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ABSTRACT

Currently, there is a growing trend among users to store their data in the cloud. However, the cloud is vulnerable
to persistent data corruption risks arising from equipment failures and hacker attacks. Additionally, when users
perform file operations, the semantic integrity of the data can be compromised. Ensuring both data integrity and
semantic correctness has become a critical issue that requires attention. We introduce a pioneering solution called
Sec-Auditor, the first of its kind with the ability to verify data integrity and semantic correctness simultaneously,
while maintaining a constant communication cost independent of the audited data volume. Sec-Auditor also
supports public auditing, enabling anyone with access to public information to conduct data audits. This feature
makes Sec-Auditor highly adaptable to open data environments, such as the cloud. In Sec-Auditor, users are
assigned specific rules that are utilized to verify the accuracy of data semantic. Furthermore, users are given the
flexibility to update their own rules as needed. We conduct in-depth analyses of the correctness and security of Sec-
Auditor. We also compare several important security attributes with existing schemes, demonstrating the superior
properties of Sec-Auditor. Evaluation results demonstrate that even for time-consuming file upload operations, our
solution is more efficient than the comparison one.
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1 Introduction

As data volumes continue to surge, an increasing number of users are opting to store their data
in the cloud. Remarkably, 46% of European companies have adopted cloud-based solutions as their
primary data storage method, according to a Forbes report. The similar report forecasts that the
cloud will accommodate more than 100 zettabytes of data by 2025 [1]. Nevertheless, when a user
performs cloud data operations such as uploading, modifying, deleting, the semantic correctness of
the data can be compromised. For instance, when a teacher uploads students’ scores to the educational
administration system, he might accidentally upload a data entry with a score below 0 due to an
operational error. Furthermore, the integrity of cloud data can also be jeopardized by equipment
failures, hacker attacks, etc. Even worse, the cloud service vendor may choose to conceal these facts
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from users to safeguard their reputation. Ensuring the integrity and semantic correctness of cloud data
has become a paramount concern that users must prioritize.

To validate data integrity, a third-party auditor (TPA) performs audits on cloud data on behalf
of data owners. While there are data auditing solutions emerging, TPA requires access to all the data
for auditing, resulting in high bandwidth costs [2–6]. For example, Company A intends to audit 1
TB of cloud data, and their network bandwidth is restricted to 20 MB/s. Under these conditions,
Company A will require approximately 15 h to retrieve the entire dataset, which may be unacceptable
for time-sensitive applications. To address the aforementioned issues, Atenese et al. first proposed the
provable data possession (PDP) scheme in 2007. The scheme enables TPA to verify the cloud data
without retrieving them [7]. The PDP scheme is implemented through a challenge-response protocol
that involves transmitting a small, constant amount of data. This approach can significantly reduce
bandwidth costs. Considering the role of TPA, existing PDP schemes can be categorized into two
categories: private PDP schemes [8,9] and public PDP schemes [10–14]. In a private PDP scheme, data
verification operations can only be performed by the user who possesses the private key of the data
owner. On the other hand, a public PDP scheme permits any entity with access to public information
to verify data integrity. Since we mainly focus on data auditing operations for the cloud data, an open
data environment, our concern lies with the public PDP scheme.

Existing PDP schemes can only verify data integrity, but cannot validate semantics correctness.
To address this issue, we propose a novel data auditing solution, Sec-Auditor, which ensures both data
integrity and semantic correctness of the cloud data. The system model of integrating Sec-Auditor
into the cloud is illustrated in Fig. 1. When a user uploads, modifies, or deletes their data, a data
validation engine employs a predefined rule to verify the semantics of the data. Only verified data or
operations are allowed to be sent to the cloud. There are numerous data validation engines emerging,
such as those by [15] and [16], so we will not discuss them in the manuscript due to page limits. Each
user is assigned a corresponding rule, and Sec-Auditor allows users to update their own rules. After
the user uploads data to the cloud, Sec-Auditor can routinely or sporadically perform data auditing
operations using file authenticators containing the hash value corresponding to the aforementioned
rule. Successfully passing data verification signifies that the cloud data remains not only intact but also
adheres to the specified rules governing its semantic correctness. Conversely, failure in verification
indicates data corruption. Notably, the bandwidth consumed during the data verification process is
independent of the amount of data being audited.

Figure 1: System model of integrating Sec-Auditor into the cloud
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The contributions of this study are as follows:

1. We introduce a novel data auditing solution, Sec-Auditor, capable of guaranteeing both the
data integrity and semantic correctness of cloud data. Furthermore, during the data auditing
process, the consumed bandwidth remains unaffected by the volume of data being audited.

2. Sec-Auditor facilitates public auditing, allowing any entity with access to public information
to verify cloud data. This standout feature makes the new scheme well-suited for open data
environments, such as the cloud. Additionally, Sec-Auditor empowers users to customize their
own rules, broadening its applicability to a wider range of fields.

3. Finally, we analyze the correctness and security of Sec-Auditor, and then conduct an assess-
ment of its performance. The results demonstrate its superior efficiency.

The paper is structured as follows: Section 2 provides related work. Section 3 presents the nota-
tions and preliminaries. In Section 4, we discuss the system model, including the system framework,
design goals and the algorithm model. In Section 5, we present the technical implementation and
includes the correctness analysis. Then, we prove the security analysis of Sec-Auditor in Section 6. In
Section 7, we evaluate the performance of the proposed scheme. Finally, we offer concluding remarks
in Section 8.

2 Related Work

Traditional data integrity audit schemes rely on technologies such as Message Authentication
Code (MAC) [17,18] and hash functions [19]. Take hash functions as an example. To conduct an audit,
an auditor should access the data from the cloud, calculate the hash value, and subsequently compare
it with the locally stored counterpart. However, in the aforementioned process, the auditor needs to
obtain all the audited data through the network, resulting in high communication costs. To address this
issue, the PDP scheme was proposed. This scheme enables a client who has stored data on an untrusted
server to verify data integrity without retrieving the entire data set. This innovative approach employs
a challenge/response protocol, which facilitates the transmission of a small, fixed amount of data and
effectively reduces network communication overhead [7].

The PDP scheme can detect a certain proportion of corrupted data, but cannot recover them.
To address this issue, Juels et al. proposed a new proof of retrievability (PoR) scheme based on
pseudorandom-permutation primitives [20]. The PoR scheme can not only detect but also recover
those corrupted data stored on an untrusted server with a high probability. Shacham et al. introduced
a public compact PoR scheme that is based on BLS signatures [21]. Notably, both the client’s query and
the server’s response in this scheme are exceptionally concise. Yang et al. proposed an identity-based
PoR scheme for compressed cloud storage, which also supports public auditing [14]. Xu et al. proposed
an efficient and practical PoR scheme, which is based on strong Diffie-Hellman assumption [22].
Paterson et al. presented a multiple-server PoR scheme that ensures data security under specified
security assumptions and safeguards data confidentiality [23]. Han et al. introduced a novel PoR
scheme as an alternative to the Proof of Work (PoW) consensus mechanism in the blockchain [24].
Both PoR and PDP employ the challenge-response protocol for verifying data integrity, thereby
circumventing the need to transmit all the audited data.

As discussed earlier, existing PDP schemes are primarily categorized into two types: public PDP
schemes and private PDP schemes. The public PDP scheme can be particularly well-suited for the
cloud. Wang et al. first introduced an identity-based public PDP scheme which relies on the public key
generator (PKG) to calculate the user’s private key [25]. Yu et al. proposed a new PDP scheme designed
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to withstand key exposure [11]. A novel public PDP scheme in conjunction with a data supervision
platform for validating data compliance was proposed by Wang et al. in 2023 [16]. However, the
aforementioned schemes should rely on a trusted third-party node to generate or maintain users’ public
and private keys. In the event of the node’s destruction due to network attacks, equipment failure, etc.,
the entire PDP scheme will become unavailable. To address the issue, Wang et al. proposed a novel
PDP scheme without the necessity of a centralized node to maintain users’ keys, thus eliminating a
single point of failure [26]. Most existing PDP schemes, such as those mentioned in this section, can
only support data integrity auditing. To verify data semantics, the auditor still needs to access all the
audited data and utilizes the given rules to verify semantic correctness, which can incur high bandwidth
costs. For the first time, we introduce a new PDP scheme named Sec-Auditor, capable of validating
both data integrity and semantics by transmitting small, fixed-size data through the network.

3 Notations and Preliminaries
3.1 Notations

To improve readability, we have presented the main notations used in the paper as listed in Table 1.

Table 1: Notations

Notations Descriptions

q Large prime number
G1, G2 Two cyclic multiplicative groups with the order q
e Bilinear pairing operation
g Generator of G1

H1, H2, H3 Three cryptographic hash functions
χ System private key
P System public key
ID User identity
F The outsourcing user file
name Unique identifier of F
mj The j-th file block of F
rule Rule corresponding to the specified user
RH Hash value of the specified rule rule
(a, b) Private key of a data owner
(A, B) Public key of a data owner
Λ File authenticator set
tag File tag
CHAL Challenge message
proof Proof calculated by the cloud

3.2 Bilinear Pairing

Our proposed data auditing solution, Sec-Auditor, is constructed using bilinear pairings, which
will be discussed in this section. Let G1 and G2 be two cyclic multiplicative groups with the order q,



CMC, 2024, vol.80, no.2 2125

and g is the generator of G1. Let e : G1 × G1 → G2 be a bilinear pairing, which satisfies the following
properties [27]:

Bilinearity: ∀g1, g2 ∈ G1, x, y ∈ Z∗
q , e (g1

x, g2
y) = e (g1, g2)

xy.

Non-degeneracy: e (g, g) �= 1.

Computability: ∀g1, g2 ∈ G1, e (g1, g2) can be efficiently solved.

3.3 Computational Hard Problems

Computational Diffie-Hellman (CDH) Problem: For α ∈ Z∗
q , υ ∈ Z∗

q , given g, gα, gυ ∈ G1, output
gαυ ∈ G1. The CDH assumption in G1 holds if an algorithm γ solves the CDH hard problem in
polynomial time with a negligible advantage AdvCDH (γ ) = Pr [γ (g, gα, gυ) = gαυ ].

Discrete Logarithm (DL) Problem: Given g, gα ∈ G1, output α. The DL assumption in G1 holds
if an algorithm γ solves the CDH hard problem in polynomial time with a negligible advantage
AdvDL (γ ) = Pr [γ (g, gα) = α].

4 System Model
4.1 System Framework

Fig. 2 illustrates the framework of Sec-Auditor, which comprises five entities: User, Key Gener-
ation Center (KGC), Blockchain, Cloud, TPA. Initially, the Setup algorithm is executed by KGC to
calculate the system’s private key along with public parameters. Subsequently, the user collaborates
with KGC to generate their private and public keys by executing the GenKey algorithm. Sec-Auditor
ensures that KGC cannot access the user’s private key. In the StorF algorithm, the user divides his file
into fixed-sized blocks, calculates their respective file authenticators, and outsources both the blocks
and authenticators to either the cloud or blockchain. TPA employs the Chal algorithm to create a
challenge and transmits it to the cloud. Upon receiving the challenge, the cloud executes the Resp
algorithm to obtain the proof and sends it back to TPA. In the Verf algorithm, TPA verifies the
proof and determines the data integrity and semantic correctness of the audited files. Sec-Auditor
also allows the user to update his rule through performing the UptRule algorithm. We will describe
the five evolving entities of Sec-Auditor in the following section.

User: Each user is assigned with a specific rule to verify the semantic accuracy of his files. It
should be noted that the rule is known to both the user and KGC. Although the user must compute
his private key with the assistance of the KGC, he does not want the KGC to deduce the key from the
key generation procedure. When the user outsources, modifies, or deletes a particular file, Sec-Auditor
should validate its semantic accuracy. Sec-Auditor also provides the user with the option to encrypt
their files for privacy protection. Importantly, this operation does not have any adverse effects on the
accuracy of subsequent data auditing tasks.

KGC: KGC is in charge of generating system public parameters and calculates the user’s private
and public keys in coordination with the user. Additionally, KGC assists in updating the user’s rule.

Blockchain: Blockchain is a distributed ledger technology comprised of a network of computing
nodes. In the context of Sec-Auditor, blockchain can be implemented using either a consortium
blockchain or a public blockchain. While current blockchain implementations face security threats
like the 51% attack and the decentralized autonomous organization (DAO) attack, researchers have
proposed corresponding countermeasures [28]. Therefore, it is assumed that data on the blockchain
cannot be corrupted.
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Figure 2: System framework of Sec-Auditor

TPA: TPA is responsible for auditing the integrity and semantic accuracy of those cloud data.
Since Sec-Auditor supports public auditing, TPA can perform the auditing procedure without
requiring the data owners’ private key.

Cloud: Cloud offers extensive storage capacity for storing users’ data. However, cloud data are
vulnerable to destruction due to equipment failures or malicious behaviors of cloud service providers,
so Sec-Auditor is proposed to verify the data. Upon receiving the challenge issued by TPA, the cloud
calculates the corresponding proof and transmits it back to TPA. Subsequently, TPA verifies the proof
to determine whether the cloud data are intact or not. We assume that the cloud will perform the
specified data verification procedure.

4.2 Design Goals

The proposed data auditing solution, Sec-Auditor, may encounter the following security threats:
1. When a user generates his keys, KGC may deduce the user’s private key and employ it to impersonate
the user for outsourcing his files or generating proof for corrupted data in the cloud. 2. When a user
performs file operations such as uploading, modifying, or deleting, the semantics of the data may
be compromised or altered. 3. Cloud service vendors may falsify proof for locally stored data due to
concerns such as their own reputation. To address the aforementioned threats, Sec-Auditor should
achieve the following objectives:

Correctness: When all entities within Sec-Auditor can faithfully execute the specified algorithms,
the response generated by the cloud can successfully pass TPA verification.

Auditing soundness: When the integrity of cloud data are compromised, the cloud cannot generate
the correct proof for TPA.

Public auditing: TPA can conduct data auditing operations on cloud data without requiring access
to the data owners’ private keys.
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4.3 Algorithm Model

Sec-Auditor consists of seven algorithms: Setup, GenKey, StorF, Chal, Resp, Verf and UptRule.
Detailed descriptions of these algorithms will be provided in the following part:

Setup: KGC runs the algorithm to generate the system private key χ and public parameters
{e, G1, G2, q, g, H1, H2, H3, P}.

GenKey: A user with the identity IDi collaborates with KGC to execute the algorithm and calculate
his private key (ai, bi) and public key (Ai, Bi). Throughout this process, KGC is not able to deduce the
user’s private key.

StorF: The algorithm is run by a user to outsource his data to the cloud. For the outsourcing
file F , the user computes the file tag and authenticators. Then, the user transmits the file tag to the
blockchain, and authenticators to the cloud.

Chal: During the data auditing procedure, TPA generates a challenge CHAL and the correspond-
ing public value C, which are then transmitted to the cloud.

Resp: Upon receiving CHAL and C, the cloud generates the proof, which will then be sent to TPA
for verification.

Verf: The algorithm is executed by TPA to validate the received proof. If the verification procedure
fails, it indicates that the cloud data are not intact.

UptRule: The algorithm is employed by both the user and KGC to replace the user’s current
assigned rule rule with a new one rule′.

5 Proposed Scheme
5.1 Description of Sec-Auditor

For the proposed Sec-Auditor, the user should divide the outsourcing file F into n blocks.
Consequently, the file F can be represented as

{
m1, . . . , mj, . . . , mn

}
, where q is a large prime number,

and each mj ∈ Z∗
q . When the user performs actions such as outsourcing, modifying, and deleting data,

the cloud may employ a data validation engine to assess semantic accuracy. If the verification fails,
the cloud will reject the user’s request. It is worth noting that numerous such engines emerging [15,16],
though we will not discuss them here due to space constraints.

1) Setup: In this algorithm, KGC computes the system private key, the system public key, and
public parameters.

• KGC selects a bilinear map e : G1 × G1 → G2, where G1 and G2 are two multiplicative cyclic
groups with prime order q, and g is the generator of G1.

• KGC chooses three hash functions H1 : {0, 1}∗×G1×G1 → Z∗
q , H2 : {0, 1}∗ → Z∗

q , H3 : {0, 1}∗ →
G1.

• KGC selects a random number χ ∈ Z∗
q as the system private key, and calculates the public key

P = gχ .
• KGC publishes those public parameters {e, G1, G2, q, g, H1, H2, H3, P}.
2) GenKey: The user collaborates with KGC to generate his own public and private keys.

• Assuming the current user’s identity is IDi. The user chooses a random number ai ∈ Z∗
q and

calculates Ai = gai . Subsequently, the user sends 〈IDi, Ai〉 to KGC.



2128 CMC, 2024, vol.80, no.2

• KGC chooses a random number ri ∈ Z∗
q , and calculates Bi = gri , RH = H3 (rule), bi = ri +

χH1 (IDi, Ai + Bi, RH), where rule is the rule corresponding to the user IDi. KGC sends Bi, bi

and RH to the user via the secure channel.
• Upon receiving Bi, bi and RH, the user should verify these data with the equation gbi =

BiPH1(IDi ,Ai+Bi ,RH). If the verification fails, KGC is required to retransmit the corresponding data.
Conversely, the user obtains his private key (ai, bi) along with public key (Ai, Bi).

3) StorF: The user stores files, authenticators, file tags, and other data in either the cloud or on
the blockchain. It is important to emphasize that a data validation engine has verified the semantic
correctness of these files. Failure in verification will halt subsequent procedures. Sec-Auditor provides
users with the option to encrypt their files for privacy protection. The user can choose to encrypt his
file first and then carry out the StorF algorithm.

• Assuming the unique identifier of file F is name. The user should divide the file F into n blocks,
and calculates the file authenticator Tj = gmj(ai+bi) for each data block mj. Subsequently, the
user can obtain the file authenticator set Λ = {

Tj

}
1≤j≤n

.

• The user calculates Zi = AiBiPH1(IDi ,Ai+Bi ,RH) and δ = H2 (IDi||Ai||Bi||name||n||Zi).
• The user computes the file tag tag = IDi||Ai||Bi||name||n||Zi||δ, and sends tag to the blockchain,

along with {F , Λ} sent to the cloud.
• Upon receiving tag, blockchain employs IDi to verify whether the user is authorized

to store data. If authorized, the blockchain proceeds to validate whether δ is equal to
H2 (IDi||Ai||Bi||name||n||Zi). If it is, tag is stored on the blockchain; otherwise, the algorithm
terminates. The steps described above are presented in Algorithm 1.

• When the cloud receives {F , Λ} from the user, it will store these values locally.

Algorithm 1: The procedure of storing the file tag into blockchain
Input: the file tag tag, the authorized identify set L.
Output: out ∈ {false, true}
1: out ← false
2: (IDi,δ) ← extract_tag(tag)
3: if L.search(IDi) == NULL then
4: return out
5: end if
6: κ ← H2(IDi||Ai||Bi||name||n||Zi)
7: if κ != δ then
8: return out
9: end if
10: out ← true
11: return out

4) Chal: TPA generates the challenge and transmits it to the cloud.

• TPA should obtain tag for the file name from blockchain. If the aforementioned operation fails,
the algorithm exits.

• Upon receiving tag, TPA checks whether δ is equal to H2 (IDi||Ai||Bi||name||n||Zi). If the
verification fails, the algorithm exits.

• TPA generates CHAL = {i, vi}I={1,...,c},i∈I corresponding to the file name. TPA selects a random
number υ ∈ Z∗

q , and calculates C = gυ .
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• TPA sends the challenge CHAL and C to the cloud.

5) Resp: Upon receiving the challenge, the cloud generates the proof corresponding to the locally
stored data and sends it back to TPA.

• Upon receiving CHAL and C, the cloud calculates ρ = ∑
i∈I

mivi, σ = ∏
i∈I

Tvi
i .

• The cloud sends the proof proof = 〈ρ, σ 〉 to TPA. In fact, a cloud device can utilize the locally
stored data to calculate the values of Δρi and Δσi, and then submit them to TPA for aggregation

to obtain ρ =
ν∑

i=1

Δρi and σ =
ν∏

i=1

Δσi, where ν represents the number of devices storing files.

By adopting this parallelization strategy, the Resp algorithm can be accelerated.

6) Verf: TPA verifies the response message from the cloud, and determines whether the cloud data
are intact or not.

• Upon receiving the proof proof = 〈ρ, σ 〉, TPA verifies the equation e (σ υ , g) = e (Zi, Cρ). If the
verification fails, the cloud data are not intact.

7) UptRule: The user collaborates with the KGC to update his assigned rule.

• Assuming that the new rule for the user IDi is rule′. The user calculates RH ′ = H3 (rule′), and
sends < IDi, Ai, Bi, RH ′, RH, bi > to KGC via a secure channel.

• Upon receiving < IDi, Ai, Bi, RH ′, RH, bi >, KGC should determine whether the user IDi is
allowed to perform the UptRule algorithm. If not, the program exits. KGC calculates bi

′ =
bi − χH1 (IDi, Ai + Bi, RH) + χH1 (IDi, Ai + Bi, RH ′), and then sends bi

′
to the user IDi via the

secure channel.
• Upon receiving bi

′
, the user should verify the correctness with the equation gbi

′ = BiPH1(IDi ,Ai+Bi ,RH′).
If the verification fails, the program exits. Afterwards, the user obtains his private key(

ai, bi

′)
along with public key (Ai, Bi). The user then calculates Zi

′ = AiBiPH1(IDi ,Ai+Bi ,RH′),

δ′ = H2

(
IDi||Ai||Bi||name||n||Zi

′)
, tag′ = IDi||Ai||Bi||name||n||Zi

′ ||δ′. Then, the user retrieves

his data from the cloud and calculates T ′
j = g

mj

(
ai+b

′
i

)
for each data block to obtain the file

authenticator set Λ′ = {
T ′

j

}
1≤j≤n

. tag′ is stored in the blockchain, and Λ′ is stored in the cloud.
The data verification operation performed on the blockchain is shown in Algorithm 1.

5.2 Correctness Analysis

We first prove that after performing the UptRule algorithm, the user’s public key remains
unchanged. Since Ai = gai , and ai remains unchanged, Ai keeps constant after performing the
UptRule algorithm. In addition, since bi

′ = ri
′ + χH1 (IDi, Ai + Bi, RH ′), we can obtain ri

′ =
bi

′ − χH1 (IDi, Ai + Bi, RH ′). On the other hand, due to bi

′ = bi − χH1 (IDi, Ai + Bi, RH) +
χH1 (IDi, Ai + Bi, RH ′) = ri + χH1 (IDi, Ai + Bi, RH) − χH1(IDi, Ai + Bi, RH) + χH1(IDi, Ai

+Bi, RH ′) = ri + χH1 (IDi, Ai + Bi, RH ′) , we can obtain ri
′ = bi

′ − χH1 (IDi, Ai + Bi, RH ′) = ri

and gri
′ = Bi = gri = Bi

′
. We can infer that the user’s public key keeps constant after performing the

UptRule algorithm.

Then we will prove that in the GenKey algorithm, the verification equation gbi = BiPH1(IDi ,Ai+Bi ,RH)

holds. Since bi = ri +χH1 (IDi, Ai + Bi, RH), Bi = gri , P = gχ , we can obtain gbi = gri+χH1(IDi ,Ai+Bi ,RH) =
gri gχH1(IDi ,Ai+Bi ,RH) = BiPH1(IDi ,Ai+Bi ,RH).
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Next we will prove that in the Verf algorithm, the verification equation e (σ υ , g) = e (Zi, Cρ) holds.

Since σ = ∏
i∈I

Tvi
i , Tj = gmj(ai+bi), we can obtain e (σ υ , g) = e

(
gai+bi , g

∑
j∈I(mjvj)υ

)
. Since C = gυ , bi = ri +

χH1 (IDi, Ai + Bi, RH), Ai = gai , Bi = gri , P = gχ , Zi = AiBiPH1(IDi ,Ai+Bi ,RH), we can obtaine (σ υ , g) =
e
(

gai+ri+χH1(IDi ,Ai+Bi ,RH), Cρ

)
= e(Zi, Cρ).

Finally, we will prove that in the UptRule algorithm, the verification equation gbi
′ = Bi

PH1(IDi ,Ai+Bi ,RH′) holds. Since bi

′ = bi − χH1 (IDi, Ai + Bi, RH) + χH1 (IDi, Ai + Bi, RH ′), bi =
ri+χH1 (IDi, Ai + Bi, RH), and bi

′ = bi − χH1 (IDi, Ai + Bi, RH) + χH1 (IDi, Ai + Bi, RH ′) = ri +
χH1(IDi, Ai + Bi, RH)−χH1 (IDi, Ai + Bi, RH)+χH1 (IDi, Ai + Bi, RH ′) = ri+χH1 (IDi, Ai + Bi, RH ′),
we can obtain gbi

′ = gri+χH1(IDi ,Ai+Bi ,RH′) = BiPH1(IDi ,Ai+Bi ,RH′).

6 Security Analysis

Theorem 1 (Auditing soundness): In the proposed solution, Sec-Auditor, if the cloud data are
corrupted, the cloud cannot produce the correct proof that would successfully pass the verification
conducted by TPA.

Proof. First, we assume that the data stored on the blockchain are immutable. Then, we utilize
the game between the adversary λ and the challenger Φ, as described in [27], to prove the theorem.
In particular, if the adversary λ fails to construct a proof that can pass TPA’s verification with a non-
negligible probability, Sec-Auditor satisfies audit soundness.

Game 0: The challenger Φ performs the Setup algorithm and obtains public parameters
{e, G1, G2, q, g, H1, H2, H3, P}. Then, for user IDi, the challenger Φ performs the GenKey algorithm
to generate the user’s private key (ai, bi) and public key (Ai, Bi). The challenger Φ then sends these
public parameters and (Ai, Bi) to the adversary λ. For the outsourcing file F = {

m1, . . . , mj, . . . mn

}
,

where mj ∈ Z∗
q , the adversary λ sends the file F to the challenger Φ, who can then perform the

StorF algorithm. Once the challenger Φ obtains the file authentication set Λ and the file tag tag
corresponding to file F , Φ sends them to the adversary λ. When auditing the file F , the challenger
Φ calculates the challenge (CHAL, C), and sends them to λ. Then, λ generates the corresponding
proof proof and sends it to the challenger Φ. Finally, Φ verifies the proof proof . If the verification is
successful, the adversary λ wins the game.

Game 1: The challenger Φ and the adversary λ perform an interaction similar to Game 0. The
difference is that when performing the StorF algorithm, the challenger Φ stores the file tag tag in the
list List. The adversary λ attempts to forge a new file tag tag and pass the verification of the challenger
Φ. If the adversary successfully forges the file tag tag, which does not exist in the list List, the adversary
λ wins the game.

Analysis: When the challenger Φ executes the StorF algorithm, the file tag tag will be stored on
the blockchain. The smart contract then performs the data verification operation on the file tag tag.
If the adversary λ successfully forges a new and different file tag tag, it implies that the data stored on
the blockchain can be tampered with, which contradicts the premise that the data on the blockchain
are safe. Based on this analysis, it can be concluded that for Game 1, the proposed algorithm ensures
that tag is safe during the interaction between the adversary λ and the challenger Φ, and the adversary
λ cannot forge tag.
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Game 2: In this game, the challenger Φ and the adversary λ perform an interaction similar
to Game 1. The difference is that when performing the Resp algorithm, the challenger Φ records
all response to the adversary λ. If the adversary λ forges a different proof proof ′ and can pass the
verification of challenger Φ, λ wins the game.

Analysis: If the cloud data are intact and the correct proof for the challenge CHAL is
proof = 〈ρ, σ 〉, the equation e (σ υ , g) = e (Zi, Cρ) should hold. For the corrupted cloud file
F ′ = {

m1
′, . . . , mj

′, . . . mn
′}, if λ forges a proof proof ′ = 〈ρ ′, σ ′〉, the equation e (σ ′υ , g) = e(Zi, Cρ′)

should hold. It is obvious that ρ ′ �= ρ, or σ ′ = σ . Since ρ = ∑
i∈I

mivi, ρ ′ = ∑
i∈I

mi
′vi, we can obtain

e (σ υ , g) = e
(

Zi, C
∑
i∈I

miυi
)

(1)

e (σ ′υ , g) = e
(

Zi, C
∑
i∈I

mi ′υi
)

(2)

Let Δmi = mi − mi
′ . We divide the Eq. (1) by the Eq. (2), and obtain

e
(
(σ/σ ′)υ , g

) = e
(

Zi, C
∑
i∈I

(�miυi)
)

(3)

Since σ = ∏
i∈I

Tυi
i , we can obtain

e

(∏
i∈I

(
Ti/T ′

i

)υυ′
, g

)
= e

(
Zi, C

∑
i∈I

(�miυi)
)

(4)

We complete the proof based on the CDH problem on G1. Let a = ai ∈ Z∗
q , φ ∈ G1, φa ∈ G1 and

ψ ∈ G1. If the adversary can forge the proof, the challenger Φ can calculate ψ a with non-negligible
probability.

When the user outsources his file to the cloud, the challenger Φ obtains file authenticators by
executing the StorF algorithm. Let g = φψ , b = σ ∈ Z∗

q , and H1 (IDi, Ai + Bi, RH) = (−ri/b)

We have Tj = gmj(a+bi) = (φψ)
mj(a+ri+b(−ri/b)) = (φψ)

mja, and Tj

′ = (φψ)
mj

′
(a+ri+χH1(IDi ,Ai+Bi ,RH))

= (φψ)
mj

′
a. From the Eq. (4), we have e

(
Zi, C

∑
i∈I

(Δmiυi)
)

= e
(∏

i∈I

(
Ti/T ′

i

)υυi , g
) = e

(∏
(φψ)

Δmiaυυi , g
) =

e
(

(φψ)
aυ

∑
i∈I

(Δmiυi)
, g

)
= e

(
Zi, g

υ
∑
i∈I

(Δmiυi)
)

= e
(

Zi

υ
∑
i∈I

(Δmiυi)
, g

)
. Then, we obtain (φψ)

a = Zi =
AiBiPH1(IDi ,Ai+Bi ,RH) = AiBiP(−ri/b), and ψ a = φ−aAiBiP(−ri/b).

When b = 0, the challenger Φ can not solve the CDH problem with a negligible probability of 1/q.
If the difference between the adversary’s probabilities of winning Game 2 and Game 1 is not negligible,
the challenger Φ can solve the CDH problem.

Game 3. In this game, the challenger Φ and the adversary λ perform an interaction similar to
Game 2. Φ should record all his responses to λ. If λ can forge a different proof proof ′, where ρ �=∑
i∈I

mivi, and proof ′ can pass the validation of Φ, λ wins the game.

Analysis: We assume that the correct proof is 〈ρ, σ 〉, and the forged one by λ is 〈ρ ′, σ ′〉. Game
2 has proven σ = σ ′. Since both proof and proof ′ can pass the verification of the challenger Φ, the
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equation e (σ υ , g) = e (σ ′υ , Cρ) = e (Zi, Cρ) = e (Zi, Cρ′) should hold. Since ρ = ∑
i∈I

mivi, we can obtain

Cρ = C
∑
i∈I

mivi = Cρ′ = C
∑
i∈I

mi
′vi

, C
∑
i∈I

Δmivi = 1.

We complete the proof based on the DL problem on G1. Given φ ∈ G1 and ψ ∈ G1, if the adversary
can forge the proof, the challenger Φ can calculate η ∈ Z∗

q that satisfies ψ = φη with a non-negligible
probability.

The challenger Φ selects two random numbers θ ∈ Z∗
q and ς ∈ Z∗

q , and sets C = φθψς . We can
obtain

C
∑
i∈I

Δmivi = (φθψς)

∑
i∈I

Δmivi = φ
θ

∑
i∈I

Δmivi
ψ

ς
∑
i∈I

Δmivi = 1. Then we have

ψ = φ

−θ
∑
i∈I

Δmiυi

ς
∑
i∈I

Δmiυi = φ
−θ
ς (5)

The condition for the Eq. (5) to hold is ς �= 0 with a probability of 1−1/q. If the difference between
the adversary’s probabilities of success in Game 3 and Game 2 is non-negligible, the challenger can
solve the DL hard problem on G1. Therefore, the differences between the above games are negligible.
Due to page limitations, we will no longer provide the proof, and authors can refer to the literature
[27] for further details.

Based on the above analysis, the adversary cannot forge the proof that can pass the challenger’s
verification with a non-negligible probability, and Sec-Auditor can guarantee that the cloud cannot
forge a correct proof.

Theorem 2 (Detectability): Assuming that the files stored in the cloud are segmented into n blocks,
of which υ blocks are corrupted. For the new proposed data auditing solution Sec-Auditor, TPA
chooses c blocks to verify. The probability of detecting at least one of those corrupted file blocks

is 1 −
(

n − υ

n

)c

.

Analysis: Assuming Γ is the number of corrupted file blocks detected by TPA, P (Γ ≥ 1) is the
probability of detecting that the entire file is damaged. We can obtain

P (Γ ≥ 1) = 1 − P (Γ = 0) = 1 − n − υ

n
× · · · × n − c + 1 − υ

n − c + 1
.

Since
n − j − 1 − υ

n − j − 1
≤ n − j − υ

n − j
, we can obtain 1 −

(
n − υ

n

)c

≤ P (Γ ≥ 1) ≤ 1 −(
n − c + 1 − υ

n − c + 1

)c

. Sec-Auditor can detect data corruption with a high probability by sampling a

fixed number of file blocks, regardless of the total size of the cloud data being audited. For instance,
if υ = 0.01n, TPA can request 460 blocks to achieve a probability P (Γ ≥ 1) of at least 99%, and 300
blocks to achieve a probability of at least 95%.

7 Evaluations
7.1 Security Attributes Analysis

In this section, we analyze several crucial security attributes, including public auditing, data
integrity, and semantic correctness. We selected comparison schemes proposed in recent years.
Table 2 presents the comparison results for these security attributes. Our scheme, as well as schemes
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[14,26,27,29], supports public auditing, whereas scheme [9] supports private auditing. The comparison
results also demonstrate that our proposed scheme can simultaneously support both data integrity and
semantic correctness.

Table 2: Comparisons of security attributes

Schemes Public auditing Data integrity Semantic correctness

Wang et al. [29] Yes Yes No
Zhang et al. [27] Yes Yes No
Wang et al. [9] No Yes No
Wang et al. [26] Yes Yes No
Yang et al. [14] Yes Yes No
Ours Yes Yes Yes

7.2 Performance Evaluation

To evaluate the performance of Sec-Auditor, we deployed it on a personal computer and
conducted tests to measure its actual execution time. In read-world application scenarios, the execution
results of Sec-Auditor are influenced not only by the computational complexity of the algorithm but
also by network latency, the blockchain’s consensus protocol, and other variables. To enhance our
assessment of the algorithm’s performance, we intend to eliminate network latency in subsequent
experiments. The configurations for this evaluation are as follows: Central processing unit (CPU):
Intel i5-12500H; Random access memory (RAM): 16.0 GB; Blockchain platform: Quorum 2.0;
Operation system: Ubuntu 18.04 LTS; Programming language: Java 1.7.0; Blockchain consensus
protocol: Quorum byzantine fault tolerance (QBFT); Number of blockchain virtual nodes: 3, as
recommended in [29]. In the following evaluations, the datasets are randomly generated to mask
differences in execution time caused by diverse data types.

Initially, we need to determine the optimal block size, as it could affect the computational overhead
associated with the StorF, Chal, and Resp algorithms. We set the file size, consisting of n blocks, to
be 3456 bytes, and the number of challenged file blocks to be n/2. We will conduct tests to explore
the relationship between the combined execution times of the above three algorithms and the file
block size, aiming to pinpoint the optimal file block. The results are demonstrated as Fig. 3. From
these results, we can infer that the optimal block size is 16 bytes, with a corresponding execution
time of 1.4 s.

Next, in order to assess the execution time of each algorithm within Sec-Auditor, we configured the
block size to 16 bytes, with 180 challenged file blocks. The results are as presented in Fig. 4. Notably,
the StorF and UptRule algorithms within the proposed solution accounts for the majority of the total
processing time. In practical applications, the UptRule algorithm is executed less frequently compared
to the StorF algorithm. Consequently, we will not assess the performance of the UptRule algorithm. In
order to enhance the performance of Sec-Auditor, we need to accelerate the StorF algorithm. Despite
this, the StorF algorithm in Sec-Auditor still outperforms the scheme [27], as illustrated in Fig. 5. This
superiority is attributed to the fact that the scheme [27] should perform more time-consuming bilinear
pairing operations.
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Figure 3: Determine the optimal block size

Figure 4: Execution time of each algorithm for Sec-Auditor

Figure 5: Performance comparison of the StorF algorithm
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Once the user outsources the data to the cloud, the subsequent system will routinely or sporadically
perform data auditing operations based on the system’s configuration. These operations entail
the execution of the algorithms Chal, Resp, and Verf. Throughout the data’s lifecycle, these three
algorithms may be frequently executed. To analyze the execution efficiency of these algorithms, we
conducted an evaluation to examine the relationship between their execution times and the number of
challenged file blocks. In this evaluation, we utilized a total of 20,000 file blocks and configured the
file block size to be 16 bytes. The experimental results are presented in Fig. 6. These results indicate
that the Resp algorithm requires more time compared to the other two ones. Since the cloud operates
as a distributed storage system, user data are distributed across numerous storage nodes. When
performing the Resp algorithm, individual storage nodes can leverage their local data to compute
a local proof, which is subsequently submitted to TPA for aggregation. This implementation can
effectively accelerate the Resp algorithm.

Figure 6: Performance comparison of the data audit phase

8 Conclusions

We propose a new data auditing solution called Sec-Auditor, capable of simultaneously verifying
both data integrity and semantic correctness. Sec-Auditor also supports public auditing, allowing
anyone with access to public information to conduct data audits. This feature makes Sec-Auditor
highly adaptable to the cloud. What is more, the user in Sec-Auditor is assigned with a specific rule
that is utilized to verify the semantic accuracy, and can be allowed to update his own rule as needed. We
conduct a comprehensive analysis of Sec-Auditor’s correctness and security, along with performance
evaluations to demonstrate its efficiency. In the future, we plan to deploy Sec-Auditor in a broader
range of application scenarios and optimize its efficiency.
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