCT. At the same time, it also results
in lower costs and better quality of service for shipping companies.

Resources of MCT mainly include berths, quay cranes (QCs), vehicles, yard cranes (YCs), and
human workers. According to the container terminal layout of Qingdao port as shown in Fig. 1a, an
example of the simulated resources’ layouts is shown in Fig. 1b. The workflow of each equipment
resource is shown in Fig. 1c. Gray represents human resources, yellow represents transportation
equipment, blue represents fixed area, and green represents loading and unloading equipment. Ship
1 is unloading containers at Berth 1 and Ship 2 is loading containers at Berth 2 in Fig. 1b. Berth
provides a shoreline suitable for ship to berth and is usually divided into continuous berths or discrete
berths according to the space constraint. Specifically, in the continuous berth case, the MCT is a whole
shoreline and ships can berth at any position. In the discrete berth case, there are multiple berths at
the MCT and only one ship can be berthed at each berth at a time. As shown in Fig. 1b, there are two
discrete berths at MCT. QCs are critical equipment for loading and unloading containers from ships.
There are two QCs at each berth in Fig. 1b. Vehicles transport containers between the container storage
yard and the berths. YCs are lifting equipment for picking up containers from vehicles to the yard and
stacking them in assigned positions in the yard, or vice versa. In Fig. 1b, two YCs are displayed to
indicate their role at MCT. In non-automated MCT, human workers are essential in the supervision
and operations of processes, including QCs, YCs, and vehicles [3]. Therefore, it is extremely urgent to
assign these resources reasonably, which is the resources scheduling problem (RSP) at MCT.

There are three main steps in the entire process of MCT operations [4] including the allocation
of berths, loading or unloading containers by QCs from the ship, and picking up or putting down
containers by YCs from the yard. Each resource scheduling of the RSP is included in these steps. The
RSP is known as an NP-hard problem [5], and many researchers designed different strategies to solve
a part problem of the RSP.

First, the available berth and berthing time are assigned to each ship that arrives at the MCT.
Concerning the berth allocation problem (BAP) in RSP, many different models and algorithms have
been proposed. Jauhar et al. [5] used four meta-heuristics, i.e., particle swarm optimization (PSO),
advanced PSO (APSO), shuffled complex evolution (SCE), and the shuffled frog leaping algorithm
(SFLA) to solve BAP for minimizing the total cost. Yin et al. [6] designed the iterative variable
grouping genetic algorithm (IVGGA) for BAP to minimize the maximum berthing time of all berths.
Moreover, Hameed et al. [7] solved discrete BAP by crossing the red colobuses monkey optimization
with the genetic algorithm (RCMGA) to minimize the total service time. Dulebenets [8] developed a
novel adaptive evolutionary algorithm (AEA) for a discrete BAP model that aims to minimize the total
ship service cost. Umang et al. [9] discussed the hybrid BAP which included discrete, continuous, and
hybrid berth layouts. They solved the BAP model with exact and heuristic approaches for minimizing
the total service times. According to the actual conditions of MCT, where the continuous berths are
always split into several discrete berthing positions, the discrete BAP is studied in our model in this
paper.
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Figure 1: The loading and unloading entire process of MCT. (a) Aerial view of the part container
terminal of Qingdao port (from Baidu Maps). (b) An example of resources’ layout at MCT. (c) The
location of each equipment resources in the workflow
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Second, loading and unloading operations should be carried out. The container is unloaded or
loaded from a ship by a QC in this step (i.e., QC scheduling problem), then moved to the assigned
yard by a vehicle or vice versa (i.e., vehicle scheduling problem). Considering the relevance of critical
equipment and resources of MCT in the terminal operations process, QCs allocation is carried out
together with berths allocation. Multiple berthing positions and multiple QCs were integrated into an
allocation problem model in [10], which aimed to minimize the total cost. In [11], a biased random key
genetic algorithm (GA) was proposed to allocate berthing positions and assign several QCs for every
incoming ship. Li et al. [12] proposed a two-phase iterative heuristic algorithm for an integrated model
with continuous berth allocation and QC assignment to optimize two objectives, which minimizes total
turnaround time and total penalty cost simultaneously.

Third, when the vehicle arrives yard, the container is picked up or put down from the yard by
a YC (i.e., YC scheduling problem). Cao et al. [13] developed a heuristic algorithm to minimize the
loading time of the containers for planning and scheduling YCs. The problem of multiple equipment
assignments and scheduling at MCT has also been extensively studied. Cahyono et al. [14] presented
a model predictive algorithm to solve the integrated terminal operations problem, including the
allocation and scheduling of QCs, trucks, and YCs, and selecting the storage positions of containers
in the yard and ship. Li et al. [15] proposed a new mixed-integer programming model with many
equipment, such as QCs, automated vehicles, reach stackers, YCs, and outside container trucks in
automated MCT, and also designed an improved GA to minimize total loading and unloading
operation time. Tanaka et al. [16] proposed an improved branch and bound algorithm to obtain YCs
and a yard scheduling plan to minimize the number of relocations. Xiang et al. [17] constructed a multi-
objective dynamic integrated optimization problem model, including BAP, QC assignment problem,
and yard assignment problem. Considering the human workers scheduling problem, Maione et al. [18]
proposed a generalized stochastic Petri net model, which described how to coordinate humans and use
resources (i.e., cranes and transporters).

Most of the aforementioned studies only study a part of the RSP. That is, scheduling only a part
of the resources. However, the MCT manager needs to plan the entire operation process so that global
efficiency can be obtained. Therefore, all the resources, including berths, QCs, YCs, human workers,
and vehicles should be considered together and integrated. However, each part of the RSP is NP-hard,
like the BAP, the QC scheduling problem, the vehicle scheduling problem, the YC scheduling problem,
and the human workers scheduling problem. In this sense, the integrated RSP would be much more
complex. Fortunately, all these scheduling problems share a common objective of reducing operation
costs. For example, unreasonable berths allocation can lead to unreasonable waiting times for the
ships, causing a higher waiting cost. Moreover, the cost also heavily relates to the handling speed of
the operation in the scheduling. If more equipment or resources (i.e., QCs, YCs, human workers, and
vehicles) are used, the handling speed will be faster, leading to shorter waiting time but causing a higher
handling cost per unit time. Motivated by this, in this paper, we first establish a novel integrated RSP
model and set the total cost minimization as the optimization objective of the integrated RSP model
by combining the waiting cost and handling cost, which can consider all the resources or equipment
together in the integrated RSP model.

Metaheuristic algorithms are suitable for solving NP-hard RSP-related problems, such as PSO
[5], GA [19–21], and hybrid algorithm [22–26]. However, PSO may be suitable for solving continuous
optimization problems in general, and its performance may degrade for discrete problems. Moreover,
GA-based approaches may produce infeasible solutions in the process of crossover and mutation,
which requires extra computational burden to repair. Therefore, we propose solution construction on
the graphical structure to avoid generating infeasible solutions.
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Ant colony system (ACS), derived from ant colony optimization (ACO), is a metaheuristic
algorithm that is more effective and efficient in dealing with discrete optimization problems [27].
Currently, ACS has been used to solve various resource-constrained combinatorial optimization
problems in the real world, such as traveling salesman problem (TSP) [28], supply chain configuration
[29], cold chain logistics scheduling [30], virtual machine placement problem [31], path planning
optimization problem [32,33], and discrete BAP [34]. These applications highlight the robustness and
the ability of the global search of ACS. Inspired by ACS, in this paper, we further propose a solution
construction method on the graphical structure to avoid generating infeasible solutions. Moreover,
a pre-selection strategy is designed to meet the practical requirement and accelerate the convergence
speed. Therefore, the complete algorithm pre-selection-based ACS (PACS) is proposed to solve the
integrated RSP model for minimizing the total cost.

Based on the above, the main contributions of this paper come from both the problem model
aspect and the algorithm design aspect, which are summarized as follows:

1. In the problem model aspect, different from other models that only consider scheduling part of
the resources in MCT, due to the strong interrelation in the different equipment resources of MCT, we
establish a novel integrated RSP model that combines multiple resources (including berths, QCs, YCs,
human workers, and vehicles) together in a uniform model. This way, all the resources at the MCT
can be considered together at the same abstract level and be allocated and scheduled simultaneously
to minimize the total cost.

2. In the algorithm design aspect, the PACS approach is proposed based on graphic structure
solution representation and a pre-selection strategy. Firstly, in order to avoid generating infeasible
solutions, the graphic structure is proposed to encode the solution and the solution construction
process imitates the idea of finding the shortest path method based on the graphic structure. This
graphical structure can avoid the same ship node being repeatedly selected. Secondly, aiming to meet
the real-time requirement of the RSP model and reduce the search space to further improve the
performance, the pre-selection strategy is proposed to accelerate the optimization speed of PACS.

The rest of this paper is organized as follows. In Section 2, the integrated RSP mathematical model
is given, with a detailed description of the objective function of the RSP. Section 3 describes the details
of PACS for solving RSP. Experiments are carried out in Section 4, and test results are compared with
other algorithms on robustness, effectiveness, and efficiency. Finally, conclusions and future work are
drawn in Section 5.

2 Problem Formulation
2.1 Notations

The mathematical symbol representation and formula of the RSP model are given as follows:

1. Set
S = {1, . . . , |S|} Set of ships, |S| is the number of ships
B = {1, . . . , |B|} Set of available berths at MCT, |B| is the

number of berths

(Continued)
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(continued)

Qb = {1, . . . , QNb} Set of available QCs at every berth, QNb is
the number of QCs at berth b, QNb ≥ 2,
b∈B

Y = {1, . . . , |Y |} Set of available YCs at yard, |Y | is the
number of YCs at yard

V = {1, . . . , |V |} Set of available vehicles, |V | is the number
of available vehicles

M = {1, . . . , |M |} Set of available workers, |M | is the number
of workers

H = {1, . . . , NH} Set of handling speeds, NH is the number
of handling speed

2. Index
b Index of berth, b∈B
m Index of worker, m∈M
h Index of handling speed, h∈H
q Index of QC, q∈Qb

v Index of vehicle, v∈V
s Index of ship, s∈S
y Index of YC, y∈Y

3. The known variables
MNQ Number of workers required for every QC
MNY Number of workers required for every YC
MNV Number of workers required for every

vehicle
VS Speed of a vehicle (TEUs/hour), VSv is

speed of vehicle v
VF Cost of a vehicle per hour (USD/hour),

VFv is cost of vehicle v per hour, v∈V
QS Speed of a QC (TEUs/hour), QSqb is

loading and unloading productivity of QC
q at berth b per hour, q∈Qb, b∈B

QF Cost of a QC per hour (USD/hour), QFqb

is cost of QC q per hour at berth b, q∈Qb,
b∈B

YS Speed of a YC (TEUs/hour), YSy is
loading and unloading productivity of YC
y per hour, y∈Y

YF Cost of a YC per hour (USD/hour), YFy is
cost of YC y per hour, y∈Y

MF Cost of a worker per hour (USD/hour),
MFm is cost of worker m per hour, m ∈ M

ATs Arrival time of Ship s, s ∈ S

(Continued)
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(continued)

Cs Number of containers to be loaded and
unloaded on Ship s, s ∈ S

WF The waiting cost per hour (USD/hour)

4. Variables related to solving the handling speed
NH The number of handling speeds
Hh Value of the hth handling speed,

(TEUs/hour)
HFh Cost per hour for the hth handling speed

(USD/hour)
NQh Number of QCs assigned for the hth

handling speed
NV h Number of vehicles assigned for the hth

handling speed
NY h Number of YCs assigned for the hth

handling speed
NMh Number of workers assigned for the hth

handling speed
5. Variables related to the objective function
xsbh = 1 if Ship s is serviced at berth b under

the hth handling speed; = 0 otherwise. s ∈
S, b ∈ B

Wcosts The waiting cost of Ship s (USD/hour),
s ∈ S

WTs The waiting time of Ship s (hours), s ∈ S
Hcosts The handling cost of Ship s (USD/hour),

s ∈ S
HTs The handling time of Ship s in assigned

berth (hours), s ∈ S
Hsh The hth handling speed which is selected by

Ship s (USD/hour), s ∈ S
STs The starting time of service for Ship s at

assigned berth, s ∈ S
FTs The finishing time of service for Ship s at

assigned berth, s ∈ S

2.2 Problem Description

The RSP is a problem for the unified scheduling of equipment and resources at MCT by the
terminal manager. The scheduled equipment and resources include:

1. Available discrete berth B. A berth can only serve one ship at a time. All berths meet berthing
conditions of all ships. Once selected, ship will not change the berth until the ship completes the
operation and leaves the berth.
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2. Available QCs at every berth, Qb = {1, . . . , QNb}. We set the same number of QCs at every berth.
The number of QCs can affect the handling speed, and resulting in different costs. In actual terminal
operation, to avoid increasing the weight difference between the two sides of the ship, the number of
QCs is often an even number to keep the ship stable (i.e., both QNb and NQh are even numbers), so
QNb ≥ 2.

3. Available YCs at every yard, Y = {1, . . . , |Y |}. In general, the number of YCs should not be too
larger or too small. The number of YCs should generally meet the following condition:

|Y | = arg min
|Y |

{( |B|∑
b=1

(
QNb∑
q=1

QSqb

))
≤ YS × |Y |

}
(1)

Specifically, since multiple berths are corresponding to one yard area, the total handling speed of
YCs needs to cope with the simultaneous operation of QCs at all berths. Meanwhile, the quantity of
YCs will not exceed that of QCs too much. Otherwise, some YCs will be idle during unloading or make
the QCs too busy to meet the requirements of all containers during loading. Furthermore, a YC can
only serve one berth at a time.

4. Available vehicles. The number of vehicles used by per handling speed is determined by the
number of QCs and YCs. Using more QCs and YCs requires more vehicles, causing higher cost. Only
one operation (loading or unloading) is performed at a time. Correspondingly, each vehicle also carries
out only one operation at a time. For example, the vehicle takes the container from the ship to the yard
and returns to the berth empty, or loads the container from the yard to the berth with containers and
returns to the yard empty. As shown in Fig. 1b, Ship 1 is unloading and Ship 2 is loading.

5. Available workers, the number of workers is sufficient. We set each equipment is operated by
only one worker. The total number of workers is the number of equipment served for Ship s. Each
worker cannot operate more than one device at the same time.

For a better understanding of the operation flow in the whole MCT, Fig. 1b describes an example
of the layout and workflow of MCT. Ships arrive at the MCT one after another, instead of unified
scheduling after all ship arrived. When ship arrived before its service time, it will wait in the waiting
area. The waiting time of the Ship s (WTs) is calculated by its arrival time (ATs) and starting time
of service (STs). When the waiting time of a ship is over and the ship is berthed, a handling speed is
assigned to the ship. The handling speed is determined by the number of equipment allocated to the
ship and the speed of each piece of equipment, shown in the dashed box in Fig. 1c. Finally, complete
the transport of containers based on the allocated handling speed between the ship and yard (i.e.,
loading or unloading) before the ship leaves the berth.

Algorithm 1: Calculation handling speed
Begin
1. h = 0; NH = 0; NQh = 2;
2. While NQh ≤ QNb Do;
3. h = h + 1;
4. Calculate NY h by Eq. (2);
5. Calculate NV h by Eq. (3);
6. Calculate NMh by Eq. (4);
7. Calculate Hh by Eq. (5);
8. Calculate HFh by Eq. (6);

(Continued)
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Algorithm 1 (continued)
9. NH = NH + 1;
10. NQh = NQh + 2;
11. End While
End

Considering the actual situation of MCT, the assumptions can be summarized as follows: (1) Ships
cannot berth at multiple berths at the same time and cannot be served at multiple handling speeds. (2)
Every ship continues to work at a selected handling speed until the loading and unloading are done.
(3) All the equipment keeps the same running speed.

2.3 The Handling Speed

We integrate multiple equipment-dependent parameters into one metric, called handling speed.
The faster handling speed often needs more equipment (i.e., QCs, YCs, human workers, and vehicles)
also brings the higher cost. Therefore, the values of each handling speed are computed according to
the quantity of partially used equipment (NQh, NY h), while the costs of every handling speed HFh are
calculated according to the cost of used equipment (NQh, NY h, NV h, NMh). The pseudo-code of the
calculation process of handling speed is given in Algorithm 1.

The value of QNb and NQh are even numbers, so the value of NQh is set to 2, 4, . . . , and QNb in
turn, which are shown in Line 1 and Line 10 of Algorithm 1.

Since QCs in discrete berths cannot be used in different berths, the upper limit of Hh is the sum
of the speed of all QCs in a single berth. In Line 2 of Algorithm 1, NQh is no more than the number
of QCs for a single berth. Due to QNb ≥ 2, we set the initial value of NQh to 2. In Line 4 of Algorithm
1, NY h (i.e., the number of YCs assigned for hth handling speed) is calculation by:

NYh = arg min
NYh

{YS × NYh ≥ QS × NQh ≥ YS × (NYh − 1)} or

arg min
NYh

{YS × (NYh + 1) > QS × NQh} (2)

In Line 5 of Algorithm 1, the number of vehicles assigned for the hth handling speed is
computed by:

NVh = arg min
NVh

{QS × NQh ≤ VS × NVh&YS × NYh ≤ VS × NVh} (3)

The total number of workers served for the hth handling speed is calculated in Line 6 of Algorithm
1, the calculation equation is shown as follows:

NMh = NQh + NVh + NYh (4)

Combined with the above calculation results, in Line 7 of Algorithm 1, the value of the hth handling
speed is calculated by:

Hh = min {QS × NQh, YS × NYh} (5)

We compare the speed of QCs (QS × NQh) with the speed of YCs (YS × NY h), and assign the
minimum value to Hh.
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Then, the cost per hour of the hth handling speed is computed in Eq. (6). The cost includes the
total cost of QCs, YCs, vehicles, and workers, which are allocated to the hth handling speed.

HFh = NQh × (QF + MF) + NYh × (YF + MF) + NVh × (VF + MF) (6)

The quantity of handling speed NH is counted by algorithm execution, which is shown in Line 10
of Algorithm 1.

In the proposed RSP model, the calculation of handling speed needs to meet the following
constraint:

QN1 = QNb, ∀b ∈ B (7)

VS = VS1 = VSv, ∀v ∈ V (8)

VF = VF1 = VFv, ∀v ∈ V (9)

QS = QS11 = QSqb, ∀q ∈ Qb, ∀b ∈ B (10)

QF = QF11 = QFqb, ∀q ∈ Qb, ∀b ∈ B (11)

YS = YS1 = YSy, ∀y ∈ Y (12)

YF = YF1 = YFy, ∀y ∈ Y (13)

MF = MF1 = MFm, ∀m ∈ M (14)

MNQ = MNY = MNV = 1 (15)

NQh ≤ QNb (16)

NYh ≤ |Y | (17)( |B|∑
b=1

QNb

)
≤ |Y | (18)

NMh ≤ |M| (19)

NVh ≤ |V | (20)

Constraint (7) defines that the number of available QCs at every berth is same. Constraint (8)
indicates that the speed of every vehicle is the same. Constraint (9) guarantees that the cost of every
vehicle per hour is same. Constraint (10) states that the speed of every QC at any berth is same.
Constraint (11) signifies that the cost of every QC per hour is same. Constraint (12) represents that
the speed of every YC is same. Constraint (13) indicates that the cost of every YC per hour is same.
Constraint (14) represents the hourly wage of every worker is same. Constraint (15) expresses only one
worker is required to operate each device at a same time. Constraints (16)–(20) imply the number of
QCs, YCs, and vehicles assigned for the hth handling speed are the allowable amount.

2.4 Mathematical Model of RSP

Objective:

Minimize f =
|S|∑
s=1

(Wcosts + Hcosts) (21)
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subject to:∑
b∈B

∑
h∈H

xsbh = 1, ∀s ∈ S (22)

STs ≥ ATs, ∀s ∈ S (23)

STs =
{

ATs FTsp ≤ ATs

FTsp FTsp > ATs

(24)

WTs = STs − ATs, ∀s ∈ S (25)

Wcosts = WTs × WF , ∀s ∈ S (26)

HTs = Cs/Hsh, ∀s ∈ S (27)

FTs = STs + HTs, ∀s ∈ S (28)

Hcosts = HFh × HTs, ∀s ∈ S (29)

Based on the components mentioned above, the objective of the integrated RSP model is to
minimize the total cost, which includes waiting cost and handling cost of all ships, shown in function
(21). Constraint (22) ensures that each ship must be served once at any berth. Constraint (23) ensures
that the ship will not be served until it arrives. Eq. (24) calculates the staring time of service for Ship
s, where sp is the previous ship that berthed at the same berth as Ship s. When the finishing time of
service for Ship sp is less than ATs, Ship s will be berthed directly; otherwise, it will wait for the Ship sp
to complete the operation. Eq. (25) calculates the waiting time of Ship s. Eq. (26) computes the waiting
cost of Ship s. Eq. (27) calculates the handling time of Ship s. Eq. (28) computes the finishing time of
service for Ship s. Eq. (29) computes the handling cost of Ship s.

3 PACS for Solving RSP

PACS is used to solve RSP, which is to find an optimal berthing scheme with the minimum cost.
The objective function of RSP is defined in Eq. (21). The optimal berthing scheme includes berthing
berth, handling speed, and berthing sequence of every ship.

When using PACS to solve the RSP, the solution representation should be defined. Herein, a novel
graphic structure for solution representation is proposed. Based on the solution representation, the
optimization process is described as follows. Firstly, the ant randomly chooses a node as the starting
point. Then, the ant chooses the next node according to the biased exploration based on the pheromone
and heuristic information between nodes. A complete solution path is constructed by repeating this
process until all the ship berthing schemes are determined. After that, local pheromones updating rule
is executed to reduce the probability of other ants choosing the same path, where the pheromone on
the paths visited by the ant is weakened by the local pheromone updating rule. When all ants construct
their solutions in this generation, these solutions are compared with the historically best solution to
obtain a new historically best solution. The pheromone is enhanced on the edges of the new historically
best solution, to accelerate the convergence speed of the algorithm. The process will be repeated until
the terminal condition is met.

In the following parts, the graphic structure solution representation, initialization state configu-
rations, state transition rule, and pheromone updating rules are described in details, with the complete
PACS algorithm in the end.
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3.1 Graphic Structure for Solution Representation

The RSP is similar to TSP. The goal of TSP is to find the shortest path for a traveler to go through
all the cities without repetition. Therefore, RSP can also be constructed into a graphic structure similar
to a city map. The goal of RSP is to find the shortest path which is an optimal berthing scheme for
every ship, including berthing berth, handling speed, and berthing sequence.

The RSP can be modeled into a digraph with |S| × |B| × NH nodes. The state of each ship is
represented as xsbh (s ∈ S, b ∈ B, h ∈ H), which means Ship s is served under handling speed h in
berth b. An example of the graphic structure for RSP is shown in Fig. 2, which includes 16 nodes
representing 16 states of 4 ships (|S| = 4) with 2 berths (|B| = 2) and 2 handling speeds (NH = 2). Each
ship has |B| × NH state. For instance, x321 means Ship 3 is served under handling speed 1 in Berth 2.
The same ship can only be chosen once, so there is no edge between nodes of the same s value denoted
in every dotted line in Fig. 2a. For other nodes, there are paths between any two nodes, and there are
different path distances in two directed edges between these nodes. These edges are similar to the city
path in TSP. Then, the best path is calculated by the PACS algorithm. Fig. 2b shows a path that stands
for an RSP scheduling scheme. Unlike the TSP, this path does not need to go back to the start node.
The sequence of the path indicates the sequence in which the ship berths. The node information in
the path represents the berthing berth and handling speed selected for each ship. For instance, Fig. 2b
shows berthing sequence of 4 ships, which is Ship 1 at Berth 1 with 2th handling speed (x112 = 1), Ship
2 at Berth 1 with 1th handling speed (x211 = 1), Ship 3 at Berth 2 with 2th handling speed (x322 = 1),
and Ship 4 at Berth 2 with 2th handling speed (x422 = 1).

Figure 2: Graphic structure for RSP. (a) All paths between ship nodes (solution space). (b) A berthing
scheme (a feasible solution)

3.2 Initialization State Configurations

Initialization operation includes computing handling speed, initialing pheromones, and determin-
ing the starting node. The pre-selection strategy is proposed in initialization operation to reduce the
computational burden and to fast obtain a higher quality solution.
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3.2.1 Initialization of the Handling Speed

In the initialization stage of PACS algorithm, RSP determines the handling speed by considering
multiple resources (QCs, YCs, human workers, and vehicles). These values of variables related to
handling speed (i.e., Hh, HFh, and NH) are calculated by Algorithm 1.

The quantity of vehicles and workers are determined by the quantity of QCs and YCs, shown in
Eqs. (2) and (3). The value of handling speed Hh is also determined by the number of QCs and YCs,
shown in Eq. (5). Then, the corresponding cost for each handling speed is calculated by Eq. (6). The
more equipment and workers used, the higher the cost per unit time. Finally, the number of handling
speed NH is counted by Algorithm 1. NH is used to determine the number of nodes of RSP graph
during the process of constructing RSP graph structure.

3.2.2 Initialization of Pheromones by Pre-Selection Strategy

We first proposed the pre-selection strategy based on first come first served (FCFS) to determine
the initial pheromone value τ 0, so as to meet the practical requirement and find the short path quickly,
accelerating the convergence speed. Specifically, the FCFS algorithm is used to solve RSP and find
a solution EFCFS, which includes the berthing sequence, berthing berth, and handling speed of each
ship. In EFCFS, the handling speed of each ship is the lowest handling speed [24]. Then, a more suitable
handling speed is calculated by the pre-selection strategy. The berthing sequence and berthing berth
remain unchanged. Berthing sequence and berthing berth determine the berthing time interval between
each ship. The calculation formula for new handling speed is defined as follows:

H
′
sh =

⎧⎨
⎩

arg min
Hsh

{Hcosts}
arg min

Hsh

{Hcosts + Wcosts+1}
s ∈ S′′

otherwise (30)

where s ∈ EFCFS, s + 1 is the ship that berths after Ship s in the EFCFS. S′ ′ is a set that consists of the
last ship berthed at each berth. The unchanged berthing sequence, unchanged berthing berth, and new
handling speed combine to form a new berthing scheme EPFCFS. Then, the fitness of EPFCFS is calculated
by Eq. (21), as f PFCFS. The pheromones are initialized as τ 0 = (|S| × f PFCFS)-1.

3.2.3 Initialization of the Starting Node by Pre-Selection Strategy

In this step, the pre-selection mechanism is used to determine the starting node of every ant
(ant_n0) in every generation. A pre-selection parameter ξ (0 ≤ ξ ≤ 1) is introduced to initialize the
starting node of every ant. All ships are sorted according to the arrival time, and the first 1/4 ships are
selected by the arrival time to form a new pre-selected ship set PS. Referring to [34], 1/4 is the most
suitable value to obtain a better solution at a lower computational cost. Then, starting points of every
ant are selected as:

ant_n0

{
xsbh = 1, ∀s ∈ PS, ∀b ∈ B, ∀h ∈ H if z ≤ ξ

xsbh = 1, ∀s ∈ S, ∀b ∈ B, ∀h ∈ H otherwise (31)

where z (0 ≤ z ≤ 1) is a random number, and compares with ξ . If z ≤ ξ , we randomly select a note that
arrives time earlier in set PS. Otherwise, any node can be chosen as the starting point. The pre-selection
parameter ξ is used to balance the exploitation and exploration for constructed solution processes.
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3.3 State Transition Rule

In PACS algorithm, pheromone and heuristic information are used to guide forward behavior of
ants in the state transition rule. Heuristic information is introduced as follows:

η (i, j) =
{

1/
(
abs

(
ATi − ATj

))
1/

(
2 × abs

(
ATi − ATj

)) if ATi > ATj

otherwise
(32)

where “abs()” is the absolute function. Heuristic information is used to guide the search behavior of
ants. Ants are biased to select ship j whose arrival time is closer and earlier to the arrival time of
ship i.

In PACS algorithm, each ant from node i move to the next node j in set S′ by state transition rule,
where the set S′ is the unvisited node that can be selected by the ant on the current node i. The next
node j is selected by following rule:

j =
{

arg max
j∈S′

{
[τ (i, j)] × [η (i, j)]β

}
if q ≤ q0

J otherwise
(33)

where β (β > 0) is a control parameter that represents the relative importance of pheromone vs.
heuristic information. q0 is a control parameter, which controls ants to choose the next nodes greedily
or randomly. In Eq. (33), if random number q (0 ≤ q ≤1) meets q ≤ q0, the ant chooses the next
node with maximum the heuristic information and pheromone. Otherwise, a roulette wheel selection
mechanism is used to select the next node, shown as:

p (i, j) =

⎧⎪⎨
⎪⎩

τ (i, j) × η (i, j)β∑
u∈S′

τ (i, u) × η (i, u)
β
, if j ∈ S′

0, otherwise

(34)

3.4 Pheromone Updating Rules

In PACS algorithm, there are two kinds of pheromone updating rules, which are the local
pheromone updating rule and the global pheromone updating rule. The local pheromone updating
rule is used to reduce pheromones of visited edges to avoid the following ants choosing the same
edges. The local pheromone is updated when each ant constructs a complete solution, shown as:

τ (i, j) = (1 − ρ) × τ (i, j) + ρ × τ0 (35)

where ρ is the pheromone decay parameter.

When every generation is complete, the global pheromone update is carried out on the edge of the
best-so-far solution. The pheromone is increased as:

τ (i, j) = (1 − ε) × τ (i, j) + ε × (fBest)
−1 if (i, j) ∈ EBest (36)

where EBest is the best-so-far solution, f Best is the fitness of best-so-far solution, and ε is the pheromone
enhancement parameter.

These two pheromone updating rules act in different roles and complement with each other.
The local update is more beneficial to expand the selection direction of ants. The global pheromone
updating rule makes ants gradually converge to the best solution and speeds up the convergence of the
algorithm.
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3.5 Complete PACS Algorithm

The complete PACS algorithm is shown in Fig. 3 and the details are described as follows:

Step 1: Initialize the handling speed and the pheromone, shown in the sub-flowchart on the right
side of Fig. 3. Specifically, calculate the handling speed and build the RSP model. Then, a solution
EFCFS is constructed by FCFS algorithm. After that, calculate the appropriate handling speed by pre-
selection strategy for every ship and get a new solution EPFCFS. Finally, evaluate the fitness f PFCFS by
(21) and obtain the initial pheromone τ 0.

Step 2: Set the first ship by pre-selection strategy for ant.

Step 3: Construct the whole solution by state transition rule as (33) and (34). Then, the local
pheromone is updated by (35).

Step 4: When all ants find the solution in the current generation, we calculate a more appropriate
handling speed for the current optimal solution, similar to Step 1, and obtain a new optimal solution.

Step 5: Perform the global pheromone updating as (36). Otherwise, go to Step 2.

Step 6: Termination check. If the maximal generations NG is reached, the process terminates.
Otherwise, move to Step 2 and continue optimizing until termination condition is met.

Construct a allocation schemeby
FCFS algorithm

Calculate more suitable handing 
speed for each vesselone by one

Evaluate the fitness of the new 
allocation scheme, get fPFCFS

Initialize pheromone value

Every vessel get 
the proper speed

Start

Initialization operation

Initialize ant’s starting point

Perform local pheromone 
updating on edges of ant k

k > NP?

Perform global pheromone  
updating by formula (36)

Gen > NG?

Finish

Yes

Yes

No

No

Yes

Gen = Gen+1;

ant k = 1;

Construct the solution of ant k

No

k = k + 1;

Gen = 1; 

Start

Calculate the handling speed
by Algorithm 1

Finish

Construct a graphic structure for RSP

Calculate more suitable handing 
speed for each vessel

Figure 3: Flowchart of the PACS algorithm
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3.6 Complexity Analysis

According to the complete PACS algorithm shown in Fig. 3, we first need to initialize the handling
speed, the time complexity is O(NH), where NH is the number of handling speeds. Then, we should
construct the whole solution of an ant, the time complexity is O(AA), where AA is the number of nodes
that each ant needs to access. After that, we should find the solution for all ants, the time complexity
is O(NP × AA), where NP is the number of ants. Next, we should evaluate the solution and perform
the global pheromone updating with the time complexity O(AA−1). The process will be repeated NG
times, where NG is the maximal generations. Therefore, the complete time complexity of PACS is O(NG
× NP × AA).

4 Experiments and Comparisons

In this section, we conducted experiments with different sizes of tests to verify the performance
of PACS. The code of the PACS algorithm is implemented in Visual C++ on a PC with Dell Intel(R)
Core-i7 and 8.0 GB RAM.

4.1 Parameters and Data Description

4.1.1 Initialization of the Handling Speed

References in scheduling application literature [8,15] and actual data [1], the adopted values
for parameters of the RSP mathematical model are presented in Table 1. There are three berthing
availability cases: 2 berths, 4 berths, and 6 berths. There are 6 YCs can be deployed in each berth.
Table 1 shows the maximum number of MCT resources (i.e., QNb, |Y|, |V |, and |M |) that can be
scheduled at the same time. In addition, the working rate and cost of each equipment resource are
also given.

Table 1: The values for parameters of the RSP mathematical model

Symbol Value Symbol Value

|B| {2, 4, 6} VS (TEUs/hour) 12
QNb 6 VF (USD/hour) 10
|Y| 54 QS (TEUs/hour) 60
|V | 180 QF (USD/hour) 20
|M | 270 YS (TEUs/hour) 40
WF (USD/hour) 5000 YF (USD/hour) 20
MNQ, MNY, MNV 1 MF (USD/hour) 50

According to the above-known data, the handling speed is calculated by formula in Section 2.3.
As shown in Table 2, there are 3 handling speeds meet the constraints (i.e., NH = 3). NQh needs to be
an even number, so they are set 2, 4, and 6. The NY h are calculated by Eq. (2) and set to 3, 5, and 9.
The NV h are computed by Eq. (3) and set to 10, 17, and 30. NMh are calculated by Eq. (4) and set to
15, 26, and 45. The Hh and HFh are calculated by Eqs. (5) and (6). The values of Hh are 120, 200, and
360. The corresponding values of HFh are 950, 1650, and 2850.
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Table 2: The handling speeds

h NQh NY h NV h NMh Hh HF

1 2 3 10 15 120 950
2 4 5 17 26 200 1650
3 6 9 30 45 360 2850

4.1.2 Parameters Configure for PACS

The parameter configurations are based on experimental verification of Section 4.3. The ACS-
related parameters are introduced in this section. The population size (i.e., the number of ants) is set
to |S| × |B|. The maximum generation is set to 1000 for every algorithm. The other parameters are set
as follows: q0 = 0.6, β = 2, ρ = 0.9, ε = 0.1, ξ = 0.9.

4.1.3 Compared Algorithms for PACS

Herein, we select several state-of-the-art algorithms to compare with PACS, including SFLA
(2023) [5], IVGGA (2022) [6], RCMGA (2022) [7], and AEA (2017) [8]. The compared algorithms
cover a wide period from 2017 to 2023, providing a comprehensive evaluation on PACS. To make a
fair comparison, all the compared algorithms share the same maximum fitness evaluations, while the
other parameters in the compared algorithms are set the same as their original papers.

4.2 Test Cases

In test cases, the number of berths available is set to 2 berths, 4 berths, and 6 berths. The arrival
time of ships is randomly generated by the exponential distribution with a mean of 2 h (i.e., ATs

= E(2)). The number of containers to be loaded and unloaded by each ship is set to Cs = U(500,
2000) ( U-means the uniformly distributed). Two test case is used to compare the running results of
six algorithms: FCFS, SFLA, IVGGA, RCMGA, AEA, ACS, and PACS. Note that “ACS” is PACS
variant without pre-selection strategy. Moreover, the test results below are the average results of 50
dependent runs for each algorithm except FCFS.

4.2.1 Small Size Test Case

In small size test case (Case 1–Case 15), the number of ships changing from 16 to 20, and the
number of berths changed from 2 to 6. The average fitness of the objective function of the RSP model
is shown in Table 3.

The experimental results in Table 3 show that the PACS algorithm can obtain the best results in
the 15 test cases. It can be observed from Table 3 that FCFS gets the worst solutions in all the 15 cases,
and the values of obtained solutions are quite large. This is because the wait cost is very expensive
when the berthing sequence is not optimal. Moreover, the results of PACS are better than ACS, which
shows the effectiveness of the pre-selection mechanism. From the results in Table 3, we can see that
the PACS algorithm outperforms the SFLA, IVGGA, RCMGA, and AEA. IVGGA, RCMGA, and
AEA are easy to produce infeasible solutions and the reinitialization will cause the slow convergence.
From Table 3, we can see that SFLA, IVGGA, AEA and PACS achieve the same results in Case 6.
That is because the solution of Case 6 is similar to the arrival order of the ships, while AEA adopts
the first come first served mechanism in the initialization stage, and the optimal solution is easier to
obtain. As shown in Table 3, SFLA and IVGGA seem suitable for solving large-scale problems, which
can obtain the better results when there are more berths, such as in Case 6 and Case 9.
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Table 3: Experimental results comparative in small size test case

Case |S| |B| FCFS SFLA IVGGA RCMGA AEA ACS PACS

1 16 2 2,217,860.8 269,880.8 269,304.7 270,516.7 269,786.1 281,759.4 268,787.5
2 16 4 260,580.8 144,934.6 144,868.7 145,255.4 144,775.6 157,227.6 143,872.5
3 16 6 479,485.0 188,221.1 188,202.1 188,974.4 188,617.8 196,888.9 188,119.8
4 17 2 1,763,605.8 199,900.7 199,569.4 200,961.9 198,893.0 199,506.7 198,631.7
5 17 4 747,566.3 183,623.6 184,173.8 185,489.1 183,314.6 188,168.8 183,263.8
6 17 6 185,895.8 169,020.8 169,020.8 169,093.1 169,020.8 176,044.4 169,020.8
7 18 2 2,911,067.1 554,682.6 555,402.4 561,251.3 553,827.6 568,319.0 548,913.2
8 18 4 340,239.2 184,593.3 184,124.7 185,086.7 183,818.1 191,476.1 183,178.3
9 18 6 323,599.2 186,240.8 186,228.1 187,464.7 186,458.6 188,052.5 186,057.5
10 19 2 1,588,260.8 181,983.4 181,191.5 184,210.1 181,951.9 182,149.2 179,854.7
11 19 4 613,572.9 180,672.7 180,053.5 181,494.7 179,949.7 180,743.8 178,489.6
12 19 6 334,255.4 197,952.7 197,850.5 198,977.8 198,939.1 210,651.8 197,475.0
13 20 2 3,160,860 468,262.5 469,043.1 471,632.2 466,325.8 512,702.8 465,119.8
14 20 4 1,433,283.8 261,165.4 260,321.3 263,266.8 263,057.4 298,308.5 258,729.6
15 20 6 488,711.7 232,993.1 233,661.7 235,272.4 233,825.3 267,146.8 231,253.6

4.2.2 Large Size Test Case

Table 4 lists the 10 test cases with 30 to 75 ships and 2 berths. The smaller the number of berths, the
higher the average number of ships berthed at each berth, and the higher the density of ships, which is
more matching with the large-scale environments. Therefore, the number of berths is set as 2. Different
density test cases are used to test algorithms. In Cases 21 to 24, ships arrive more densely within
similar times, resulting in more significant waiting costs. Cases 23 to 25 with more ships but arrival
times scattered. As shown in Table 4, the PACS algorithm still can obtain the best results, and FCFS
obtains the worst results. Besides, with the size and complexity of problem increase, the performance of
SFLA, IVGGA, RCMGA, and AEA degrade rapidly. However, PACS still maintains the best global
search ability to obtain the best results among all the compared algorithms, showing its promising
ability in solving the large-scale RSP.

4.3 Analysis of PACS Parameters

The parameters in the PACS algorithm include q0, β, ρ, ε, and ξ . In order to study the influence
of parameters on PACS algorithm performance, Case 13 and Case 16 are taken as an example for
parameter analysis in this section. When we test one parameter, the other parameters remain the same
as described above.

The investigation begins with the parameter q0. The parameter q0 is set as 0.1 to 0.9 with a step
length of 0.1. Value 0 and 1 are not considered because the results are too bad to be drawn in Fig. 4a.
The curves tend to decline with the value of q0 increases in Fig. 4a. However, a large q0 makes decreased
the exploration ability of algorithm. Therefore, we set q0 = 0.6.
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Table 4: Experimental results comparative in large size test case

Case | S| |B| FCFS SFLA IVGGA RCMGA AEA ACS PACS

16 30 2 6,425,621.3 620,573.5 617,909.8 625,789.8 617,854.5 695,242.3 606,213.8
17 35 2 12,765,945.8 1,391,697.3 1,382,568.3 1,397,414.3 1,385,468.3 1,654,584.3 1,372,228.6
18 40 2 14,432,001.7 1,384,087.6 1,388,406.1 1,409,158.1 1,396,486.6 1.587,367.1 1,355,058.3
19 45 2 21,089,600 2,856,796.1 2,759,488.4 2,979,559.7 2,795,367.4 3,252,322.4 2,704,673.6
20 50 2 25,036,730 3,226,693.7 3,105,652.6 3.300,453.7 3,158,548.6 3,447,362.1 2,979,908.1
21 55 2 3,3048,447.5 5,606,679.3 5,549,237.4 5,747.280.9 5,587,568.1 6,184,327.5 5,319,381.4
22 60 2 35,897,784.6 6,052,925.4 5,983,762.3 6,275,098.3 6,075,548.3 6,051,322.4 5,831,145.4
23 65 2 32,200,345.8 1,895,698.4 1,856,992.1 1,890,119.6 1,958,364.1 2,264,235.4 1,649,711.4
24 70 2 37,520,856.3 2,769,048.8 2,596,470.8 2,969,353.8 2,665,845.3 3,123,887.6 2,486,544.8
25 75 2 51,687,475.8 4,509,635.7 4,398,256.4 4,481,258.2 4,348,231.5 4,856,681.1 4,049,087.4
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Figure 4: Influence of parameters. (a) q0, (b) β, (c) ρ, (d) ε, and (e) ξ
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The next parameter tested is β. The parameter β is set from 1 to 9 with the interval 1. The value
0 is not considered because the solution is too bad to be plotted within Fig. 4b. For Case 13 and Case
16, when β = 2, PACS can get a better solution. So, we set β = 2.

Then parameters ρ and ε are investigated. The value of parameters ρ and ε are set as 0.1 to 0.9 with
a step length of 0.1. When ρ and ε are 0 or 1, the results are too poor to not be plotted in Figs. 4c,d.
When ρ = 0.9 and ε = 0.1, the PACS algorithm has better performance and gets better solutions.
Therefore, we set ρ = 0.9 and ε = 0.1 in this paper.

Finally, parameter ξ in the pre-selection strategy is investigated. As shown in Fig. 4e, the solution
quality is sensitive to ξ increase. The result for ξ = 0 is too poor and not shown in Fig. 4e. When
parameter ξ = 1.0, the PACS algorithm lack of exploration and may converge to local optimality.
Therefore, we set ξ = 0.9.

5 Conclusion

The efficiency of resource scheduling directly determines the operation performance in MCT. To
solve the resources scheduling problem (RSP) in MCT effectively, this paper proposes an efficient ACS
based on a pre-selection scheme (PACS), which contributes to both the problem model and algorithm
design. In the problem model, different from other researches that only consider scheduling part of the
resources in MCT, we designed a complete model of RSP by integrating multiple equipment-dependent
parameters into one metric (i.e., handling speed). In this way, the RSP is modeled to find a scheduling
scheme including berth allocation, berth time selection, and handling speed selection for every ship to
minimize the total cost. In the algorithm design, the graphic structure is introduced to guarantee the
feasibility of the solution. In addition, the pre-selection strategy is used to accelerate the convergence
speed of the PACS algorithm. A large number of experimental results validate the effectiveness and
efficiency of the proposed PACS algorithm, which can significantly outperform other state-of-the-art
algorithms.

Although PACS achieves satisfying results, some parameters like pheromone decay parameter ρ

and pre-selection parameter ξ are set according to the results of parameter sensitivity testing, which
lacks the adaptive parameter mechanism. In the future, we wish to develop some adaptive parameter
mechanisms in PACS to further improve its performance and also apply PACS to more complicated
scheduling problems on MCT, even in multi-objective [35] and dynamic environments.
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