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ABSTRACT

With the widespread use of machine learning (ML) technology, the operational efficiency and responsiveness
of power grids have been significantly enhanced, allowing smart grids to achieve high levels of automation and
intelligence. However, tree ensemble models commonly used in smart grids are vulnerable to adversarial attacks,
making it urgent to enhance their robustness. To address this, we propose a robustness enhancement method
that incorporates physical constraints into the node-splitting decisions of tree ensembles. Our algorithm improves
robustness by developing a dataset of adversarial examples that comply with physical laws, ensuring training data
accurately reflects possible attack scenarios while adhering to physical rules. In our experiments, the proposed
method increased robustness against adversarial attacks by 100% when applied to real grid data under physical
constraints. These results highlight the advantages of our method in maintaining efficient and secure operation of
smart grids under adversarial conditions.
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ML Machine Learning Data-driven prediction and classification methods
TE Tree Ensemble A class of ML methods
NN Neural Networks A class of ML methods
GBDT Gradient Boosting Decision Trees A type of TE model
RF Random Forest A type of TE model
XGBoost Extreme Gradient Boosting A GBDT model
DCOPF Direct Current Optimal Power Flow Find the best way to distribute power in power system
BDD Bad Data Detection Method for detecting erroneous data in power grid
SSA Static Security Assessment Analyze the stability and security of power systems under

specific loads and configurations
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1 Introduction

Smart grids integrate advanced information technology deeply with power systems, achieving
intelligent operation and management of the grid. A large number of measurement and control devices
are incorporated into smart grids to meet the needs of complex tasks such as environmental monitoring
and real-time control [1]. As the number of smart grid terminals increases, communication between
devices significantly grows [2], generating massive amounts of heterogeneous, multidimensional data.
Smart grids are gradually adopting machine learning models to efficiently analyze and process data
in areas such as power monitoring, fault diagnosis [3], outage detection [4], and demand response
[5]. This adoption enables intelligent analytical decisions and improves the operational efficiency and
management level of the grid.

However, numerous studies have shown that machine learning is susceptible to adversarial attacks
[6,7]. Adversarial attacks on machine learning aim to deceive or disrupt the operation of machine
learning systems by adding small, malicious perturbations to normal data. For example, in the field
of image processing, by slightly modifying the pixels of an image, a machine learning model might
mistakenly identify an ordinary object as a completely different one. This type of attack can lead to
severe consequences in critical applications such as autonomous driving and facial recognition systems.

Due to the characteristics of smart grids, the attack surface for ML applications in smart grids is
broader than in applications involving images or audio. As the number of smart grid devices connected
to the internet increases, the number of entry points for attackers also rises [8]. Additionally, as more
Operational Technology networks connect with Information Technology networks, many traditional
devices lacking high-security standards are easily manipulated by attackers [9]. This allows attackers
to add perturbations to the raw data transmitted or received by these devices. In the context of smart
grids, raw data from devices such as Precision Measurement Units (PMU) and Remote Terminal Units
(RTU) are susceptible to tampering during transmission. For example, Rajkumar et al. [10,11] have
identified vulnerabilities in the IEC 61850 standard, which is widely used for substation automation
and protection. These vulnerabilities can be exploited by attackers to launch network attacks, such as
data injection attacks and adversarial attacks. Globally, there have been several cyber-attack incidents
on smart grids that have resulted in significant economic losses [12–14]. Thus, in smart grids, ML has
become a new security vulnerability point in cyber-attacks [15,16].

In ML, Neural Networks (NN) are known for their high accuracy, while tree ensemble models
are favored in smart grid applications for their better interpretability and simpler structure [17]. In the
industry, tree ensembles have been validated in several actual energy management systems in Europe
and Canada [18,19]. For example, the iTesla project developed a security assessment toolbox based
on tree ensembles to support stable decision-making in the pan-European transmission system [19].
Stability assessments of power systems based on tree ensembles have been applied and validated in
the energy system of New Orleans [20]. However, smart grid applications based on tree ensembles also
face security threats caused by system vulnerabilities, where attackers can launch adversarial attacks
through these vulnerabilities. Robustness is a key metric for measuring ML model’s performance
under adversarial attacks. It evaluates the model’s ability to resist attacks and maintain efficient
operation. Therefore, enhancing the robustness of tree ensemble models is crucial to ensure the safety
and efficiency of smart grid applications in adversarial environments.

Madry et al. [21] described enhancing robustness as a min-max problem, and this principle can
be applied to tree ensemble models through various strategies. For example, Kantchelian et al. [22]
adopted an adversarial training approach similar to that used for NN (Szegedy et al. [23]), where the
training set is enriched with adversarial examples. Moreover, several studies have proposed optimizing
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the splitting process of tree ensembles to improve robustness. Chen et al. [24], Vos et al. [25], and
Chen et al. [26] developed methods to refine the decision tree node splitting process, focusing on
setting split thresholds away from data-dense areas to prevent adversarial examples from easily crossing
these thresholds with minimal perturbation. These traditional robustness enhancement methods,
while effective in many domains, face unique challenges when applied to smart grids. Unlike other
applications, smart grid systems must address real-world problems involving sensor data that have
specific physical meanings and are constrained by physical laws. This necessity requires robustness
enhancement strategies for tree ensembles in smart grids to consider these physical constraints. This
consideration ensures the realism of adversarial attacks and the genuine robustness of the model.

In the context of smart grids, adversarial training is the most well-known method for enhancing
the robustness of machine learning-based applications [27–30]. Ren et al. [31] considered black-box
adversarial training to train an ensemble agent model based on machine learning applications to
mitigate adversarial examples. Zeng et al. [32] proposed a periodic adversarial training method to
learn how to handle adversarial attacks. However, as shown in Table 1, these robustness enhancement
methods for smart grid applications are all based on NN. They do not consider the discrete, non-
differentiable nature of tree ensemble, nor do they account for the need for adversarial attacks to
comply with physical constraints.

Table 1: Robustness enhancement methods

Method Model Scenes Implementation Physical constraints

Madry et al. [21] ML Image Adversarial training �
Kantchelian et al. [22] TE Image Adversarial training �
Szegedy et al. [23] NN Image Adversarial training �
Chen et al. [24] TE Image Robustness score

function
�

Vos et al. [25] TE Image Robustness score
function

�

Chen et al. [26] TE Medicine Robustness score
function

�

Ren et al. [31] ML Smart grid Adversarial training �
Zeng et al. [32] NN CPS Adversarial training �
Ours TE Smart grid Adversarial training

and robustness score
function

�

Thus, while the existing literature provides a foundation, it becomes essential to explore how these
ideas can be adapted into more practical strategies tailored to smart grid environments. By integrating
physical constraints into adversarial training and decision tree splitting processes, we can develop
robustness enhancement methods specifically designed for smart grids. This approach ensures that the
adversarial examples and the corresponding model training processes comply with the physical realities
of smart grid operations. This compliance ultimately leads to more effective and reliable robustness
enhancement strategies.
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Therefore, this paper aims to enhance the robustness of tree ensemble applications in smart
grids effectively. However, achieving this goal presents challenges. First, the complex relationship
between the physical constraint space and the tree ensemble feature space makes it difficult to confine
robustness enhancements within the physical constraint space. Second, the feature thresholds of tree
ensemble node splits cannot guarantee compliance with physical constraints. These challenges are
addressed using the following methods: adversarial examples that comply with physical constraints
are used for adversarial training, ensuring that the learning of robustness enhancement aligns
with physical constraints. Physical constraints are transformed into constraints on node splitting
thresholds, allowing the ensemble tree to classify data in the physical constraint space. In summary,
the contributions are as follows:

• A dataset of adversarial examples that comply with physical constraints is generated using a
minimal perturbation adversarial attack method for tree ensembles that comply with physical
constraints. This dataset is used for adversarial training, enhancing the robustness of tree
ensembles under physical constraints.

• Physical constraints are incorporated into the tree ensemble node splitting process that focuses
on robustness, thereby enhancing the robustness of tree ensembles within physical constraints.

• Real-world grid data is used for experiments to validate the feasibility and effectiveness of the
proposed methods.

2 Robustness Enhancement Method

A Summary of variables is shown in Table 2.

Table 2: Summary of variables

Variable Meaning Variable Meaning

pi Predicate variable [22] D Training dataset
ωi Coefficient variable [22] j Splitting feature [24]
li Leaf node variables [22] η Splitting threshold [24]
vi The value stored in the leaf

node [22]
D′ Adversarial dataset

fi, gi Continuous variables [32]
→
f

i

Power flow [33]

ε Perturbation value
→
p

i

g Power generation [33]

x Original data
→
p

i

d Power load [33]
x̃ Adversarial attack data σ Coefficient variable [33]
yk

i Continuous variables [32] zk Integer variables [32]
T Decision tree λ Coefficient variable

2.1 Adversarial Training

Adversarial training was initially used in NN. Its core idea is to continuously generate adversarial
examples during the training process and incorporate these adversarial examples into the training
data. This approach ensures that the model minimizes the loss function of adversarial examples while
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optimizing parameters. This training strategy has been proven to significantly enhance the robustness
of NN against adversarial attacks.

The idea of adversarial training can also be applied to tree ensemble models. Specifically, when
constructing each decision tree, it is necessary not only to minimize the loss function of the original
data but also to minimize the loss function of adversarial examples. This means that when selecting
the optimal splitting feature and threshold for each node, it is necessary to consider two objectives.
First, minimize the loss function of the original training data to ensure that most training data are
correctly classified. Second, minimizing the loss function of adversarial examples to ensure that the
model’s predictions do not change even in the presence of adversarial perturbations. Formally, the loss
function of a decision tree can be defined as

Loss (T) = (1 − λ) Lossnat (T) + λLossadv (T) (1)

where, T is the current decision tree, Lossnat (T) is the loss on the original undisturbed data, and
Lossadv (T) is the loss on adversarial examples. λ ∈ [0, 1] controls the trade-off between natural and
adversarial examples. For each node split, the optimal feature and threshold are chosen to minimize
both loss functions simultaneously.

During the training of Random Forests or Gradient Boosting decision trees (GBDT), for each
new decision tree generated, a batch of adversarial examples can be created based on the existing tree
ensemble model. The loss of the new decision tree on these adversarial examples is then minimized.
Specifically, for Random Forests, the traditional splitting rule of Gini impurity or information gain
can be modified. The splitting rule of the traditional Gini coefficient is as follows:

Gini (D, j) = 1 −
∑N

i=1
p (i|D)

2 (2)

where, D represents the data at the current node, j is the splitting feature, and p(i|D) represents the
proportion of data belonging to class i. N is the total number of data points. It can be modified to

Gini′ (D, j) = (1 − λ) Gini (Dnat, j) + λGini (Dadv, j) (3)

where Dnat represents the original training data at the node, and Dadv represents the adversarial example
data. The weight λ controls the trade-off between these two parts. In searching for the optimal splitting
feature, the modified criterion is minimized Gini′ (D, j).

For GDBT, the traditional regression tree node splitting rules can be modified. Take minimizing
the squared loss as an example,

Loss (T) =
∑

(yi − f (xi))
2 (4)

where, yi represents the actual labels of the data point i, and f (xi) the model’s predicted output on the
data point i. It can be modified to

Loss′ (T) = (1 − λ)
∑

(yi − f (xi))
2 + λ

∑(
zi − f

(
x̃i

))2
(5)

where, x̃i represents the adversarial examples, and zi represents the expected output for the adversarial
examples (for instance, zi = yi for unattacked data; zi = −yi for adversarial examples). Similarly, the
modified loss is minimized during node splitting.

With the above modifications, we can integrate robustness considerations into every node split
during the construction of the decision tree. The trees generated are not only expected to have good
classification performance on the original data, but are also designed to resist perturbations to the
greatest extent. This ensures that their prediction output remains unchanged in the face of adversarial
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attacks. For the entire Random Forest or GBDT, as it is composed of many such robust decision trees,
it naturally achieves stronger resistance to adversarial attack.

It should be noted that adversarial training often increases the computational cost. The reason
is that training needs to be performed not only on the original data but also on the generated
adversarial examples. Therefore, for training Random Forests or GBDT, there are generally the
following strategies.

Full Adversarial Training: Each new decision tree generated in each round is trained using
adversarial training. This process involves generating adversarial examples based on the current tree
ensemble model and minimizing the loss of these examples for the new tree. This strategy offers the
greatest increase in robustness but also incurs significant computational costs.

Periodic Adversarial Training: Adversarial training is conducted at fixed intervals (e.g., every 10
rounds). This method reduces computational costs but also results in a smaller increase in robustness.

Partial Adversarial Training: During the entire training process, only a portion of the decision
trees (e.g., the last 20% of trees) undergo adversarial training. This approach allows for a reasonable
increase in robustness with acceptable computational costs.

2.2 A General Framework for Training Robust Decision Trees

Adversarial training for tree ensemble models is mainly achieved through post-hoc data augmen-
tation, which faces several issues. The limitations of this approach include the inability to update
the initial trees, the rapid obsolescence of the generated adversarial examples, high computational
overhead, and limited gains in robustness. The underlying issue stems from the absence of robustness
optimization during the construction of each tree, which hinders the model’s ability to fundamentally
improve its robustness from the ground up. Therefore, robustness considerations should be introduced
at the most fundamental unit of decision tree construction to fundamentally overcome the limitations
of traditional adversarial training for tree ensembles.

Conventional decision tree training processes greedily select the optimal split features and
thresholds, which can be vulnerable to adversarial attacks. To train decision tree models with robust-
ness against adversarial perturbations, Chen et al. [24] proposed a novel training framework. This
framework incorporates the consideration of worst-case adversarial perturbations into the selection
of optimal splits, thereby yielding robust decision trees.

Traditional decision tree construction typically uses a greedy approach, selecting the best splitting
feature and threshold at each node. This selection is based on achieving optimal performance on a
score function, such as information gain or Gini coefficient, in the resulting child nodes.

(j∗, η∗) = argmax
j,η

S (j, η, D) (6)

where, S (·) represents information gain or the Gini coefficient. j∗ is the optimal splitting feature, and
η∗ is the optimal splitting threshold. D represents the training data. However, this standard approach
only considers the distribution of the data itself and does not account for potential adversarial
perturbations. When faced with adversarial attacks, attackers can subtly modify the features of the data
to cross splitting boundaries, leading to classification errors and demonstrating the lack of robustness
in decision trees.

To address this issue, a robustness score function needs to be introduced into the decision
tree construction process. This function differs from traditional score functions in that it considers
potential adversarial perturbations on each feature, aiming to minimize the loss in the worst-case
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scenario (i.e., the most aggressive perturbations). Specifically, during each node splitting, the original
score function is no longer used; instead, the following robustness score is optimized:

(j∗, η∗) = argmax
j,η

RS (j, η, D) (7)

where RS (·) represents the robustness score function. j∗ is the optimal splitting feature, and η∗ is the
optimal splitting threshold. D represents the training data. RS (·) is defined as

RS (j, η, D) = min
D′={(x̃i ,yi)} S (j, η, D′) (8)

s.t.x̃i ∈ B∞
ε(xi)

(xi) , ∀x̃i ∈ D′ (9)

B∞
ε(xi)

: = [
x(1)

i − ε, x(1)

i + ε
] × [

x(2)

i − ε, x(2)

i + ε
] × · · · × [

x(d)

i − ε, x(d)

i + ε
]

(10)

where, S (j, η, D′) represents the original score function used for splitting based on feature j and
threshold η on the dataset D′ after adversarial perturbation. B∞

ε(xi)
denotes the �∞ ball ε-neighborhood

around xi, which includes all possible adversarial examples that do not exceed perturbations of ε

on each feature. This robustness score function considers the score under the worst-case scenario.
Maximizing it means finding a split such that the decline in classification performance is minimized
across all possible adversarial perturbations. Intuitively, this encourages the decision tree to learn a
splitting method that is robust against adversarial perturbations.

Since the minimization problem is difficult to solve directly, Chen et al. [24] proposed two
approximate algorithms: For classification trees based on information gain, they proved that the
optimal adversarial strategy is to move data points within the ε-neighborhood of the splitting threshold
as uniformly as possible into the two child nodes. They also provided a linear-time greedy algorithm
to approximate the robust split. For GBDT, optimizing all trees simultaneously rather than a single
tree makes directly solving the robustness score function computationally expensive. Therefore, they
considered four representative adversarial perturbation scenarios to approximate the worst-case
situation, and the minimum value is taken as the approximate robustness score.

3 Robustness Enhancement Method with Physical Constraints

In smart grid scenarios, the methods from Section 2.2 and adversarial training techniques for
enhancing model robustness both face certain issues. Firstly, they typically assume that an adversary
can perturb data points within a predefined range. However, under physical constraints, perturbations
may be subject to more complex restrictions, such as correlations between features and nonlinear
constraints, which these methods do not address. Secondly, different features often carry different
physical meanings, units, and numerical ranges. Applying a uniform perturbation magnitude, as
suggested in Section 2.2, may result in perturbations that are either unreasonable or insufficient
for some features. Then, setting an appropriate perturbation range for each feature increases the
difficulty of optimization. Moreover, although the adversarial examples used in adversarial training
are mathematically feasible, they might be unachievable or non-existent in the physical world. As
shown in Fig. 1, we need methods that can enhance robustness within the boundaries of physical
constraints.
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Figure 1: Schematic diagram of the classification of tree ensemble under different training methods.
The red and blue data points in the figure represent different categories. The box outside the point
indicates the infinite norm range of the r radius. When the box is black, the point is robust within
the range. When the box is orange, the point is not robust within the range. The gray area is the
restraint interval. (a) Classification of tree ensemble without physical constraints. (b) Classification
after robustness enhancement of tree ensemble without physical constraints. (c) Classification with
enhanced robustness of the tree ensemble under physical constraints

3.1 Adversarial Training with Physical Constraint

Adversarial training requires the assistance of corresponding adversarial examples. When there are
no physical constraints, Kantchelian et al. [22] proposed a general method for generating adversarial
attacks for tree ensembles, formulated as the following optimization problem:

min
pi ,li

∑
i∈P

ωipi + C

s.t. pi
1 ≤ pi

2 ≤ · · · ≤ pi
M

l1 + l2 + · · · + lM′ = 1

1 − (
lf
1 + lf

2 + · · · + lf
j

) = ps = lt
1 + lt

2 + · · · + lt
i (11)

1 − (
lr,f
1 + lr,f

2 + · · · + lr,f
j

) ≥ pr ≥ lr,f
1 + lr,f

2 + · · · + lr,f
i

f
(
x̃
) =

∑
i∈�

vili ≥ 0

In the optimization problem (11), the modeling process of generating adversarial examples by
the ensemble tree model does not take into account equality constraints and inequality constraints.
Therefore, it is necessary to describe physical constraints using predicate variables and leaf variables,
incorporating them into the modeling process. In this paper, we consider linear constraints to simplify
the discussion. The equation constraints can be expressed as follows:

Aε = u (12)
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where, A is a coefficient matrix, and u is a constant vector. The inequality constraints can be expressed
as follows:

Bε ≤ v (13)

where, B is a coefficient matrix and v is a constant vector. According to [33], the method for solving for
adversarial examples under physical constraints is formulated as the following optimization problem:

min
pi ,li ,fi ,gi ,z

k
i ,ε

∑
i

fi + gi

s.t. fi ≥ 0, gi ≥ 0

x̃i = fi − gi + xi

akzk ≤ yk
i ≤ ak+1zk

zk = pi
k − pi

k+1

x̃ = 1TY

x̃ = x + ε (14)

Bε ≤ v

Aε = u

pi
1 ≤ pi

2 ≤ · · · ≤ pi
M

l1 + l2 + · · · + lM′ = 1

1 − (
lf
1 + lf

2 + · · · + lf
j

) = ps = lt
1 + lt

2 + · · · + lt
i

1 − (
lr,f
1 + lr,f

2 + · · · + lr,f
j

) ≥ pr ≥ lr,f
1 + lr,f

2 + · · · + lr,f
i

f
(
x̃
) =

∑
i∈�

vili ≥ 0

This optimization problem involves finding adversarial examples with the minimum perturbation
under the �1 norm, adhering to constraints (12) and (13). This minimal perturbation can be used to
assess the robustness of tree ensembles that adhere to physical constraints.

3.2 Robust Decision Tree Training with Physical Constraints

To introduce physical constraints into robust decision trees, we can enhance the methods discussed
in Section 2.2. Suppose we have a set of linear physical constraints, including equation constraints (12)
and inequality constraints (13). For each feature dimension j, we can determine the upper and lower
bounds of feature values, ηmin

j and ηmax
j , by solving the solution space of these constraints.
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First, we express the linear equation constraint Ax = u using the general solution of a
nonhomogeneous linear,

x = xp + xn (15)

where, xp is a particular solution of Ax = u, and xn is the general solution of Ax = 0. We can use
Gaussian elimination to find xp, and then derive the expression for xn by solving Ax = 0.

xn = c1v1 + c2v2 + . . . + ckvk (16)

where, v1, v2, . . . , vk are the fundamental systems of solutions of Ax = 0 and c1, c2, . . . , ck are arbitrary
constants. Substituting (15) into the linear inequality constraint Bx ≤ v, we can obtain:

ηmin ≤ x ≤ ηmax (17)

After determining the range
[
ηmin

j , ηmax
j

]
for each feature xj, the threshold ηj for each feature xj must

also satisfy the inequality (17). We incorporate (17) into the existing robustness score function,

RS (j, η, D) = min
I ′={(x̃i ,yi)} S (j, η, D′)

s.t.x̃i ∈ B∞
ε(xi)

(xi) , ∀x̃i ∈ D′ (18)

ηmin ≤ η ≤ ηmax

By introducing upper and lower bounds on feature values, we ensure that perturbed data points
comply with physical constraints. To solve this optimization problem, we only need to include checks
for η in the solution method described in [24].

Combining physically constrained adversarial training with improved robust decision tree meth-
ods can further enhance the model’s robustness. This combination leverages the adaptability of
adversarial training and the explicit optimization of robustness during the training process of robust
decision trees. For example, in GBDT, we can consider the following combination approach:

Step 1: Solve the optimization problem (18) such that the optimal split for each decision tree is
selected during construction.

Step 2: After each round of Boosting iterations, use optimization problem (14) to generate
adversarial examples that comply with physical constraints.

Step 3: Incorporate the generated adversarial examples into the training set for use in subsequent
Boosting iterations.

Repeat steps 1–3 until the predetermined number of Boosting rounds is reached or the early
stopping criteria are met. During this process, the model continuously balances robustness and
accuracy and adapts to the changing distribution of adversarial examples.

By integrating these steps, we have developed an algorithm that combines physically constrained
adversarial training with robust decision tree methods. This combination is expected to enhance model
robustness while ensuring that the generated adversarial examples and the learned decision boundaries
comply with physical constraints. As a result, this improves the model’s applicability in real-world
physical environments.
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4 Experiment
4.1 Physical Constraints of Smart Grids

The security-constrained Direct Current optimal power flow (SC-DCOPF) problem is an opti-
mization problem that considers the power system N−1 security constraints [34]. It is formulated
based on a traditional DCOPF model by adding security constraints for N−1 fault conditions. The
basic idea is to ensure that the system remains secure and stable in the event of any N−1 category
failures. In this scenario, the perturbation εi can be defined as

εi =
[
�

→
f

i

; �
→
p

i

g; �
→
p

i

d

]
(19)

The changes in 
f ,
→
pg, and

→
pd are thus represented by εi, which forms the basis for the bad data

detection (BDD). BDD is a method for detecting erroneous data in power grids. The optimization
adjusts the power generation to reach the optimal state while considering the security constraints. In
this context, the constraints are given as follows:∑

�
→
p

i

d = 0 (20)

− σ�
→
p

i

d ≤ �
→
p

i

d ≤ σ�
→
p

i

d, σ ∈ [0, 1] (21)

�
→
f

i

= −SCH−1�
→
p

i

d (22)

In the above, σ�
→
p

i

d is the standard deviation of the adjustments in demand, which should be

kept within limits. The last equation relates to the changes in the power flow �
→
f

i

, which are inversely
proportional to the changes in demand.

4.2 Datasets and Evaluation Metrics

The following is an evaluation of the performance improvement of the robustness enhancement
strategy. This improvement is quantified by comparing the operational performance of the system
before and after the application of the robustness enhancement strategy.

The robustness enhancement strategy performance improvement D∗ is calculated as

D∗ = 1
N

N∑
i=1

D
(
xi, xi + ε∗

i

)
D (xi, 0)

(23)

Here, D
(
xi, xi + ε∗

i

)
represents the operational performance of the system under the robustness

enhancement strategy, and D (xi, 0) represents the operational performance under normal conditions.
N is the total number of data points. xi is a data point in training dataset. The metric indicates the
relative performance enhancement. We use (14) to calculate the minimum perturbation ε∗

i .

The number of defined robust data points is also used to quantify the robustness of the ML
model. In some cases, given a specific robust data point, there may not exist a feasible solution to the
robustness evaluation problem, which highlights the importance of this metric. For this data point,
the attacker cannot interfere with it and change its predictions. The ratio of robust data points is used
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as a physical constraint robustness evaluation metric,

RP = The number of robust data points
The number of all data points

(24)

The dataset used in this chapter was generated based on SC-DCOPF. We consider seven con-
tingencies by cutting off transmission lines {2, 4} (T1), {3, 4} (T2), {6, 12} (T3), {6, 13} (T4). The test
dataset used takes into account that the data collected in the power system scenario is susceptible to
noise interference, such as sudden fluctuations in power load and sensor failures. Therefore, it requires
appropriate preprocessing and cleaning to improve the accuracy and reliability of subsequent analysis.
Our data is derived from 12,000 load configurations sampled from real load data traces in New York
State injected into an IEEE 14-node power system in a public dataset [35]. Use the default parameters
of the IEEE 14-node power system provided by MATPOWER. If the stability condition is violated,
the corresponding data is marked as “0”; otherwise, the data is marked as “1”. In total, we use 12,000
labeled data points to train and test the ensemble tree-based Static Security Assessment (SSA) model
and verify the robustness of XGBoost under different parameter settings. Next, C1 represents the
adversarial attack constraint. C2 represents the inequality constraint (12). C3 represents the equality
constraint (13).

4.3 Experimental Results

The experimental platform we used is configured with an i7-10875H CPU, an RTX2060 GPU,
16 GB of memory, and a 512 GB SSD. The operating system is Windows 10, and the experimental
environment runs on Python 3.8. We used Gurobi 10.0.2 as the solver. The two main ensemble
tree models we utilized are XGBoost and Random Forest. The XGBoost parameters were set to
tree number = 50, learning_rate = 0.9, subsample = 0.8, and max_depth = 6. The Random Forest
parameters were tree number = 100, learning_rate = 0.8, subsample = 0.8, and max_depth = 6.

The original dataset used in this section is generated based on SC-DCOPF. The dataset of
unconstrained adversarial examples is generated by solving optimization problem (11) using the
Gurobi solver without considering physical constraints. In the SSA scenario, the dataset of adversarial
examples that comply with physical constraints is obtained by solving optimization problem (14) under
physical constraints (20)–(22) using the Gurobi solver. We refer to the original dataset as D1, the dataset
that includes unconstrained adversarial examples added to D1 as D2, and the dataset that includes
physically constrained adversarial examples added to D1 as D3.

The robustness of SSA based on Random Forests was evaluated when model parameters are fixed,
under �1 norm. The dataset generation considered unforeseen events T1. As shown in Table 3, using
the D3 dataset for adversarial training significantly increases robustness under constraint conditions.
Conversely, using the D2 dataset for adversarial training shows limited improvement in robustness,
indicating that physical constraints play a critical role in enhancing model robustness. Without
physical constraints, the robustness improvements from D2 and D3 datasets are minimal and nearly
indistinguishable.

Training with a robustness score function improves robustness across all datasets, with notable
enhancements when physical constraints are present. Our results highlight that the robustness score
function yields the most significant improvements in robustness when combined with the D3 dataset.
This is particularly evident under all constraint conditions (C1 + C2 + C3), where the robustness
enhancement is maximized. The introduction of the D3 dataset helps in locally adjusting the deci-
sion boundaries of the model. This local adjustment ensures that the model is better equipped to
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handle adversarial examples that adhere to physical constraints, thereby providing a more precise
classification under specific attack scenarios. On the other hand, incorporating a constraint robustness
score function provides a global adjustment of the decision boundaries, ensuring that the overall
model structure is robust against a wide range of adversarial perturbations. Combining these two
approaches—local adjustments from the D3 dataset and global adjustments from the constraint
robustness score function—effectively enhances the model’s robustness under physical constraints.
This synergistic effect ensures that the generated adversarial examples are realistic and comply with
physical laws, thus providing a robust defense mechanism for smart grid applications.

Table 3: Evaluate the robustness metric D∗ of Random Forests under different score functions and
datasets

Score function Dataset C1 C1 + C2 C1 + C2 + C3

Original score function D1 0.0019 0.0106 0.0170
D2 0.0032 0.0108 0.0181
D3 0.0030 0.0159 0.0238

Robustness score function D1 0.0026 0.0143 0.0193
D2 0.0062 0.0151 0.0194
D3 0.0068 0.0217 0.0285

Constraint robustness score
function

D1 0.0028 0.0154 0.0208
D2 0.0065 0.0159 0.0226
D3 0.0069 0.0247 0.0341

Considering that under physical constraints, some data points cannot generate adversarial exam-
ples, we analyzed the robustness metric RP of the tree ensemble-based SSA model. The experimental
setup was the same as previously described. As shown in Table 4, with increasing physical constraints,
more robust data points can be achieved. The adversarial training method, especially when using the D3

dataset, significantly enhances the proportion of robust data points. Conversely, using the D2 dataset
for adversarial training shows minimal impact on RP, indicating the critical role of physical constraints.
The use of different score functions also shows limited improvement in RP, particularly without
physical constraints. However, the constraint robustness score function provides the most notable
enhancements in the presence of physical constraints. This indicates that robust data points arise
from the contradictions between the physical constraints and the constraints imposed by adversarial
example generation. Both adversarial training methods and different score functions result in limited
changes to the model in the absence of physical constraints, explaining the minimal improvement in RP.
Furthermore, in the presence of both equality and inequality constraints, the number of points capable
of generating adversarial examples is significantly reduced, leading to a limited overall improvement in
the RP metric. This demonstrates that the combination of physically constrained adversarial examples
and a constraint robustness score function is crucial for achieving higher robustness in real-world
applications.

Fig. 2 further illustrates the effectiveness of our approach by comparing the robustness metric D∗
of Random Forests under different methods and constraints. The comparison involves our method and
other robustness enhancement methods that do not consider physical constraints, specifically those by
Vos et al. [25] and Chen et al. [26]. The constraints are categorized into three groups: C1, C1 + C2, and
C1 + C2 + C3.
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Table 4: Evaluate the robustness metric RP of Random Forests under different score functions and
datasets

Score function Dataset C1 C1 + C2 C1 + C2 + C3

Original score function D1 0% 61.5% 98.7%
D2 0% 61.2% 98.8%
D3 0% 61.4% 98.9%

Robustness score function D1 0% 63.8% 99.2%
D2 0% 63.9% 99.1%
D3 0% 63.5% 99.2%

Constraint robustness score function D1 0% 64.1% 99.3%
D2 0% 64.3% 99.3%
D3 0% 64.3% 99.2%

Figure 2: Evaluate the robustness metric D∗ of Random Forests under different method. Our method
is compared with Vos et al. and Chen et al. under different constraints

For the C1 constraint, all three methods show minimal improvement in robustness, with D∗ values
clustered around 0.005. Vos et al. [25] and Chen et al. [26] demonstrate comparable performance,
while our method slightly lags behind. As the constraints increase to C1 + C2, the robustness
enhancement becomes more pronounced. Here, our method begins to show its strength, surpassing
both Vos et al. [25] and Chen et al. [26]. The D∗ value for our method reaches approximately 0.025,
while the other two methods achieve slightly lower values.

Under the most stringent constraints C1 + C2 + C3, our method significantly outperforms
the others. The D∗ value for our method exceeds 0.035, indicating a substantial improvement in
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robustness. In contrast, Vos et al. [25] and Chen et al. [26] exhibit lower D∗ values, highlighting
the effectiveness of our approach in enhancing model robustness under comprehensive physical
constraints.

Overall, the analysis of Fig. 2 demonstrates that our method consistently achieves higher robust-
ness metrics as the complexity of constraints increases, effectively adjusting both locally and globally
to enhance the model’s decision boundaries. This confirms the superiority of our method in scenarios
with stringent physical constraints, making it particularly suitable for applications in smart grids and
other critical infrastructure systems.

At the same time, we evaluated the robustness of SSA based on XGBoost when model parameters
are fixed, under �1 norm. The dataset generation considered unforeseen events T1. From Table 5, it can
be observed that the results for the XGBoost model are similar to those for Random Forests. For the
XGBoost model, under no physical constraints, the effectiveness of robustness enhancement methods
and those considering physical constraints is comparable. However, when inequality constraints are
added or when all constraints are considered, the effectiveness of methods considering physical
constraints for robustness enhancement surpasses that of general methods. The best results are
achieved by combining adversarial training that incorporates physical constraints with score functions
that take constraints into account.

Table 5: Evaluate the robustness metric D∗ of XGBoost under different score functions and datasets

Score function Dataset C1 C1 + C2 C1 + C2 + C3

Original score function D1 0.0049 0.0069 0.0077
D2 0.0052 0.0088 0.0181
D3 0.0053 0.0135 0.0238

Robustness score function D1 0.0067 0.0116 0.0193
D2 0.0073 0.0121 0.0194
D3 0.0072 0.0167 0.0285

Constraint robustness score
function

D1 0.0068 0.0114 0.0208
D2 0.0073 0.0159 0.0226
D3 0.0071 0.0247 0.0341

From Table 6, it can be seen that the trend of the proportion of RP for the XGBoost model is
similar to that of Random Forests. This trend primarily depends on the physical constraints of the
problem, rather than the training method. As the constraint conditions increase, RP significantly
improves, reaching close to 100% when all constraints are included. This reflects that in XGBoost, the
region of physical constraint and the region of adversarial sample generation mostly do not intersect,
leading to an increase in the proportion of robust samples.

In the context of smart grids, the robustness of ensemble tree models is significantly affected by
physical constraints. Traditional training methods and unconstrained adversarial training struggle
to effectively enhance the models’ ability to withstand adversarial attacks. However, appropriately
using physically constrained adversarial examples for adversarial training can significantly enhance
the robustness of both Random Forest and XGBoost models under various constraints, which is key
to improving the models’ practical application capabilities. Furthermore, the more physical constraints
a problem is subjected to, the higher the potential proportion of robust samples, which mainly depends
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on the nature of the problem itself, not much on the training method. Therefore, when enhancing the
robustness of ensemble tree models, it is crucial to fully consider the physical constraints of the actual
problem and use adversarial examples that comply with these constraints for training, to truly enhance
the models’ robustness. This is vitally important for the safe operation of critical infrastructures like
smart grids.

Table 6: Evaluate the robustness metric RP of XGBoost under different scoring functions and datasets

Score function Dataset C1 C1 + C2 C1 + C2 + C3

Original score function D1 0% 48.2% 99.6%
D2 0% 48.7% 99.5%
D3 0% 48.3% 99.6%

Robustness score function D1 0% 52.9% 99.7%
D2 0% 53.0% 99.6%
D3 0% 53.5% 99.8%

Constraint robustness score
function

D1 0% 53.3% 99.8%
D2 0% 53.6% 99.7%
D3 0% 54.2% 99.8%

5 Conclusion

This paper proposed a method to enhance the robustness of tree ensemble models in smart
grids against adversarial attacks by integrating physical constraints into the training process. The
approach involved generating adversarial examples that adhered to physical constraints for adversarial
training and modifying feature thresholds to align with these constraints. The experimental results
showed a 100% increase in robustness against adversarial attacks. These findings highlighted the
potential of the approach to enhance the security and reliability of smart grid applications. Despite
the added complexity and computational overhead, the method provided significant benefits for
maintaining the integrity of smart grid operations under adversarial conditions. Future work should
focus on optimizing computational efficiency and extending this method to other machine learning
models and real-world applications. Collaborations with industry partners could facilitate the practical
implementation of these robust models in operational smart grids, ensuring their effective and secure
operation under adversarial conditions.
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