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ABSTRACT

Since the 1950s, when the Turing Test was introduced, there has been notable progress in machine language
intelligence. Language modeling, crucial for AI development, has evolved from statistical to neural models over
the last two decades. Recently, transformer-based Pre-trained Language Models (PLM) have excelled in Natural
Language Processing (NLP) tasks by leveraging large-scale training corpora. Increasing the scale of these models
enhances performance significantly, introducing abilities like context learning that smaller models lack. The
advancement in Large Language Models, exemplified by the development of ChatGPT, has made significant impacts
both academically and industrially, capturing widespread societal interest. This survey provides an overview
of the development and prospects from Large Language Models (LLM) to Large Multimodal Models (LMM).
It first discusses the contributions and technological advancements of LLMs in the field of natural language
processing, especially in text generation and language understanding. Then, it turns to the discussion of LMMs,
which integrates various data modalities such as text, images, and sound, demonstrating advanced capabilities
in understanding and generating cross-modal content, paving new pathways for the adaptability and flexibility
of AI systems. Finally, the survey highlights the prospects of LMMs in terms of technological development and
application potential, while also pointing out challenges in data integration, cross-modal understanding accuracy,
providing a comprehensive perspective on the latest developments in this field.
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1 Introduction

Language serves as a foundational element in human communication and expression, as well as in
the interaction between humans and machines, necessitating the development of generalized models
to empower machines with the ability to perform complex linguistic tasks. The need for generalized
models stems from the growing demand for machines to handle complex language tasks, including
translation, summarization, information retrieval, conversational interactions [1], etc. This necessity
is rooted in the intrinsic human capability to communicate and express thoughts. Language is a
prominent ability in human beings to express and communicate, which develops in early childhood
and evolves over a lifetime [2,3]. Unlike humans, machines lack the innate ability to comprehend and
generate human language, a gap that can only be bridged through the deployment of sophisticated
artificial intelligence (AI) algorithms. It has been a longstanding research challenge to achieve this
goal, to enable machines to read, write, and communicate like human [4]. Addressing this challenge,
the field of language modeling aims to advance machine language intelligence by focusing on the
generative likelihood of sequences of words, thereby enabling the prediction of future or missing tokens
[5]. This pursuit has been a focal point of research, evolving through four significant stages, each
marking a progressive step towards enabling machines to read, write, and communicate with human-
like proficiency.

Building upon these four stages, the development of LMMs emerges as a pivotal fifth stage in the
evolution of artificial intelligence.

LMMs mark a significant advancement in AI by integrating multisensory skills like visual
understanding and auditory processing with the linguistic capabilities of LLMs. This approach not
only leverages the dominant role of vision but also emphasizes the importance of other modalities
such as sound, enhancing AI systems to be more adept and versatile. By incorporating a broader
range of sensory inputs, LMMs aim to achieve a more powerful form of general intelligence, capable
of efficiently performing a wider array of tasks. The five developmental stages are detailed as follows.

1. Statistical Language Models (SLM)

SLMs are a type of language model that uses statistical methods to predict the probability of a
sequence of words in a language. These models are based on the assumption that the likelihood of a
word occurring in a text depends on the words that precede it. SLMs [6–9] analyze large corpora of
text to learn word occurrence patterns and relationships. SLMs have been fundamental in various NLP
[10] like speech recognition, text prediction, and machine translation before the rise of more advanced
neural network-based models. Therefore, the specially proposed principles and methods [11] are used
to alleviate the problems encountered in information retrieval challenges.

2. Neural Language Models (NLM)

NLMs are a type of language model that uses neural networks, especially deep learning techniques,
to understand and generate human language. Unlike SLMs that rely on counts and probabilities of
sequences of words, neural models use layers of artificial neurons to process and learn from large
amounts of text data. These models capture complex patterns and dependencies in language, allowing
for more accurate and contextually relevant language generation and understanding. Examples include
Recurrent Neural Networks (RNN), Long Short-Term Memory networks (LSTM), and transformer
models like Generative Pre-trained Transformer (GPT). They are widely used in applications like
machine translation, text generation, and speech recognition.
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3. Pre-Trained Language Models (PLM)

PLMs are a category of language model that have been previously trained on large datasets before
being used for specific tasks. This pre-training involves learning from vast amounts of text data to
understand the structure, nuances, and complexities of a language. Once pre-trained, these models can
be fine-tuned with additional data specific to a particular application or task, such as text classification,
question answering, or language translation. Examples of PLMs include Bidirectional Encoder Rep-
resentations from Transformers (BERT) [12], GPT, and Text-to-Text Transfer Transformer (T5) [13].
These models have revolutionized the field of NLP by providing a strong foundational understanding
of language, which can be adapted to a wide range of language-related tasks.

4. Large Language Models (LLM)

Artificial Intelligence, particularly generative AI, has garnered widespread attention for its
capacity to produce lifelike outputs [14]. LLMs are complex computational systems in the field of
artificial intelligence, particularly NLP. They are typically constructed using deep learning techniques,
often leveraging Transformer architectures. These models are characterized by their vast number of
parameters, often in the billions, which enable them to capture a wide range of linguistic nuances
and contextual variations. LLMs are trained on extensive corpora of text, allowing them to generate,
comprehend, and interact using human language with a high degree of proficiency. Their capabilities
include but are not limited to text generation, language translation, summarization, and question-
answering. These models have significantly advanced the frontiers of NLP, offering more sophisticated
and context-aware language applications.

5. Large Multimodal Models (LMM)

LMMs are advanced artificial intelligence systems capable of processing and understanding
multiple types of data inputs. In addition to standard text-based applications, LLMs are expanding
their capabilities to engage with various forms of media, such as images [15,16], videos [17,18] and
audio files [19,20] among others. They are multimodal because they can integrate and interpret
information from these varied modes simultaneously. These models leverage large-scale datasets and
sophisticated neural network architectures to learn complex patterns across different data types. This
ability allows them to perform tasks like image captioning, where they generate descriptive text for
images, or answer questions based on a combination of text and visual information.

The emergence of LLMs has revolutionized our ability to process and generate human-like text,
thereby enhancing applications in numerous fields such as automated customer support, content
creation, and language translation, and opening up new possibilities for human-computer interaction.
As we advance beyond the realm of pure text-based interactions, the field is witnessing the rise of
LMMs. These sophisticated models are pioneering the integration of multisensory data, notably visual
and auditory inputs, to better emulate the comprehensive sensory experiences that are central to
human cognition. In the field of computer vision, efforts are being made to create vision-language
models akin to ChatGPT, aiming to enhance multimodal dialogue capabilities [21–24]. GPT-4 [25] has
already taken strides in this direction by accommodating multimodal inputs and incorporating visual
data. This progression can be charted through the development of attention mechanisms in LLMs,
which have been instrumental in improving contextual understanding. Attention has evolved from a
fundamental concept to more complex types and variations, each with its own optimization challenges.
Building upon this, the architecture of LMMs incorporates these advanced attention frameworks
to process and synthesize information across multiple modalities. Concurrently, the field grapples
with open issues such as contextual understanding inherent limitations, the challenges of ambiguity
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and vagueness in language, and the phenomenon of catastrophic forgetting. Foundational LLMs
sometimes misinterpret instructions and “hallucinate” facts, undermining their practical effectiveness
[26]. Therefore, there is a focus on correcting hallucinations and enhancing cognitive abilities within
these models, which is critical to their reliability and effectiveness. Addressing these challenges requires
innovative training data and methods tailored to LLMs and LMMs alike, aiming to refine internal and
external reasoning processes. This fine-tuning is essential for achieving accuracy in reasoning, enabling
these models to make informed decisions based on a combination of learned knowledge and real-
time sensory input. The practical applications of LLMs and LMMs are expansive and transformative,
particularly in sectors like healthcare, where they can interpret patient data to inform diagnoses and
treatments, and in finance, where they can analyze market trends for more accurate forecasting. In
robotics, LMMs facilitate more natural human-robot interactions and enable machines to navigate
and interact with external environments more effectively. In sum, the journey from LLMs to LMMs is
not merely an incremental step but a significant leap towards creating AI systems that can understand
and interact with the world in a manner akin to human intelligence. The eventual integration of
these models into real-world applications promises to enhance the efficacy and sophistication of AI
technologies across the board.

This review and its subsequent exposition aim to detail the current landscape and future direction
of LLMs and LMMs, exploring the nuanced details of these models and their transformative potential
in multimodal AI. The structure and content of the article are as shown in Figs. 1 and 2. Fig. 1 provides
a broad overview of LLMs and LMMs in six areas: 1. Attention Mechanism 2. Structure 3. Training
Methods 4. Training Data 5. Open Issues 6. Applications. Through the Sankey diagram, Fig. 2
counts 325 documents, including 45 in proceedings, 72 other articles, 205 articles, and 3 books. Fig. 3
illustrates the timeline of model proposals from 2019 to mid-2023, with dark blue indicating multi-
modal models. The pie chart depicts the proportion of multimodal and non-multimodal models from
2021 to 2023. It is evident from the picture that the development and application of multimodal models
are becoming increasingly recognized and embraced by the public.

Figure 1: Overview of LLMs and LMMs
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Figure 2: Literature source sankey diagram

Figure 3: Multimodal model growth from 2019 to 2024

Adhering to the hierarchical structure of the outline, with a focus on large language models
and multimodal models as primary keywords, we meticulously curated a collection of representative
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documents. These documents, numbering approximately 325 in total, span multiple fields and were
selected based on criteria such as research background, unresolved issues, and practical applications.

The main contributions of this paper are as follows:

• We offer an examination of the evolution and future potential spanning from LLMs to LMMs.
Initially, we delve into the contributions and technological strides of LLMs within the realm of
NLP, particularly in the arenas of text generation and linguistic comprehension.

• Subsequently, we transition to an exploration of LMMs, amalgamating diverse data modalities
such as textual, visual, and auditory inputs, thereby show-casing sophisticated proficiencies in
cross-modal comprehension and content generation. This pioneering integration opens avenues
for enhanced adaptability and versatility within AI systems.

• We have elucidated the prospects of LMMs in terms of technological advancement and
application potential, while also revealing the main challenges related to data integration,
cross-modal understanding accuracy, and the current landscape. Finally, in specific application
domains, we not only detailed the differences between LLMs and LMMs but also highlighted
the necessity of their transformation in concrete applications.

2 Background

LLMs, like GPT-3 [27], PaLM [28], Galactica [29], and LLaMA [30], are transformer-based
models with hundreds of billions of parameters, trained on vast text datasets [31]. These models
are adept at comprehending natural language and executing complex tasks through text generation.
This section provides an overview of LLMs, covering attention mechanisms, model architecture, and
training data and methods for a concise understanding of their operation.

2.1 Attention in LLMs

Attention in LLMs is fundamental for processing and understanding complex language struc-
tures. It operates by focusing on specific parts of the input data, thereby discerning relevant context
and relationships within the text. Various types and variations of attention exist, such as self-attention
and multi-head attention, each offering unique advantages in handling different understanding.
Optimization of attention mechanisms, especially in large models, involves techniques like sparse
attention to manage computational efficiency and memory usage, crucial for scaling LLMs for more
extensive and intricate datasets. These mechanisms collectively enhance the LLMs ability to generate
coherent, contextually relevant responses, making them versatile in numerous language processing
applications.

We will delve into the concept of Attention in LLMs from three distinct perspectives: the
fundamental principles underlying attention mechanisms, the types and variations that exist within
these models, and the optimization strategies employed to enhance their efficiency and effectiveness.

2.1.1 Fundamental

The attention mechanism plays a pivotal role within the Transformer framework, facilitating inter-
token interactions across sequences and deriving representations for both input and output sequences.
When processing sequential data, the attention mechanism simulates the human attention process by
endowing the model with varying degrees of attention to different parts. This is akin to how humans
allocate attention when processing information, allowing the model to selectively focus on specific
parts of the sequence, rather than treating all information equally. In the attention mechanism, the
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model calculates weights based on different parts of the input data to indicate which parts the model
should pay more attention to. These weights determine which positions in the input sequence should
be considered when calculating the output, enabling the model to simulate selective attention similar
to that of humans when processing sequential data.

In summary, the attention mechanism simulates the human attention process by dynamically
adjusting attention to different parts, enabling the model to better comprehend and process sequential
data. This contributes to the improvement of performance in models for tasks such as NLP and
machine translation.

2.1.2 Types and Variations

1. Self-Attention

Self-attention [32] within the Transformer model is characterized as a mechanism that calculates
a position response in a sequence by considering all positions, assigning importance through learned
patterns. Unlike models that process sequences sequentially, this allows for parallel processing,
enhancing training efficiency. It adeptly handles long-range dependencies, crucial in translation where
contextual comprehension is key. By evaluating interrelations across an entire input sequence, self-
attention significantly improves the model ability to interpret intricate patterns and dependencies,
a distinct advantage in complex task handling. Self-attention parallel processing capability and
proficiency in capturing long-range dependencies offer a significant advantage over traditional models
like RNN and convolutional neural networks (CNN). Particularly in NLP, where understanding
long-distance relationships in data is crucial, self-attention proves more effective. This mechanism
is extensively utilized in the Transformer model, now a dominant framework in various NLP tasks,
including machine translation, text generation, and classification. The transformer reliance on self-
attention, avoiding RNN or CNN architectures, markedly enhances its ability to handle extended
sequences, driving breakthroughs in performance across multiple applications.

2. Cross Attention

Cross-attention, a pivotal concept in deep learning and NLP, denotes an advanced attention
mechanism. This mechanism is instrumental in enabling models to intricately associate and assign
weights to elements across two distinct sequences. A prime example is in machine translation, where it
bridges the source and target language components. Essentially, cross-attention empowers a model to
integrate and process information from one sequence while attentively considering another sequence
context. Predominantly utilized in sequence-to-sequence models, which are prevalent in machine
translation, text summarization, and question-answering systems, cross-attention plays a crucial role.
It facilitates the model ability to decode and interrelate the intricacies between an input sequence
(like a segment of text) and its corresponding output sequence (such as a translated phrase or an
answer). Delving into specifics, the cross-attention mechanism leverages insights from one sequence
(for instance, the output from an encoder) to attentively navigate and emphasize particular segments
of another sequence (like input to a decoder). This capability is key to grasping and handling the
multifaceted dependencies existing between sequences, thereby significantly boosting precision and
efficiency of the model in complex tasks. In the realm of machine translation, for instance, cross-
attention enables the model to meticulously concentrate on specific fragments of the source language
sentence, ensuring a more accurate and contextual translation into the target language. Overall, cross-
attention stands as a cornerstone technique in deep learning, essential for the nuanced understanding
and processing of complex inter-sequential relationships.
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3. Full Attention

Full attention in the context of neural network architectures, particularly Transformers, refers to
a mechanism where each element in a sequence attends to every other element. Unlike sparse attention
which selectively focuses on certain parts of the sequence, full attention involves calculating attention
scores between all pairs of elements in the input sequence. This approach, while computationally
intensive due to its quadratic complexity, provides a comprehensive understanding of the relationships
within the data, making it highly effective for tasks requiring deep contextual understanding. However,
its computational cost limits its scalability, especially for very long sequences.

4. Sparse Attention

Sparse attention, as detailed in the work [33], revolutionizes the efficiency of Transformer
models for extensive sequences. By introducing sparse factorizations into the attention matrix, this
approach transforms the computational complexity from quadratic to nearly linear. This reduction is
accomplished through a strategic decomposition of the full attention mechanism into more manage-
able operations that closely emulate dense attention, but with significantly reduced computational
demands. Demonstrating its robustness, the sparse Transformer excels in processing a wide range
of data types, including text, images, and audio, thereby setting new performance benchmarks in
density modeling for complex datasets like Enwik8 and CIFAR-10. Notably, its design allows for the
handling of sequences up to a million steps in length, a feat that significantly surpasses the capabilities
of standard Transformer models. This advancement not only enhances the efficiency of processing
lengthy sequences but also opens new avenues for complex sequence modeling tasks.

5. Multi-Query/Grouped-Query Attention

Multi-query attention is a variant of the traditional attention mechanism commonly used in neural
network architectures. In this approach, instead of computing attention with a single query per input
element, multiple queries are used simultaneously for each element [34]. This allows the model to
capture a wider range of relationships and interactions within the data. Multi-query attention can
provide a richer and more nuanced understanding of the input, as it enables the model to attend to
different aspects or features of the data in parallel, enhancing its ability to learn complex patterns and
dependencies.

6. Flash Attention

Flash attention [35] is a technique in neural network architecture that optimizes the efficiency of
attention mechanisms, specifically in Transformers. It focuses on improving the speed and reducing
memory usage during the attention calculation process. This is achieved by enhancing the handling
of memory read and write operations, particularly in GPUs. As a result, flash attention can operate
significantly faster than traditional attention mechanisms, while also being more memory efficient.
This makes it particularly advantageous for tasks involving large-scale data processing or when
operating under memory constraints. It employs a tiling strategy to minimize memory transactions
between different GPU memory levels, leading to faster and more memory-efficient exact attention
computation. Notably, flash attention design allows it to perform computations up to several times
faster than traditional attention methods, with substantial memory savings, marking a significant
advancement in handling large-scale data in neural networks. FlashAttention has been implemented
as a fused kernel within CUDA and is now integrated into prominent frameworks including PyTorch
[36], DeepSpeed [37], and Megatron-LM [38]. This integration signifies its practical applicability
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and enhancement of these platforms, providing a more efficient and memory-effective approach to
attention computation in large-scale neural network models.

FlashAttention-2 [39], as an evolution of the original FlashAttention, significantly advances
the efficiency of attention processing in Transformers. It optimizes GPU utilization by refining
the algorithm for more effective work partitioning. The enhancement involves minimizing non-
matrix multiplication operations and enabling parallel processing of attention, even for individual
heads, across various GPU thread blocks. Moreover, it introduces a more balanced distribution of
computational tasks within thread blocks. These strategic improvements result in FlashAttention-2
achieving approximately double the speed of its predecessor, nearing the efficiency of optimized matrix
multiplication operations, thereby marking a substantial leap in executing large-scale Transformer
models efficiently.

7. PagedAttention

PagedAttention is an advanced technique in neural net-work architecture, specifically designed to
address the limitations of conventional attention mechanisms in handling long sequences. It operates
by dividing the computation into smaller, more manageable segments or pages, thereby reducing the
memory footprint and computational load. This approach allows for efficient processing of long
sequences that would otherwise be challenging or infeasible with standard attention models, making
it particularly useful in large-scale NLP and other data-intensive applications. The PagedAttention
method has been developed to optimize the use of memory and augment the processing capacity of
LLMs in operational environments [40].

2.1.3 Optimization

In the realm of neural network models, particularly in NLP, attention mechanisms have emerged
as a pivotal innovation, enhancing model accuracy and contextual understanding. These mechanisms
enable models to selectively concentrate on relevant segments of input data, effectively capturing
intricate dependencies and relations. This targeted focus significantly bolsters performance in tasks
such as language translation and summarization.

However, with the growing scale of models and data, traditional attention mechanisms often
grapple with increased computational demands, affecting training speed and efficiency. To address
these challenges, optimization techniques like sparse attention have been developed. Sparse attention
streamlines the process by selectively focusing on crucial data points, thus reducing the computational
burden. This selective approach not only expedites the training process but also scales more adeptly
with larger datasets.

The incorporation of sparse attention is crucial in managing the escalating complexities and sizes
of datasets in advanced deep learning applications. By optimizing attention mechanisms, we can build
models that are not only more accurate but also faster and more scalable, catering to the demanding
requirements of modern machine learning tasks. These advancements are integral to pushing the
boundaries of what neural network models can achieve, particularly in processing and understanding
large-scale, complex data structures.

2.2 Attention in LMMs

2.2.1 Basic Concepts

Multimodal learning in computer science involves integrating data from various modalities, such
as text, images, and sound, to create models that understand and process information more holistically.
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This approach is crucial for tasks requiring an understanding across multiple data types. For instance,
in a scenario where both visual cues from images and descriptive cues from text are essential, multi-
modal learning enables the model to combine these distinct types of information to generate a
more accurate and comprehensive understanding. This is particularly important in complex data
interpretation and decision-making tasks, where relying on a single modality might lead to incomplete
or biased conclusions. Multimodal learning, therefore, plays a vital role in enhancing the depth and
breadth of data analysis and interpretation in AI applications.

In contemporary multimodal research, image-text conversion and matching represent a pivotal
area, involving the precise alignment of visual content with textual descriptions. Attention mechanisms
play an essential role in this process. By incorporating cross-modal attention mechanisms, LMMs are
able to focus on parts of the image that are closely related to the text descriptions, thereby achieving
more accurate local alignments. Additionally, these models utilize global attention to integrate the
semantic information of the entire image and text, ensuring overall semantic consistency. Xu et al. [41]
proposed a novel multimodal model named Cross-modal Attention with Semantic Consistency
(CASC). It employs an innovative attention mechanism to integrate both local and global matching
strategies. Through finely-tuned cross-modal attention, it achieves granular local alignment, while the
use of multi-label prediction ensures the consistency of global semantics. This strategy of combining
local and global perspectives through attention not only enhances the accuracy of image-text matching
but also significantly improves the model’s ability to handle complex multimodal information.

Cai et al. [42] proposed a graph-attention based multimodal fusion network for enhancing the
joint classification of hyperspectral images and LiDAR data. It includes an HSI-LiDAR feature
extractor, a graph-attention fusion module, and a classification module. The fusion module constructs
an undirected weighted graph with modality-specific tokens to address long-distance dependencies and
explore deep semantic relationships, which are then classified by two fully connected layers.

In modern AI research, multimodal models integrate diverse data like text, images, and sound
using cross-modal attention mechanisms. These mechanisms allow models to focus on relevant
information across modalities. For example, in image-text matching tasks, they enable identification of
key text elements and their alignment with corresponding visual details. This enhances data processing
accuracy and improves the model’s adaptability and problem-solving capabilities in complex scenarios,
proving essential for multimodal tasks.

2.2.2 Representative Multimodal Models

This section offers a comprehensive exploration of how advanced AI models integrate varied data
types like text, images, and audio. These multimodal models, adept at processing and interpreting
multi-sensory information, facilitate a nuanced understanding of complex data sets. The introduction
outlines the architecture of these models, their data fusion techniques, and diverse applications in
fields such as NLP, computer vision, and human-computer interaction, setting the groundwork for
appreciating their interdisciplinary and technological complexity. It has been shown that CLIP-
NAV [43] explores an innovative approach to Vision-and-Language Navigation (VLN) using the
CLIP model for zero-shot navigation. The focus is on improving VLN in diverse and previously
unseen environments without dataset-specific fine-tuning. The study leverages CLIP strengths in
language grounding and object recognition to navigate based on natural language instructions. The
results demonstrate that this approach can surpass existing supervised baselines in navigation tasks,
highlighting the potential of CLIP in generalizing better across different environments for VLN tasks.
This research marks a significant stride in the field of autonomous navigation using language models.
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In addition, RoboCLIP [44] addresses the challenge of efficiently teaching robots to perform tasks
with minimal demonstrations. The method utilizes a single demonstration, which can be a video or
textual description, to generate rewards for online reinforcement learning. This approach eliminates
the need for labor-intensive reward function designs and allows for the use of demonstrations from
different domains, such as human videos. RoboCLIP use of pretrained Video-and-Language Models
(VLMs) without fine-tuning represents a significant advancement in enabling robots to learn tasks
effectively with limited data. Table 1 provides an extensive overview of frequently used non-multimodal
and multimodal models, delineating their distinct characteristics and primary functions. It utilizes a
color-coding system where non-multimodal models are differentiated as follows: transformer-based
models are highlighted in yellow, code generation models in pink, and multilingual or cross-language
models in gray. This color coding helps to clearly understand each model type and its functionalities.

Table 1: Comparison of characteristics and principal tasks of multimodal and non-multimodal models

Models Insights

T5 [13] The unified framework simplifies model design and training processes.
GPT-3 [27] Revolutionary AI for comprehensive, human-like text generation across

various domains.
CC595K [45] CC595K is used alongside WebVid2M for initial vision branch training

to help the model understand audio.
ERNIE3.0 [46] Advanced language model emphasizing contextual understanding,

supporting diverse NLP tasks.
PanGu-α [47] It focuses on extensive pretraining for enhanced natural language

understanding and generation.
CPM-2 [48] Large-scale pretraining enhances understanding and generation of

natural language text.
ERNIE 3.0 Titan
[49]

High-performing language model for advanced contextual
understanding and NLP.

GPT-NepX-20B [50] Advanced language model optimized for comprehensive text generation
across diverse tasks and domains.

BLOOM [51] Innovative algorithm for efficient and scalable data filtering and retrieval.
GLaM [52] Pretraining corpus choice greatly affects LLMs’ performance in

downstream tasks.
LaMDA [53] Refining various external information through fine-tuning the model.
UL2 [54] Enhanced performance on downstream tasks is facilitated by mode

switching training.
GLM-130B [55] Model performance is boosted by employing pretraining data.
Jurassic-1 [56] High-performance language model prioritizing efficiency and accuracy

for diverse NLP tasks.
HyperCLOVA [57] A cutting-edge AI system designed for versatile and efficient natural

NLP tasks.
Yuan 1.0 [58] A state-of-the-art language model engineered for robust and versatile

natural language understanding and generation tasks.
PanGu-� [59] Sparse models are characterized by lower computational costs.

(Continued)
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Table 1 (continued)

Models Insights

XuanYuan 2.0 [60] In order to improve the memory ability of the model, pre-training and
fine-tuning will be combined in the training.

OPT [61] Optimization process for maximizing efficiency and performance in
various computational tasks.

Gopher [62] Efficient, typed language for simple, productive web development.
Galactica [29] Galactica’s performance improves consistently across different

benchmarks, exceeding previous LLMs research.
Chinchilla [63] Scaling model size and training token count proportionally yields

optimal computation.
CoQA [64] The primary goal is to challenge and improve conversational AI systems

with realistic, complex question-answering scenarios.
LLaMA [30] Model performance is improved through scaling.
PaLM [28] Larger models tend to have better memory capacity during training.
U-PaLM [65] Through training with a mixed denoiser, the filling capability and

diversity of open-text generation have been enhanced.
AlexaTM [66] Adding auxiliary tasks can enhance the model’s contextual learning

efficiency.
BloombergGPT [67] Combining general and specialized data enhances model performance

without limiting capabilities.
mT5 [68] Multitask T5, excels in multilingual tasks, showcasing versatile language

understanding.
AlphaCode [69] Utilizing encoder and decoder to present an asymmetric transformer

model, thereby enhancing efficiency.
CodeGen [70] Utilizing distributed prompts to generate code and synthesize will better

understand user intent.
CodeT5+ [71] Set multiple training goals for better performance.

In contrast, Table 2 focuses exclusively on multimodal models. It categorizes these models based
on their capabilities with a similar color-coding system: models capable of generating images from
textual descriptions and understanding the relationship between images and text are marked with
yellow; those that demonstrate a comprehensive grasp of multimodal data are in pink; and models that
offer a holistic approach to both multimodal comprehension and generative abilities are designated
with gray.

Table 2: Overview of understanding and generation capabilities in multimodal models

Models Insights

DALL-E [72] Construct new scenes by transferring memory information.
DALLE-E2 [73] CLIP embeddings utilized for diverse, photorealistic image generation

while preserving semantic and stylistic integrity.

(Continued)
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Table 2 (continued)

Models Insights

Imagen [74] Leveraging large language models for unprecedented photorealism and
precise text-image alignment.

Parti [75] Generates photorealistic images from text, leveraging Transformer-based
encoding.

MiniGPT-4 [76] MiniGPT-4 aligns visual and language models, revealing advanced
multi-modal abilities.

ALIGN [77] Utilizing extensive noisy image-text data for cutting-edge visual and
language representations.

CLIP [78] Using a universal visual encoder, zero-sample visual recognition can be
achieved.

BLIP2 [79] Superior performance, fewer parameters, enabling zero-shot
image-to-text guided generation.

COGVLM [80] A deep fusion model achieving state-of-the-art performance on
cross-modal benchmarks.

Flamingo [15] Versatile visual language models adept at rapid adaptation to novel tasks
with minimal annotated examples.

GPT4 [25] A transformer model achieving human-level performance on various
benchmarks.

PaLM-2 [81] Enhanced multilingual Transformer: faster inference, stable performance.
WizardCoder [82] Levates Code LLMs with fine-tuned instruction, outperforming all

Open-source and closed LLMs on code tasks.
LLaMA2 [30] A set of LLMs fine-tuned for dialogue, surpassing open-source models in

benchmarks and safety evaluations.
QWen-VL [83] Advanced LVLMs, setting new benchmarks in vision-language

understanding.
Moe-llava [84] End-to-end training connects visual encoder with LLMs for universal

understanding.

2.3 Structure of LLMs

2.3.1 Architectures

In this discussion, we explore the diverse variants of Transformer architectures, which stem from
variations in how attention mechanisms are applied and how transformer blocks are interconnected.

1. Encoder-Only

In the landscape of NLP, the advent of the encoder-only architecture signifies a pivotal develop-
ment. This architecture departs from traditional sequential processing by employing the Transformer
encoder to generate rich, contextual representations of input text. The innovation lies in its ability to
grasp the nuances of language through bidirectional context, making it adept across a spectrum of
NLP tasks, including but not limited to text classification, entity recognition, and sentiment analysis.
The encoder-only model capacity for pre-training on extensive corpora before fine-tuning for specific
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tasks has set a new standard for understanding and processing human language, thus reshaping the
methodologies employed in NLP research and applications.

2. Encoder-Decoder

The encoder-decoder architecture, a cornerstone in the field of NLP, has been instrumental in
advancing machine translation, text summarization, and question answering systems. This framework,
as detailed by Sutskever et al. [85], employs a dual-component approach where the encoder processes
the input sequence to a fixed-length vector representation, which the decoder then uses to generate
the target sequence. This separation allows the model to handle variable-length inputs and outputs,
enabling a more flexible and accurate translation of complex language structures. The architecture
efficacy in capturing long-distance dependencies and its adaptability to various sequential tasks
have catalyzed significant innovations in NLP, making it a fundamental model for researchers and
practitioners alike.

3. Decoder-Only

The decoder-only architecture, notably pioneered by models such as GPT [86], represents a
transformative approach in the realm of NLP, particularly in text generation tasks. This architecture,
eschewing the encoder component, focuses solely on the decoder to predict the next token in a sequence
based on the preceding ones. It leverages an autoregressive model that processes text in a sequential
manner, ensuring that each prediction is contingent upon the tokens that came before it. This design
facilitates the generation of coherent and contextually relevant text, making decoder-only models
particularly adept at tasks such as story generation, creative writing, and more. The effectiveness of
this architecture has been demonstrated across various domains, showcasing its versatility and power
in capturing the nuances of human language.

Causal Decoder: The primary goal of a LLMs is to forecast the subsequent token given the
preceding sequence of tokens. Although incorporating additional context from an encoder can
enhance the relevance of predictions, empirical evidence suggests that LLMs can still excel without
an encoder [87], relying solely on a decoder. This approach mirrors the decoder component of the
traditional encoder decoder architecture, where the flow of information is unidirectional, meaning the
prediction of any token tk is contingent upon the sequence of tokens leading up to and including tk−1.
This decoder-only configuration has become the most prevalent variant among cutting-edge LLMs.

Prefix Decoder: In encoder-decoder architectures, causal masked attention allows the encoder to
utilize self-attention to consider every token within a sentence, enabling it to access tokens from tk+1 to tn

as well as those from t1 to tk−1 when computing the representation for tk. However, omitting the encoder
in favor of a decoder-only model removes this comprehensive attention capability. A modification
in decoder-only setups involves altering the masking strategy from strictly causal to permitting full
visibility for certain segments of the input sequence, thereby adjusting the scope of attention and
potentially enhancing model flexibility and understanding [1].

2.3.2 Representative LLMs Architectures

In the evolving landscape of NLP, various model architectures have significantly advanced
the field. The T5 [13] and BART [88] models, both embodying the encoder-decoder architecture,
have redefined versatility in NLP tasks. T5 converts all NLP problems into a unified text-to-text
format, leveraging a comprehensive Transformer architecture for both encoding and decoding phases.
Similarly, BART integrates the bidirectional encoding capabilities of BERT with the autoregressive
decoding prowess of GPT, enhancing performance across a range of generative and comprehension
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tasks. On the other hand, the encoder-only architecture is exemplified by models such as RoBERTa
[89] and ALBERT [90]. RoBERTa refines the BERT framework through optimized pre-training
techniques, achieving superior results on benchmark tasks. ALBERT reduces model size and increases
training speed without compromising performance, illustrating the efficiency of architecture optimiza-
tion. XLNet [91] and TransformerXL [92] explore the realm of Causal Decoder architecture. XLNet
integrates the best of Transformer self-attention with autoregressive language modeling, capturing
bidirectional context in text sequences through permutation language modeling. Transformer-XL
introduces a novel recurrence mechanism to handle longer text sequences, effectively capturing
long-range dependencies. Besides, ELECTRA [93] represents a unique take on the encoder-only
architecture, introducing a novel pre-training task that distinguishes between real and artificially
replaced tokens to train the model more efficiently. These architectures, through their innovative
designs and applications, underscore the dynamic and rapidly advancing nature of machine learning
research in NLP, each contributing unique insights and capabilities to the domain.

2.4 Structure of LMMs

2.4.1 Multimodal Understanding

1. Modality encoder

Modality encoder is tasked with encoding inputs from diverse modalities to obtain corresponding
features [94]. Fig. 4 depicts iconic models and notable representatives at various junctures in time,
showcasing the evolving landscape of tasks undertaken by these models over different epochs. As
science and technology progress, the pervasive adoption of large language models and multi-modal
languages across diverse domains is poised to proliferate, facilitating the execution of a myriad of
distinct tasks.

Visual Modality: For image processing, four notable encoders are often considered. NFNet-
F6 [95] represents a modern take on the traditional ResNet architecture, eliminating the need for
normalization layers. It introduces an adaptive gradient clipping technique that enhances training
on highly augmented datasets, achieving state-of-the-art (SOTA) results in image recognition. Vision
Transformer (ViT) [96] brings the Transformer architecture, originally designed for NLP, to the realm
of images. By dividing images into patches and applying linear projections, ViT processes these through
multiple Transformer blocks, enabling deep understanding of visual content. CLIP ViT [78] bridges
the gap between textual and visual data. It pairs a vision Transformer with a text encoder, leveraging
contrastive learning from a vast corpus of text-image pairs. This approach significantly enhances
the model’s ability to understand and generate content relevant to both domains. Eva-CLIP ViT
[97] focuses on refining the extensive training process of its predecessor, CLIP. It aims to stabilize
training and optimize performance, making the development of multimodal models more efficient and
effective. For video content [98], a uniform sampling strategy can extract 5 frames from each video,
applying similar preprocessing techniques as those used for images to ensure consistency in encoding
and analysis across different media types.

Audio Modality: CFormer [99], HuBERT [100], BEATs [101], and Whisper [102] are key models
for encoding audio, each with distinct mechanisms. CFormer integrates the CIF alignment method
and a Transformer for audio feature extraction. HuBERT, inspired BERT [12], employs self-supervised
learning to predict hidden speech units. BEATs focus on learning bidirectional encoder representations
from audio via Transformers, showcasing advancements in audio processing.
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Figure 4: Images show evolving model tasks; multimodal models’ adoption grows

2. LLMs backbone

LLMs backbone, as the central elements of LLMs, adopts key features such as zero-shot general-
ization, fewshot ICL (In-Context Learning), chain-of-thought (CoT), and adherence to instructions.
The backbone of these LLMs manages to process and interpret representations across different
modalities, facilitating semantic comprehension, logical reasoning, and input-based decision-making.
In LMMs, frequently utilized LLMs encompass ChatGLM [55], FlanT5 [103], Qwen [83], Chinchilla
[63], OPT [61], PaLM [28], LLaMA [30] and Vicuna [104], among others.

2.4.2 Multimodal Generation

The Modality Generator MGX plays a crucial role in generating outputs across different modal-
ities. For this purpose, it often employs readily available Latent Diffusion Models (LDMs) [105], such
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as Stable Diffusion [106] for crafting images, Zeroscope [107] for creating videos, and AudioLDM-
2 [108] for producing audio. The conditional inputs for this denoising process, which facilitates the
creation of multimodal content, are provided by the features, as determined by the Output Projector.
Hou et al. [109] developed a methodology that integrates image inputs and prompt engineering in
LMMs to solve parson’s problems, a kind of visual programming challenge.

2.5 Training Methods, Training Data and Testing

2.5.1 Training Methods

LLMs undergo a comprehensive development process encompassing pre-training, fine-tuning,
and alignment to ensure their efficacy and ethical application across diverse tasks. Initially, pre-
training equips LLMs with a broad understanding of language by learning from extensive text corpora,
enabling them to capture complex linguistic patterns and knowledge. Subsequently, fine-tuning adjusts
these pretrained models to specific tasks or domains, enhancing their performance on particular
applications through targeted training on smaller, task-specific datasets. Finally, the alignment phase
involves refining the models to adhere to human values and ethical standards, often employing
techniques like Reinforcement Learning from Human Feedback (RLHF).

LMMs have significantly advanced the field of NLP by integrating text with other data modalities,
such as images and videos. Presently, the development of LMMs follows three primary approaches:
pretraining, instruction tuning, and prompting. In the forthcoming discussion, we will delve into these
key strategies in greater detail.

1. Pre-Training

The pre-training process of LLMs is a pivotal step where models are exposed to vast amounts
of textual data, enabling them to learn complex patterns, grammar, and contextual cues. Techniques
such as Masked Language Modeling (MLM), prominently featured in BERT [12], involve obscuring
parts of the text to challenge the model to infer the missing words using surrounding context. On
the other hand, models like GPT leverage an autoregressive approach, predicting the next word in a
sequence based on the words that precede it. This extensive pre-training phase allows LLMs to acquire
a deep, nuanced understanding of language, facilitating their effectiveness across a broad spectrum of
NLP tasks. The acquired knowledge enables these models to excel in applications ranging from text
generation and summarization to question answering and translation, significantly advancing the field
of AI and its capabilities in understanding and generating human language.

In the realm of LMMs, a significant trend is the integration of multiple modalities through end-to-
end unified models. For example, MiniGPT-4 [76] leverages a pretrained and frozen ViT [98] alongside
Q-Former and Vicuna LLMs [108], requiring only a linear projection layer for aligning vision and
language modalities. Similarly, BLIP2 [79] introduces a dual-phase approach for vision-language
modality alignment, starting with representation learning from a static visual encoder and progressing
to vision-to-language generative learning facilitated by a static LLMs for zero-shot image-to-text tasks.
Flamingo [15] further exemplifies this stream by utilizing gated cross attention mechanisms to merge
inputs from a pre-trained visual encoder and an LLMs, effectively bridging the gap between visual
and linguistic data.

2. Fine-Tuning

Instruction tuning of LLMs is a process designed to enhance models’ ability to comprehend
and execute textual instructions. This method involves training LLMs on datasets comprised of
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instructional prompts paired with corresponding outputs, thereby teaching the models to follow
explicit directives. Such an approach significantly improves the model versatility, enabling it to perform
a broad array of tasks as directed by user inputs. A prime example of this is GPT-3 [27], which has
undergone instruction tuning to better understand and respond to natural language instructions. This
enhancement allows GPT-3 to generate text that is not only relevant and coherent but also aligned with
the specific instructions provided, showcasing its improved capacity for tasks ranging from content
creation to answering complex queries. The success of instruction tuning in GPT-3 highlights its
potential to make LLMs more interactive and adaptable, marking a significant advancement in the
field of artificial intelligence and NLP.

Building on the concept of instruction tuning [107] for NLP tasks [110,111] researchers have
expanded the scope to include fine-tuning pre-trained LLMs with multimodal instructions. This
advancement enables the transformation of LLMs into multimodal chatbots [76,16,112] and task
solvers [113–115] with notable examples being MiniGPT-4, BLIP2, and Flamingo for chatbots, and
other models such as LaVIN and LLaMA Adapter focusing on task solving. A critical aspect of
enhancing these LMMs involves gathering data that follows multimodal instructions for finetuning
[116]. To overcome challenges associated with data collection, strategies such as benchmark adaptation
[117–119] self-instruction [120–122], and hybrid composition [123,115] have been adopted. Further-
more, to bridge the modality gap, a learnable interface connects different modalities from frozen
pre-trained models, aiming for parameter-efficient tuning. For instance, LaVIN [123] and LLaMA
Adapter [124] have introduced transformer-based and modality-mixing adapter modules, respectively,
for efficient training. In contrast, expert models like VideoChatText [17] leverage specialized models
such as Whisper [102] for speech recognition, converting multimodal inputs directly into language,
thereby facilitating comprehension by subsequent LLMs.

3. Alignment

The concept of alignment pertains to the process of aligning the model outputs with human values,
intentions, and ethical standards. This involves training methodologies and evaluation strategies
designed to ensure that LLMs behave in ways that are beneficial and non-harmful. Wei et al. [125]
introduce techniques for aligning LLMs through iterative processes involving human feedback, where
models are fine-tuned based on evaluations of their outputs against desired ethical and moral criteria.
Furthermore, Ouyang et al. [110] explore alignment through RLHF, a method where models are
adjusted based on direct human input on the appropriateness and alignment of generated content.
These processes aim to mitigate risks associated with LLMs generating biased, misleading, or harmful
content, ensuring their utility and safety in real-world applications.

4. Prompting

Prompting techniques, in contrast to fine-tuning, offer a way to guide Mega LMMs using context
or instructions without changing their parameters, reducing the need for vast multimodal datasets.
This method is particularly useful for multimodal CoT tasks, allowing models to generate reasoning
and answers from multimodal inputs. Examples include CoT-PT [126], which uses prompt tuning and
visual biases for implicit reasoning, and Multimodal-CoT, employing a two-step process combining
rationale generation and answer deduction. This approach also facilitates breaking down complex
tasks into simpler sub-tasks through multimodal prompts [24,127], demonstrating the effectiveness
and adaptability of prompting in multimodal learning.
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2.5.2 Data Sources and Evaluation

1. Datasets for LLMs

LLMs derive their prowess from meticulously curated datasets, which are essential for their pre-
training and finetuning. The creation of such datasets is a demanding task, demanding both breadth
and depth of high-quality data. Researchers have identified an array of key data sources integral for
LLMs training, as summarized in Table 2. This selection includes literature, dialogues, code from
GitHub, comprehensive common crawl data, domain-specific datasets from NLP tasks, academic
content from Stanford University, and discussions from Reddit. Additionally, synthetic data and the
expansive knowledge from Wikipedia are harnessed, providing LLMs with a rich, varied linguistic and
conceptual landscape to learn from, thereby enhancing their applicability across a myriad of tasks. The
specific attributes of these datasets are systematically detailed in Table 3.

Table 3: Sources of pre-training and fine-tuning datasets for LLMs

Data sources Dataset Size Type

Books BookCorpus [128] 5 GB Pre-training
Gutenberg [129] – Pre-training

Chat HH-RLHF [130] 160 K Fine-tuning
Dolly [131] 15 K Fine-tuning
HC3 [132] 87 K Fine-tuning
OpenAssistant [133] 161 K Fine-tuning
ShareGPT [134] 90 K Fine-tuning

Codes BigQuery [135] – Pre-training
Common crawl C4 800 GB Pre-training

CC-NEWS [91] 78 GB Pre-training
CC-Stories-R [136] 31 GB Pre-training
mC4 [68] 38.49 TB Pre-training
REALNEWs [137] 120 GB Pre-training

GitHub BigPython [70] 5.5 TB Pre-training
NLP task FLAN 4.4 M Fine-tuning

MVPCorpus [138] 41 M Fine-tuning
Nat. Inst. [139] 193 K Fine-tuning
OIG [140] 43 M Fine-tuning
P3 [141] 12.1 M Fine-tuning
Super Nat. Inst. [142] 5 M Fine-tuning
xP3 [143] 81 M Fine-tuning

Reddit links OpenWebText [144] 38 GB Pre-training
Pushift.io [145] 2 TB Pre-training

Stanford University CoQA [64] – Fine-tuning
Synthetic Alpaca [146] 52 K Fine-tuning

Baize [147] 158 K Fine-tuning
BELLE [148] 1.5 M Fine-tuning
Guanaco [149] 535 K Fine-tuning
Self-Instruct [120] 82 K Fine-tuning

(Continued)
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Table 3 (continued)

Data sources Dataset Size Type

Webpages RefinedWeb [150] 2.8 TB Fine-tuning
Wikipedia Wikipedia [151] 21 GB Pre-training
Other Infiniset [53] – Pre-training

MassiveText [62] 10.5 TB Pre-training
RedPajama [152] 2.7 TB Pre-training
ROOTS [153] 1.6 TB Pre-training
the Pile [154] 800 GB Pre-training
The Stack [155] 6 TB Pre-training
LIMA [156] 1 K Fine-tuning
OPT-IML [111] 18.1 M Fine-tuning
SNLI [157] 570 K sentence-pairs Fine-tuning
SQuADv2 [158] 44 MB Fine-tuning

Pre-Training Datasets: Pre-training datasets serve as the foundation for the development of LLMs,
and their diversity is crucial for the comprehensive understanding these models achieve. For instance,
the extensive common crawl dataset captures a wide snapshot of the web, enabling models to learn from
a myriad of topics and writing styles. Similarly, literary works included in datasets provide nuanced
language and complex narrative structures that aid in understanding more sophisticated language use.
GitHub repositories contribute technical and programming language data, essential for specialized
tasks as discussed by Zhao et al. [105]. Meanwhile, the Reddit dataset, with its conversational and often
informal text, offers insights into colloquial language. These datasets, among others, are instrumental
in pre-training LLMs, equipping them with the breadth of knowledge necessary to understand and
generate humanlike text.

Instruction-Tuning Datasets: Following the pre-training phase, instruction tuning, also known as
supervised finetuning, plays a crucial role in amplifying or eliciting particular competencies in LLMs.
We delve into a selection of prominent datasets employed for instruction tuning, which we have
organized into three principal categories according to how the instruction instances are formatted.
These categories encompass datasets oriented towards NLP tasks, datasets derived from everyday
conversational interactions, and artificially generated, or synthetic, datasets.

Alignment Datasets: Beyond instruction tuning, crafting datasets that ensure LLMs align with
human ethical standards, such as helpfulness, truthfulness, and nonmaleficence, is crucial. This section
presents a suite of key datasets employed for alignment tuning. The statistical table for the specific
datasets used for pre-training data and instruction tuning data of LLMs can be found in Table 4.

Table 4: Datasets for alignment in LLMs

Dataset Size Type

Anthropic-HH-RLHF [130] 142 K Alignment
Anthropic-HH-RLHF-2 [159] 39 K Alignment

(Continued)
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Table 4 (continued)

Dataset Size Type

CValues [160] 145 K Alignment
PKU-SafeRLHF [161] 330 K Alignment
Sandbox alignment data [162] 169 K Alignment
SHP [163] 385 K Alignment
Stack exchange preferences [164] 10 M Alignment
Summarize from feedback [165] 193 K Alignment
WebGPT comparisons [166] 19 K Alignment
CB – Evaluation

2. Datasets for LMMs

LMMs leverage vast and varied datasets for pre-training, encompassing image, text, and some-
times audio-visual content to understand and generate across modalities. Pretraining on datasets and
BooksCorpus [128] for text allows LMMs to acquire foundational knowledge. Instruction tuning
datasets then tailor these models for specific tasks; for instance, the visual question answering dataset
guides models on how to respond accurately to queries about visual content. Such comprehensive
training enables MM-LMs to perform complex tasks like image captioning and visual reasoning,
bridging the gap between human and machine perception. Evaluating LMMs encompasses measuring
their proficiency in tasks combining text and visual inputs. This involves specialized benchmarks,
aiming to quantify the models understanding and generative capabilities across modalities. These
evaluations are crucial for gauging how well MMLMs can mimic human-like understanding in diverse
scenarios. For a detailed overview of the datasets employed in these evaluations, refer to Table 5 and
Table 6.

Table 5: Sources of pre-training and fine-tuning datasets for LMMs

Data sources Dataset Size Type

GitHub COYO-700 M [167] 747 M Pre-training
Google ALIGN [77] 1.8 B Pre-training

CC12 M [168] 12.4 M Pre-training
CC3M [169] 3.3 M Pre-training
JFT-300M [170] 300 M Pre-training
JFT-3B [171] 3 B Pre-training

Microsoft MS-COCO [172] 620 K Pre-training
MS-COCO COCO Caption [173] 1 M Pre-training
Stanford University GQA [174] 22 M Fine-tuning
Other OCR-VQA [175] 1 M Fine-tuning

Pathvqa [176] – Fine-tuning
QuAC [177] 100 K Fine-tuning
RefCOCO [178] 142 K Fine-tuning

(Continued)
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Table 5 (continued)

Data sources Dataset Size Type

RefCOCO+ [179] 142 K Fine-tuning
Slake [180] 14KQA Fine-tuning
ST-VQA [181] 32 K Fine-tuning
TextVQA [182] 45.3 K Fine-tuning
VGQA [183] 1.7 M Fine-tuning
Visual-7W [184] 328 K Fine-tuning
VQA-RAD [185] 3KQA pairs Fine-tuning
VQAv2 [186] 1.4 M Fine-tuning
A-OKVQA [187] 24.9 K Fine-tuning
DataComp [188] 1.4 B Fine-tuning
DocVQA [189] 50 K Fine-tuning
DVQA [190] 3.5 M Fine-tuning
RedCaps [191] – Pre-training
SBU [192] 1 M Pre-training
Visual Genome [183] 4.5 M Pre-training
WIT [193] 37 M + image-text Pre-training
YFCC [194] – Pre-training
Ai challenger [195] 1.5 M Pre-training
Flickr30K [196] 158 K Pre-training
Flickr30k entities [197] – Pre-training
IG-3.6 B [198] 3.6 B Pre-training
ImageNet [199] – Pre-training
ImageNet-1K [200] 1.2 M Pre-training
ImageNet-21K [201] 14 M Pre-training
LAION-2B [202] – Pre-training
LAION-400M [203] 400 M Pre-training
LAION-5B [202] 5.9 B Pre-training
LAION-COCO [204] 600 M Pre-training
LAION-en [202] 2.3 B Pre-training
LAION-zh [202] 142 M Pre-training

Table 6: Datasets for evaluation, specialization, and other purposes in LMMs

Dataset Size Type

NoCaps [205] – Evaluation
SEED [206] – Evaluation
VSDial-CN 1.2 M Evaluation
VTP [15] 27 M Evaluation
WaveCaps [19] 403 K Evaluation
WebVid [207] 10 M Evaluation

(Continued)
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Table 6 (continued)

Dataset Size Type

ScienceQA [208] – Evaluation
OBELISC [209] 468 B Evaluation
MSRVTT [210] 200 K Evaluation
Text Captions [211] 145 K Specialized
WebLI [212] 12 B Specialized
Wukong [213] 101 M Specialized
CC595k [45] 595 K Specialized
Episodic WebLI [214] 400 M Specialized
MMC4 (Interleaved) [215] 101.2 M (Instances) Other
Aishell-2 [216] 1 M/128 K Other
I2E [217] 1.1 B Other
LTIP [15] 312 M Other
M3W (Interleaved) [15] 43.3 M (Instances) Other

Addressing diversity and mitigating potential biases in large datasets are essential tasks in the
development of AI models. The following strategies are implemented to ensure that the data used
does not perpetuate or amplify bias:

Fairness Metrics: Various fairness metrics are used to evaluate AI models to ensure they do not
favor one group over another [218]. These metrics like ImageNet [219] for images help in understanding
and quantifying any disparities in model performance across different groups defined by attributes like
age, gender, ethnicity, etc.

Bias Detection and Mitigation: Specialized tools and methodologies are used to detect and
quantify biases in datasets. Once identified, strategies such as re-sampling the data, weighting, or
modifying the data processing techniques are employed to mitigate these biases.

Regular Audits: Periodic audits of the AI models and their training data help in identifying and
addressing any emergent biases or issues in performance. These audits are crucial for maintaining the
integrity and fairness of the model over time.

Each row within the Table 7 meticulously outlines the model’s name, parameter count, number of
layers, dataset descriptions, and their respective training strategies, including autoencoding methods,
autoregressive methods and sequence-to-sequence (Seq2Seq) encoding-decoding methods. A com-
parative overview of several large models, including parameter sizes, layers, datasets, and training
regimes (the “-” indicates that for multimodal models, due to their unique architectures and methods
of integrating various types of data, certain details such as the number of layers or training strategies
are not readily classifiable or applicable, hence these fields are left blank). The blue bottom represents
the LLMs, and the red bottom represents the LMMs. This comprehensive summary facilitates a deeper
understanding of the diversity and scale of contemporary language models, as well as the complexities
associated with their data processing and learning mechanisms.
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Table 7: Comparative overview of LLM and LMM parameters, layers, datasets, training regimes

Models Params n Layers Dataset Training
regimes

BERT [12] 340 M 24 BooksCorpus: a dataset
consisting of a large
collection of book texts.

Encoder-only
(Autoencoding)

English Wikipedia: the
English version of
Wikipedia, containing vast
encyclopedic knowledge.
Common Crawl: covering a
wide range of topics and
languages.

T5 [13] 11 B 24 Colossal Clean Crawled
Corpus (C4): an unlabeled
pure English dataset,
abbreviated as C4, is
approximately 750 GB in
size.

Encoder-decode
(Seq2Seq)

Bart [88] 406 M 12 –
ChatGLM3-6B
[105]

6 B 96 The dataset refers to the
dataset of BERT.

Autoregressive
blank filling

ERNIE3.0 [46] 280 M 48 11 large-scale,
multi-variety, high-quality
Chinese text corpora in
different categories with a
capacity of up to 4 TB.

Encoder-decode
(Seq2Seq)

PanGu-α [47] 200 B 64 The dataset of Common
Crawl after data cleansing.

Decode-only
(Autoregressive)

BLOOM [51] 176 B 70 ROOTS: a corpus
consisting of 498 Hugging
Face datasets. A total of
1.61 TB of text, including
46 natural languages and
13 programming
languages.

Decode-only
(Autoregressive)

CPM-2 [48] 11 B 24 Encyclopedias, novels,
Q&As, scientific literature,
e-books, news and reviews,
etc. From the 50 TB of raw
data, 2.3 TB of Chinese
data and 300 GB of
English data were cleaned.

Encoder-decode
(Seq2Seq)

(Continued)
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Table 7 (continued)

Models Params n Layers Dataset Training
regimes

OPT [61] 175 B 96 A subset of the RoBERTa
corpus and Stories, and a
newer version of CCNews.
A subset of the Pile corpus
CommonCrawl, DM
Mathematics, Project
Gutenberg, HackerNews,
OpenSubtitles,
OpenWebText2, USPTO,
and Wikipedia.

Decode-only
(Autoregressive)

Galactica [29] 120 B 96 Papers, Code, Reference
Material, Knowledge
Bases, Filtered
CommonCrawl, Prompts,
Other.

Decode-only
(Autoregressive)

LaMDA [53] 137 B 64 2.97 B documents, 1.12 B
dialogs, and 13.39 B dialog
utterances, for a total of
1.56 T words.

Decode-only
(Autoregressive)

PaLM [28] 540 B 118 Social media conversations,
filtered webpages, books,
GitHub, Wikipedia, News.

Decode-only
(Autoregressive)

LLaMA2 [30] 70 B 80 2 trillion tokens of data
from publicly available
sources.

Decode-only
(Autoregressive)

Qwen [83] 3 T – Publicly available
documents on the web,
encyclopedias, books, code
repositories, among others.

–

Gemini [220] 1560 B – Publicly available
documents on the web,
code, including images,
audio, and video data.

–

DALL-E [72] 12 B – A dataset of 250 million
image-to-text pairs.

–

ALIGN [77] 800 M – A dataset of 18 billion
image-to-text pairs.

–

CLIP [78] 400 M – A dataset of 400 million
image-to-text pairs.

–



1778 CMC, 2024, vol.80, no.2

In summary, dealing with diversity and potential bias in large datasets is a critical task in AI model
development. To ensure that the data used does not convey or amplify these biases, the RD team uses
a variety of strategies. First, they conduct a data review to identify and correct biased data. Second,
enhance the diversity of the dataset by sourcing data from a variety of origins to guarantee equitable
representation across different demographics. In addition, developers will use algorithm review and
testing to ensure that the model’s decision-making process is fair and unbiased. These methods work
together to help build more unbiased and reliable AI systems.

LLMs typically utilize deep neural network architectures, such as the Transformer architecture,
which comprises a multi-layer self-attention mechanism and a feed-forward neural network. Each layer
processes input data through encoding and decoding steps. The number of layers directly influences
the model’s complexity and performance. For instance, GPT-3 [27], with its 175 billion parameters,
features a 96-layer Transformer architecture. In contrast, multimodal models handle not only text
data but also integrate diverse types of data like images, audio, and video. These models necessitate
specialized layer structures to process and fuse multiple data modalities. For example, the CLIP [78]
model combines images and text to learn cross-modal representations through parallel visual and text
Transformers.

The parameter scales of both LLMs and LMMs are immense. Increasing parameter size generally
enhances performance but also escalates the demand for computational resources and training
complexity. Training LLMs typically depends on vast text datasets collected from the internet,
including books, articles, and website content. For instance, BERT [12], which possesses 340 million
parameters, utilize datasets like the BooksCorpus and English Wikipedia.

Similarly, LMMs often possess large parameter sizes due to the simultaneous processing and
fusion of multiple data modalities. To be specific, LLaMA2 [30] boast significantly higher parameters,
approximately 70 billion, harnessing an extensive amount of data—2 trillion tokens—from publicly
available sources, and are trained using a decode-only approach.

LMMs require datasets that encompass various data types such as images and text. For instance,
Gemini [220], which holds 1560 billion parameters and leverages public documents across diverse
formats, including images and audio.

3. Evaluation

In the evaluation strategy of LLMs and LMMs, three pivotal methodologies have emerged
to assess their performance and capabilities comprehensively: the benchmark-based approach, the
human-based approach, and the model-based approach. Each of these methods offers distinct
advantages and inherent limitations, often necessitating their combined application for a thorough
appraisal of an LLMs’ and LMMs’ proficiency.

Benchmark-based approach: In evaluating LLMs, segmenting benchmarks into knowledge-centric
and reasoning-centric categories. Knowledge benchmarks like MMLU [221] and CEval [222] are
designed to measure the models’ grasp of factual information, while reasoning benchmarks such as
GSM8K [223], BBH [224], and MATH [225] evaluate their ability to engage in complex problem-
solving. The evaluation process entails generating responses from LLMs to structured prompts and
then employing a set of rules to predict answers from these responses. The accuracy of the models
is quantified by comparing these predictions to the correct answers. In the realm of LMMs, there
has been a concerted effort to develop benchmarks tailored to their unique capabilities. Notably,
Fu et al. [226] developed the MME benchmark, a suite that encompasses 14 distinct perceptual
and cognitive tasks, with each instruction-answer pair meticulously crafted to prevent data leakage.
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Additionally, the LAMM-Benchmark [227] was introduced for the quantitative assessment of LLMs
across a spectrum of 2D and 3D visual tasks. Video-ChatGPT [228] has also contributed to this space
by presenting a framework for evaluating video-based conversational models, including assessments
of video-based generative performance and zero-shot question-answering capabilities. These advance-
ments in benchmarking are crucial for the thorough evaluation and continuous refinement of LLMs
and LMMs.

Human-based approach: The human-based approach to evaluating LLMs is pivotal for assessing
real-world applicability, including alignment with human values and tool manipulation. This method
uses open-ended questions, with human evaluators judging the quality of LLM responses. Employing
techniques like pairwise comparison and single-answer grading, evaluations can range from direct
answer scoring in HELM [229] for tasks like summarization to comparative feedback in Chatbot
Arena’s [230] crowdsourced conversations. This nuanced assessment is essential for tasks requiring
humanlike judgment and creativity, providing a comprehensive view of LLMs capabilities. Evaluating
LMMs as chatbots involves open-ended interactions, challenging traditional scoring methods. Assess-
ment strategies include manual scoring by humans on specific performance dimensions. While manual
scoring is insightful, it is labor-intensive.

Model-based approach: The model-based approach offers a promising solution to labor-intensive
problems. GPT scoring, leveraging models such as GPT-4, is utilized to evaluate responses based
on criteria like helpfulness and accuracy. However, this method encounters limitations due to the
non-public availability of multimodal interfaces, potentially impacting the accuracy of performance
benchmarks. Furthermore, case studies are conducted to provide a more detailed analysis, particularly
beneficial for complex tasks requiring sophisticated human-like decision-making. In evaluating LLMs,
additional models or algorithms are employed to assess their performance, revealing both intrinsic
capabilities and shortcomings. To mitigate the high cost associated with human evaluation, surrogate
LLMs like ChatGPT and GPT-4 are utilized. Platforms such as AlpacaEval [231] and MT-bench [232]
employ these surrogate LLMs for comparative analysis. While these closed-source LLMs exhibit high
concordance with human assessments, concerns persist regarding access and data security. Recent
endeavors have concentrated on fine-tuning open-source LLMs, such as Vicuna [104], to function as
evaluators, thereby narrowing the performance gap with proprietary models.

2.6 Emergent Abilities of LLMs

Wei et al. [233] studied the emergence abilities of large-scale language models, a phenomenon
does not present in smaller models. As these models increase in size, they develop new, unpredictable
capabilities that surpass the performance of smaller models, akin to phase transitions in physics [234].
While emergent abilities can be task-specific [62], the emphasis here is on versatile abilities that enhance
performance across diverse tasks. This part introduces three principal emergent abilities identified in
LLMs, alongside models that demonstrate such capabilities [235].

2.6.1 In-Context Learning (ICL)

ICL was notably defined in the context of GPT-3 [27], illustrating that when provided with natural
language instructions and/or task demonstrations, the model can generate accurate outputs for test
instances by completing input text sequences, without necessitating further training or adjustments.
This capability, particularly pronounced in the GPT-3 model with 175 billion parameters, was not
as evident in earlier iterations such as GPT-1 and GPT-2. However, the effectiveness of ICL varies
with the nature of the task at hand. For instance, GPT-3, 13 billion parameter variant demonstrates
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proficiency in arithmetic tasks, like 3-digit addition and subtraction, whereas the more extensive 175
billion parameter model struggles with tasks like Persian question answering.

2.6.2 Instruction Following

Instruction tuning, which involves fine-tuning LLMs with a diverse set of tasks described through
natural language, has proven effective in enhancing the model’s ability to tackle novel tasks also pre-
sented in instructional form. This technique allows LLMs to understand and execute instructions for
new tasks without relying on explicit examples [116,144,223], thereby broadening their generalization
capabilities. Research indicates that the LaMDA-PT model [53], after undergoing instruction tuning,
began to markedly surpass its untuned counterpart in performing unseen tasks at a threshold of 68
billion parameters, a benchmark not met by models sized 8 billion parameters or less. Further studies
have identified that for PaLM [28] to excel across a range of tasks as measured by four evaluation
benchmarks (namely MMLU, BBH, TyDiQA, and MGSM), a minimum model size of 62 billion
parameters is necessary, although smaller models may still be adequate for more specific tasks, such
as those in MMLU [107].

2.6.3 Step-by-Step Reasoning

Zhou et al. [236] proposed a novel NLP technique, “From Simple to Complex Prompting”,
which breaks down complex problems into simpler sub-problems, starting with the easiest and
progressively tackling to more challenging ones. This method is particularly effective for complex
issues, outperforming traditional methods. The CoT prompting strategy allows LLMs to address
tasks through a prompting mechanism that incorporates intermediate reasoning steps towards the
final solution [31,237].

3 Open Issues

This section embarks on an exploration of the yet unresolved complexities inherent in LLMs
and LMMs. These advanced computational systems, while demonstrating unprecedented abilities
in processing and generating human-like text and multimedia content, still grapple with significant
challenges. We delve into the intricate nuances of these models, examining the limitations that hinder
their full potential. Key areas of focus include the ongoing struggle with understanding and replicating
nuanced human context, the management of inherent biases in training data, and the challenges in
achieving true semantic understanding.

3.1 Contextual Understanding

Contextual understanding is a hallmark capability of both LLMs and LMMs, revolutionizing the
way information is processed and interpreted across various domains. LLMs excel in comprehending
and generating text within specific contexts, discerning nuances and subtleties to produce coherent
and contextually appropriate responses. Similarly, LMMs extend this prowess by incorporating diverse
modalities such as images, audio, and text, allowing for a richer understanding of complex scenarios.
Whether it’s analyzing textual documents or interpreting visual cues alongside linguistic context, both
LLMs and LMMs demonstrate a remarkable ability to grasp and interpret the intricate interplay of
contextual factors, thereby advancing research, problem-solving, and decision-making across diverse
fields.
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3.1.1 Contextual Limitations

In the realm of advanced computational linguistics, both LLMs and LMMs for Matching
encounter a critical challenge known as contextual limitations. Chen et al. [238] introduced Position
Interpolation (PI) as a solution to the limitations posed by insufficient context window sizes in models.
The essence of this approach lies in avoiding extrapolation. Instead, it focuses on reducing position
indices by aligning the maximum position index with the context window upper limit, as set during pre-
training. This alignment of the position index range and relative distances before and after expansion
mitigates the effects of expanding the context window on attention score calculation. Consequently,
it enhances the model adaptability while preserving the quality associated with the original context
window size. Exploration of methodologies to enrich contextual reasoning capabilities is imperative,
facilitating models to deduce implicit information and formulate nuanced predictions grounded in
comprehensive contexts. This endeavor may entail delving into sophisticated techniques, such as
integrating external knowledge reservoirs or harnessing multi- hop reasoning mechanisms.

3.1.2 Ambiguity and Vagueness

This section discusses the often-encountered issues of ambiguity and vagueness in contextual
understanding, analyzing relevant research and proposing strategies to address them. As an illus-
tration, Chuang et al. [239] proposed a new decoding method called Decoding by Contrasting
Layers (DoLa). This method seeks to enhance the extraction of factual knowledge embedded within
LLMs without relying on external information retrieval or additional fine-tuning. Capitalizing on
the observation that factual knowledge in LLMs is often confined to specific transformer layers,
DoLa derives the next label distribution by comparing the logarithmic differences obtained through
projecting the front and back layers into the vocabulary space. Concretely, it involves subtracting the
logarithmic probability of the output from the mature layer from the output of the immature layer.
This resultant distribution is then employed as the prediction for the next word, with the overarching
goal of minimizing ambiguity and addressing other related challenges. As another important aspect,
unlike enhancing the extraction of internal knowledge in LLMs, extracting valuable evidence from
the external world allows for answering questions based on the gathered evidence [240–243]. Specially,
LLM-Augmenter [244] are proposed to enhance the performance of LLMs. In contrast to a standalone
LLM, it introduces a set of plug-and-play modules, enabling the LLMs to leverage external knowledge
for generating more accurate and information-rich responses. The system continuously optimizes the
LLMs prompts based on feedback generated by utility functions, enhancing the quality of the models’
responses. In a range of settings, including task-focused conversations and broad-spectrum query
response systems, the LLM-Augmenter efficiently minimizes the generation of spurious outputs by
the LLMs, all the while preserving the response coherence and richness of information. Furthermore,
based on a multimodal LLMs framework, Qi et al. [245] introduced a systematic approach to
probing multimodal LLMs using diverse prompts to understand how prompt content influences model
comprehension. It aims to explore the model’s capability through different prompt inputs and assess
contextual understanding abilities with a series of probing experiments. Existing research has explored
the inconsistency between vision and language. For instance, Khattak et al. [246] proposed a novel
method addressing the inconsistency between visual and language representations in pre-trained visual
language models like CLIP. It enhances collaborative learning by integrating multimodal prompts into
both vision and language branches, thereby aligning their outputs. The method employs cross-entropy
loss for training and has been evaluated across 11 recognition datasets, consistently outperforming
existing methods.
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Future work on ambiguity and vagueness entails several pivotal avenues for advancement in
natural language understanding [247]. Primarily, researchers aim to develop robust algorithms capable
of effectively disambiguating ambiguous terms and resolving vague expressions within textual con-
texts. This involves exploring novel techniques such as context-aware word sense disambiguation and
probabilistic modeling of vague language.

Additionally, further investigation is warranted to enhance the capacity of models to handle
inherent ambiguities and vagueness in human language. This could involve the development of
advanced machine learning approaches that integrate contextual information and domain knowledge
to make more informed interpretations of ambiguous or vague statements.

3.1.3 Catastrophic Forgetting

Catastrophic forgetting in LLMs and LMMs is a critical challenge. It arises when these models,
after being trained or fine-tuned on new data or tasks, tend to forget the knowledge they previously
acquired. This issue occurs because the neural network weights, which are adjusted to improve
performance on new tasks, might overwrite or weaken the weights essential for earlier tasks. This
problem is especially acute in LLMs and LMMs due to their intricate structure and the vast variety of
language data they process. It significantly hinders their ability to consistently perform across different
tasks, particularly in dynamic settings that demand continuous learning and adaptation.

In particular, Mitra et al. [248] proposed a novel approach for improving the performance of
LMMs in vision-language tasks, named Compositional Chain-of-Thought (CCoT) to address the
issues of the forgetting of pre-training objectives. CCoT operates in two primary steps. First, a scene
graph is generated using an LMM, which involves creating a structured representation of the visual
scene. The second step involves using the generated scene graph as part of a prompt in conjunction with
the original image and task prompt. Additionally, by incorporating scene graphs, CCoT allows for a
more organized and comprehensive processing of visual information. In order to overcome the same
problem in the field of image reasoning, BenchLMM [249] is first utilized to assess the performance
of LMMs across various visual styles, addressing the issue of performance degradation under non-
standard visual effects. After image processing, PixelLM [250] excels in creating detailed object masks,
addressing a key shortfall in multimodal systems. Its core includes a novel lightweight pixel decoder
and segmentation codebooks, streamlining the transformation of visual features into precise masks.
This innovation enhances task efficiency and applicability in areas like image editing and autonomous
driving. Additionally, the mechanism for target refinement loss in the model improves discrimination
of overlapping objectives, thus refining mask quality.

Besides the above methods, Liu et al. [251] introduced the DEJAVU system to improve the
efficiency of LLMs during inference, addressing the high computational cost issue without sacrificing
contextual learning abilities. Unlike existing methods that require costly retraining or reduce LLMs
contextual capabilities, DEJAVU dynamically forecasts contextual sparsity based on input data
for each layer, combined with asynchronous processing hardware implementation. This approach
significantly reduces inference latency, outperforming prevalent systems like FasterTransformer and
hugging face implementations.

Future research on catastrophic forgetting encompasses several critical areas aimed at mitigating
this phenomenon and enhancing the robustness of neural networks in continual learning scenarios.
Researchers are exploring methods to design neural architectures that are more resistant to catas-
trophic forgetting, such as incorporating mechanisms to selectively retain important information from
previous tasks while learning new ones.
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To be specific, there is a need to develop more effective rehearsal-based learning techniques, where
models actively revisit and train on past data to prevent forgetting. This may involve investigating
strategies for prioritizing and sampling past experiences in a way that maximally benefits learning on
new tasks.

3.2 Hallucination Correction and Cognitive Ability Evaluation

LLMs and LMMs, while being marvels of modern computational linguistics, are not exempt from
an intriguing phenomenon known as “hallucinations”—where outputs generated by the model are
either factually incorrect or nonsensical. This phenomenon primarily arises from several core issues.
First and foremost, the quality and scope of the training data play a pivotal role. Secondly, the model
limitations in understanding context led to hallucinations. Additionally, the challenge of reasoning
and common sense is also apparent. LLMs, adept at pattern recognition and language generation,
sometimes falter in tasks requiring logical reasoning or common-sense knowledge, resulting in
responses that seem plausible but are fundamentally flawed. Another contributing factor is the
inherent limitations of the model architectures and algorithms.

3.2.1 Corrective Methods and Evaluation

In the evolving landscape of artificial intelligence, the phenomena of “hallucination” in LLMs
and LMMs present a unique set of challenges and opportunities. This section of the paper delves
into the intricate world of hallucination correction within these advanced AI systems. It explores
the mechanisms through which these models occasionally generate misleading or factually incorrect
information, often in response to complex or ambiguous prompts. The focus then shifts to the
evaluation of cognitive abilities in AI, scrutinizing how these systems understand, process, and respond
to diverse information. By dissecting the underpinnings of hallucination and assessing the cognitive
competencies of these models, this paper aims to shed light on the path forward in refining AI for
more accurate, reliable, and contextually aware responses.

In terms of zero resource illusion recognition, SelfCheckGPT [252] is proposed to achieve zero-
resource black-box hallucination identification within generative LLMs. The fundamental principle
asserts that a language model, once it comprehends a specific concept, is expected to produce responses
through random sampling. These responses should not only resemble each other but also uphold
consistent truths.

Conversely, for hallucinated content, randomly selected replies are prone to divergence and
contradictions. The research findings indicate that SelfCheckGPT effectively detects both non-factual
and factual sentences and ranks the authenticity of the content. Compared to gray-box methods, this
approach demonstrates superior performance in sentence-level hallucination detection and paragraph-
level authenticity assessment.

Furthermore, Friel et al. [253] proposed the innovative Chain-Poll methodology and the RealHall
benchmark suite as powerful tools for evaluating and solving the hallucinogen difficulty in LLMs
outcomes, making a comprehensive and impactful contribution to the field of hallucinogen detection
in LLM-generated texts. To be specific, the RealHall benchmark suite has been designed to address the
limitations of previous hallucination detection efforts. ChainPoll is designed to detect both open and
closed domain hallucinations, thus demonstrating its versatility. Performance tests conducted in this
thesis show that ChainPoll outperforms a range of published alternatives, including SelfCheckGPT
[252], GPTScore [254], G-Eval [255], and TRUE [256]. ChainPoll proves to be not only more accurate,
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but also faster, more cost-effective, and equally good at detecting both open and closed domain
illusions.

In the realm of LLMs and LMMs, future research on corrective methods and evaluation
encompasses several pivotal avenues for enhancing model performance and reliability. This includes
exploring advanced techniques for model calibration and fine-tuning to rectify errors and biases in
model outputs, as well as developing comprehensive evaluation metrics and benchmarks to accurately
assess model performance in real-world scenarios. Additionally, there is a growing emphasis on incor-
porating feedback and corrective signals into the training process to facilitate continual improvement
and adaptation of models over time, which may involve exploring active learning techniques and
integrating human supervision into the training process. Overall, this future work aims to propel the
field forward by refining model accuracy, improving evaluation methodologies, and enabling models
to adapt effectively in dynamic environments.

3.2.2 Multimodal Methods and Research

In terms of visual and language tasks, there have also been studies introduced a novel video-
audio zero-shot learning approach [257], leveraging multi-modal data alignment and a multi-channel
attention mechanism for knowledge transfer. Incorporating datasets like VG Sound, UCF, and
Activity Net, it tests its method against realistic scenarios and demonstrates its effectiveness. Recent
studies, such as UMT [258], VL-ADAPTER [259], RLHF [260], have investigated the signifiance
of multimodal learning in handling complex tasks. By comparing the performance and efficiency
of models, they reached analogous conclusions: multimodal learning, through the amalgamation of
visual, auditory, and textual inputs, can yield a more enriched and holistic representation of data.
This integration significantly addressing the issue of multimodal misalignment and hallucinations in
LMMs. In addition, it has been demonstrated that utilizing unique approaches, such as matrix-based
feature extraction and adapter-based techniques, can effectively enhance the performance of models.
This underscores the importance and potential of innovative methods in the field of multimodal
learning. Therefore, as suggested in [261,262], it is essential to pay attention to the scale of the model
and the quality of the input data.

3.2.3 Actual Impact

To be specific, computer illusions often trouble practical work. In the medical field, hallucinations
produced by large models, can lead to issues like misdiagnosis, incorrect treatments, and privacy
breaches. Umapathi et al. [263] proposed a new benchmark and dataset, Med HALT, designed to assess
and reduce hallucinations in LLMs in the medical domain. The authors evaluated the performance
of several leading LLMs on the Med-HALT dataset, including GPT-3.5, Davinci, Falcon 40B, and
Llama-2 70B. revealing differences in their performance, they found that, while all of the models
performed well on factual questions, they did not perform well on more complex reasoning and
IR tasks. the Med-HALT dataset and benchmarks provide a valuable resource for assessing and
improving the reliability and safety of LLMs in healthcare. The authors hope that their work will
encourage further research and collaboration in the field and facilitate the pursuit of reproducible
results.

The future prospects regarding the actual impact of LLMs and LMMs are promising and
multifaceted. Researchers anticipate further advancements in these models leading to transformative
effects across various domains and industries. These models are poised to revolutionize natural
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language understanding, image recognition, and audio processing, among other tasks, by offering
increasingly accurate and versatile solutions.

However, alongside these opportunities, it is essential to address challenges related to bias,
fairness, privacy, and ethical considerations in the deployment of these models. Future research and
development efforts will need to focus on mitigating these risks and ensuring that the benefits of large
language and multimodal models are equitably distributed and ethically sound.

3.3 Accuracy Reasoning

In accuracy reasoning, we will analyze the two parts of internal reasoning and external reasoning,
mainly introducing complex internal reasoning mechanisms, thinking chains, and the use of external
tools.

3.3.1 Internal Reasoning

In the intricate domain of artificial intelligence, LLMs and LMMs stand as beacons of innovation.
These models, characterized by their extensive data assimilation and processing, are redefining
the paradigms of machine cognition. Central to their groundbreaking capabilities is a complex
internal reasoning mechanism. This exploration aims to unravel the enigmatic cognitive processes
underpinning these advanced systems. We venture into their elaborate architectures, discerning how
they transcend traditional computational roles to emerge as harbingers of a new epoch in digital
intelligence. Li et al. [264] proposed a technique crafted to improve the “truthfulness” of LLMs, named
Inference-Time Intervention (ITI). To be specific, ITI functions by altering the activations of the model
during the inference process, following specific pathways across a select few attention heads. After this
process, the complete answer is generated. ITI is a minimally invasive control method, that can leverage
the potential knowledge of LLMs. Unlike existing methods, it does not require a large number of
annotations and computational resources. But ITI cannot guarantee that LLMs always provides true
answers, nor can it cover all the meanings of authenticity. There is still a trade-off between authenticity
and usefulness in ITI, and the intensity of intervention needs to be adjusted according to different
scenarios.

The future outlook for internal reasoning in large language and multimodal models is immensely
promising. Researchers are dedicated to developing smarter and more flexible models capable of
comprehending and handling complex contextual and situational nuances during the reasoning
process.

Firstly, future research will focus on enhancing the models’ reasoning capabilities to better
understand and infer relationships among text, images, and other multimodal data. This will involve
the development of more advanced model architectures and algorithms, as well as the utilization of
sophisticated attention mechanisms and memory networks to capture and leverage rich contextual
information.

Furthermore, a significant focus will be placed on enhancing interpretability and controllability in
the models. This will empower users to better understand the models’ reasoning processes and decision-
making criteria, ultimately improving the efficiency and credibility of human-machine interaction and
promoting the widespread application of these models in practical scenarios.
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3.3.2 External Reasoning

For logical inference of problem solutions, it often necessitates reliance on antecedent’s knowledge
and factual underpinnings. Existing research indicates that specialized datasets are commonly utilized
to assess the inferential capabilities of large models within a given field. For instance, the CSQA [265] is
frequently employed in the realm of common-sense reasoning; the ScienceQA [266] is used for scientific
knowledge and datasets like CommonsenseQA [265], SuperGLUE [267] are leveraged in the psycho-
logical context. While the models perform well on simple factual questions, they fall short in more
complex reasoning and tasks. To improve reasoning reliability, the “Chain of Thought” prompting
strategy [31] has been introduced, focusing on step-by-step reasoning. The merits of stepwise reasoning
lie in its capacity to provide enhanced guidance to the LLMs in the realm of knowledge inference,
consequently leading to an amelioration in the performance of the LLMs. Concurrently, empirical
studies substantiate the utility and significance of the CoT in multiple intricate knowledge inference
tasks [31,64,268]. Especially, ChatCoT [269], a sophisticated method to improve the problem-solving
skills of LLMs. The methodology involves a dialogue-based structure that allows the LLMs to leverage
external tools or their inherent reasoning capabilities in a stepwise manner. This innovative approach
merges COT reasoning with the ability to manipulate tools, markedly boosting LLMs efficiency
in complex tasks such as mathematics and layered question answering. The framework efficacy is
underscored by its impressive performance on rigorous reasoning datasets, highlighting its potential to
significantly advance chat-based LLMs in intricate reasoning tasks. Besides, Zhou et al. [236] proposed
a novel NLP technique, “From Simple to Complex Prompting”, which breaks down complex problems
into simpler sub-problems, starting with the easiest and progressively tackling to more challenging
ones. This technique provides a systematic framework for problem-solving, transforming traditional
methodologies. This method is versatile, applicable to programming, scientific research, and skill
acquisition.

However, due to the complexity of knowledge reasoning tasks, the performance of current LLMs
still lags behind human results on tasks such as commonsense reasoning [31,270]. During the process of
inference, intermediate steps are frequently disregarded, or ambiguity arises within these intermediate
steps, consequently resulting in imprecise output. Fortunately, this issue can be addressed by reducing
the stepwise strategy or altering the decoding method, thereby enhancing the inferential capabilities of
LLMs [120,271]. For instance, Choi et al. [272] proposed KCTS, a knowledge-constrained decoding
method, to address hallucinations in LLMs. Hallucination, the generation of non-factual information
by LLMs, is traditionally mitigated by knowledge retrieval and model fine-tuning, but these methods
are costly and risk catastrophic forgetting. KCTS overcomes these challenges by utilizing a frozen
LLM, integrating a knowledge classifier and Monte-Carlo Tree Search in the decoding process,
ensuring text alignment with reference knowledge. The method is model-agnostic and plug-and-
play, effectively reducing hallucinations in tasks like knowledge-grounded dialogue and abstractive
summarization. On changing the decoding method, Khachatryan et al. [107] examine instruction
fine-tuning in language models, targeting three key areas: diversifying tasks, scaling model size and
complexity, and employing chained thought data for fine-tuning. The study incorporates over 1800
tasks with various instruction templates, notably including chain thinking for complex problem
formulation. Fine-tuning was conducted on models like T5, PaLM, and U-PaLM using a constant
learning rate and Adafactor optimizer. Evaluations were performed on tasks such as MMLU and
TyDiQA, employing both direct and chained thought prompts. Results indicate that fine-tuning
based on instruction significantly enhances language comprehension and generation capabilities in
the models. Moreover, the use of chained thought prompts and collaborative modes, which leverage
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external knowledge, markedly improved the model’s performance, particularly in tasks requiring
advanced reasoning and logic, thereby enhancing overall interpretability.

Furthermore, Kojima et al. [273] proposed Zero-shot-CoT reveals a surprising aspect of LLMs.
Their ability to engage in zero-shot reasoning. This groundbreaking study reshapes our understanding
of LLMs, overturning the conventional belief that they necessitate task-specific training. The research
introduces an ingenious prompting method, proving that these models are adept at tackling intricate
problems without previous training. Such an advancement heralds a new era in the application of
LLMs across diverse cognitive tasks, fundamentally challenging and redefining our perceptions of
their abilities and boundaries.

In the realm of LLMs and LMMs, researchers are striving to develop models that can effectively
utilize external knowledge and environmental information to enhance their reasoning capabilities.
Future research will focus on integrating external knowledge and environmental feedback to improve
model performance. This may involve developing efficient methods for knowledge representation and
retrieval, as well as designing reasoning models suitable for multimodal data. Additionally, researchers
will explore utilizing feedback from the external environment to guide the model’s reasoning process,
potentially leveraging reinforcement learning techniques to optimize reasoning strategies. Overall, the
future holds great potential for the application of external reasoning in large language and multimodal
models, offering new avenues for solving complex problems and advancing AI technology.

4 Applications

In this section, we discuss the applications of LLMs in several representative fields, including
medicine, finance, and other fields. The latest research in related fields shows the development potential
of LLMs and LMMs in various fields.

4.1 Medicine

The medical field encompasses two integral components: healthcare and medical research, both
dedicated to the enhancement of human health. Specifically, the former pertains to a domain
intimately connected with everyday life, whereas the latter is typically conducted in environments
such as laboratories, research institutions, and universities. Although these two areas differ, they
are mutually dependent. Discoveries in medical research can guide the improvement of healthcare
practices, and challenges encountered in healthcare can spark new medical research. Large models
play a pivotal role in both healthcare and medical research, particularly with the advancement of
artificial intelligence and machine learning technologies.

4.1.1 Healthcare

Healthcare is regarded as an indispensable component within the realm of public health. The
application of large models in the healthcare sector represents an irreversible trend. The integration
of large models into the medical field has been a significant achievement of contemporary research
techniques. These advancements have been validated, demonstrating the multifaceted utility of large
models in healthcare.

This includes, but is not limited to, conducting medical consultations [274] and conducting
psychological analyses [275]. The significant application of LLMs in the medical field is exemplified by
their capacity to provide crucial medical information to patients through conversational interactions
[276]. This approach not only fulfills the basic healthcare needs across various social strata but



1788 CMC, 2024, vol.80, no.2

also, to a certain extent, mitigates the issues of uneven distribution of medical resources and the
excessive burden on the healthcare system [277]. In practical application, researchers often place
heightened emphasis on the engineering of prompt words used in large models, employing specific
prompting techniques to guide these models in engaging with widespread medical tasks. In a further
step, researchers are pioneering the creation of LLMs that are expressly designed for the nuances and
complexities of the medical industry [278–280]. For instance, Shah et al. [281] illustrated the popularity
of LLMs in medicine through data. The medical LLMs based on document training and the LLMs
based on medical code sequences were proposed by using medical records as training data. Another
part is to point out some problems existing in current LLMs evaluation, such as unclear evaluation
methods, contaminated training data sets, improper standardization checks, etc., while emphasizing
the importance of correct use of LLMs and the necessity of evaluation.

From the perspective of real-time feedback, LLMs in the healthcare sector are capable of providing
patients with timely health information and feedback. They offer symptom analysis and preliminary
diagnoses, detailed explanations about medications and their side effects, as well as support for mental
health issues. Additionally, viewed from the angle of remote communication, the application of these
sophisticated language models in healthcare also serves to reduce communication costs for patients
and enhance the efficiency of doctor-patient interactions [282].

Within clinical medicine, doctors often face the challenging task of sifting through an extensive
amount of patient data to extract crucial information, such as allergy histories. This process, while
repetitive, involves a significant workload. LLMs can assist doctors and other healthcare professionals
in categorizing and swiftly extracting pertinent information from patient data, thereby streamlining
this critical aspect of patient care. Certainly, the evolution of large models within the medical sector
has not been without its challenges. Drawing from the unresolved issues mentioned in the preceding
chapter, it becomes evident that the application of large models in the medical field also encounters
challenges such as hallucinations and privacy protection [283]. These issues often precipitate grave
consequences, consequently, enhancing the performance of large models stands as one of the primary
concerns amongst researchers.

4.1.2 Medical Research

In the ever-evolving landscape of medicine, the introduction of LLMs marks a paradigm shift,
heralding a new era of technological integration. Clusmann et al. [284] served as a pivotal starting
point, outlining the broad potential and the multifaceted challenges of LLMs in this domain. This
comprehensive overview sets a conceptual foundation, exploring the multifarious impacts of these
advanced computational models on various aspects of medical practice and research. Building on
this foundational knowledge, the focus shifts to practical applications. Study [285] delved into the
innovative integration of LLMs with medical imaging, illustrating how these models can enhance diag-
nostic accuracy and efficiency. It symbolizes a significant leap from theoretical potential to tangible
application, demonstrating the practical benefits of LLMs in enhancing the capabilities of existing
medical technologies. Subsequently, the exploration of LLMs in medicine has entered the critical
area of misinformation, which can be carefully addressed by building multimodal datasets [286].
This pivotal research underscores the imperative necessity to discern and mitigate the dissemination
of erroneous medical information, a task made increasingly complex by the advent of sophisticated
LLMs and LMMs.

Further refining the focus on LLMs utility, researchers introduced Zhongjing [287], a ground-
breaking approach in enhancing Chinese medical LLMs. It utilizes a sophisticated training regime,
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blending diverse methodologies such as continuous pre-training, Supervised Fine-Tuning, and RLHF.
Its innovation lies in its use of an extensive, real-world multi-turn medical dialogue dataset, signifi-
cantly advancing the capabilities of these models in handling intricate and dynamic medical dialogues.
This advancement represents a notable stride in the field of medical LLMs, especially in terms of
linguistic and cultural specificity.

The narrative then explores the integration of authoritative resources with LLMs in clinical
questions and answers [287]. It clearly shows that the integration of deep learning models with
established medical literature significantly bolsters the capabilities of LLMs in clinical question-
answering scenarios. This research illuminates a refined, integrative approach, seamlessly merging the
profound, rich insights of traditional medical knowledge with the dynamic adaptability and efficiency
of cutting-edge artificial intelligence technologies, thereby offering a sophisticated synthesis aimed at
revolutionizing the landscape of medical diagnostics and inquiry. Furthermore, in the field of nuclear
medicine, there is also a study [288] showing that the potential influence of LLMs like ChatGPT in
nuclear medicine. It examines their role in enhancing medical knowledge, facilitating patient care, and
aiding in research and education. The paper discusses the ability of LLMs to process vast amounts of
data and provide insights, while also highlighting concerns about misinformation and data security.
Emphasis is placed on the need for ethical usage, accuracy, and the critical evaluation of LLM-
generated information in nuclear medicine.

LMMs in medicine to specific advancements and challenges, painting a vivid picture of a field
at the cusp of a major technological revolution. This narrative illustrates the transformative power of
LLMs, blending theoretical perspectives with concrete applications, and highlighting the importance
of continued innovation, ethical considerations, and interdisciplinary collaboration in harnessing these
powerful tools for the betterment of medical science and practice. As we stand on the brink of this new
era, these articles collectively offer invaluable insights, guiding principles, and a vision for the future,
where technology and medicine converge to create unprecedented opportunities for enhancing patient
care, medical research, and education.

4.2 Finance

In the burgeoning field of economics, the advent of LLMs heralds a transformative era. These
sophisticated models, with their unparalleled ability to analyze, interpret, and generate human-like
text, are redefining traditional economic analysis and decision-making processes. By harnessing vast
datasets, LLMs offer unprecedented insights into complex economic trends and behaviors, facilitating
more informed and strategic economic planning. This exploration delves into how LLMs are reshaping
the economic landscape, from enhancing predictive analytics to revolutionizing market research and
policy formulation.

In the financial sphere, LLMs are endowed with distinctive roles and functionalities, including
sophisticated financial communication [289], nuanced investment task calibration [290], and advanced
emotion analysis [291]. Although most LLMs can have significant performance in the financial field,
researchers will also develop large models specifically related to finance. For instance, BloombergGPT
[67], a 50 billion parameter model trained on a mix of financial data and general datasets. It demon-
strated that BloombergGPT significantly outperforms existing models on financial tasks without
compromising performance on general LLMs benchmarks and addresses the need for domain-specific
models in finance, showing the advantages of models trained on both domain-specific and general data
sources; FinGPT [292], an open-source framework that provides researchers and practitioners with
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the tools to develop financial LLMs addresses the challenges of accessing and processing high-quality
financial data.

In the field of time series analysis, a recent study [293] has adeptly harnessed the sequence modeling
and interpretability of LLMs for groundbreaking financial forecasting applications. This method,
involving the transformation of time series data into LLM-compatible symbolic forms and employing
GPT-4 for news-derived textual summarization, has been optimized through instruction-based fine-
tuning of LLaMA. This strategy, introducing multimodal financial information, bolsters prediction
through inference-driven thought chains. Despite not outperforming GPT-4 Few-Shot in accuracy,
its cost-effectiveness remains a strong suit. This research signals a shift in the financial time series
analysis paradigm, demonstrating LLMs substantial role in deciphering intricate data. In areas like
stock market forecasting, research by Xie et al. [294] has revealed the distinct prowess of large models,
which address traditional methods oversight of external stochastic events. The use of tools such as
ChatGPT for market trend analysis and prediction epitomizes an evolved approach to navigating
the complexities of financial markets. These findings suggest that while general-purpose LLMs like
ChatGPT are promising, their efficacy in specialized domains remains constrained without specific
optimization, pointing to untapped potential in this arena.

4.3 Robotics

This chapter will elaborate on the application of LLMs in the field of robotics from parts human-
robot interaction and external environment interaction. In addition to traditional evaluation and
reasoning tasks, LLMs is also widely used in the field of robotics, such as human-robot interaction
[295,296], navigation [297] and so on.

4.3.1 Human-Robot Interaction

Contemporary research delves into the utilization of LLMs in the realm of human-robot inter-
action, examining their prospective deployment as intricate human proxies [298]. Zhang et al. [296]
proposed a review that indicates the latest advancements in the underlying structure, interface methods,
and practical applications of HRI, addressing the issues of integrating LLMs into robotic systems
for complex task completion. Specifically, it points out concerns and prospects of HRI in semantic
understanding, ethics, privacy, and other aspects.

When it comes to specific tasks and planning, there has been an in-depth exploration of integrating
LLMs with robotics technology to facilitate the convergence of task generation [299] and motion
planning applications [297]. Specifically, LLM-GROP [297] is proposed for the purpose of addressing
multi-object rearrangement tasks. It is a novel approach that combines commonsense knowledge
derived from LLMs with a task and motion planner. This enables the translation of natural language
commands into human-aligned object rearrangements in diverse environments. This signifies a step
forward in robot planning methods. To test the ability of LLMs to perform actions based on behav-
ioral instructions, the TidyBot robot [300] demonstrated a practical application of the technology,
demonstrating its effectiveness in correctly classifying objects and following user-specific preferences.
This method not only demonstrates a high accuracy rate in object categorization but also reflects a
significant step towards more intuitive and user-friendly robotic assistants in everyday life.

In recent study, the LLM-BRAIn model [301] is adept at creating behavior trees (BTs) that are
both structurally sound and logically coherent, based on textual descriptions. This capability renders
it highly versatile for various robotic uses, including the operation of mobile robots and drones. To be
specific, the efficiency and intuitiveness of unmanned aerial vehicle (UAV) control can be improved
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through the incorporation of voice and gesture interaction modalities, thereby enhancing task accuracy
and user experience in UAV operations [302]. In the studied embodied system, ChatGPT has been
integrated into a robot control system, an approach [303] that is observed to significantly enhance
trust in human-robot interactions. This notable increase in operator trust is attributed to ChatGPT
enhanced communication capabilities and its adept understanding of the nuances in human language,
highlighting the critical role of advanced language processing in fostering effective human-robot
collaboration.

4.3.2 External Environment Interaction

In the realm of robotics, task planning often necessitates interaction with external environments.
A significant trend in this field involves the integration of human expertise with LLMs. This
integration, by decoupling the planning component from machine-bound processes, simplifies the
inherent complexities in planning. The results in a more adaptable method for task planning [304].
Further research has introduced an open-source platform that merges LLMs with domain expert
models. This platform is designed to address complex, multi-step tasks, highlighting the versatility
of LLMs in enhancing robotic task execution [305]. Additionally, leveraging prior knowledge can
significantly improve a robot’s performance in challenging scenarios. LLMs are instrumental in this
context, facilitating improved decision-making and control adjustments, thereby boosting both the
effectiveness and safety of robots during task operations [301].

In mixed reality environments, when visual information may be incomplete or misleading, inte-
grating text information [306] can improve robot grasping type recognition in multimodal teaching to
addresses the limitations of image-only methods. Key findings demonstrate that the inclusion of object
affordance, derived from textual cues, significantly improves grasp-type recognition accuracy. This
improvement is evident in scenarios involving both real and illusory objects. The research contributes
to the field of robot teaching, offering a more effective way for robots to understand and mimic human
grasping actions by combining visual and linguistic data. This advancement is particularly valuable
in environments where visual information alone is insufficient, paving the way for more intuitive and
efficient robot teaching methods.

Considering the multifaceted demands of real-world robotic tasks, it is inappropriate to consider
task planning and motion planning alone. The work in [307] delved into the synergistic relationship
between Task Planning (TP) and Motion Planning (MP) in the realm of robotics, a field collectively
known as Task and Motion Planning (TAMP). It provides an extensive review of diverse algorithms,
highlighting the imperative for an integrative approach that blends TP discrete decision-making with
MP continuous processes. This research represents a significant stride forward in elucidating TAMP
pivotal role in augmenting the functionality of robots within complex and variable environments.

4.4 Academic Research

LLMs and LMMs have broad application prospects in the field of academic research and can help
researchers conduct data analysis, information processing and decision support more efficiently.

4.4.1 Science

In the realm of scientific inquiry, LLMs offer robust assistance in parsing intricate documents and
distilling essential insights [308,309]. For instance, within literature reviews, GPT-4 can analyze user-
uploaded texts, discerning pivotal technologies and experimental methodologies, thereby furnishing
researchers with swift and precise information synopses. Moreover, LLMs can generate professionally
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formatted outputs, such as reports and papers, tailored to specific requirements, thus streamlining
the formatting process and affording researchers more time to dedicate to their core investigative
endeavors. The integration of LLMs not only amplifies research efficacy but also broadens the
horizons of scientific exploration, presenting novel avenues for tackling intricate challenges.

In handling knowledge-intensive tasks, LLMs play a pivotal role [310]. Leveraging their extensive
reservoir of knowledge, they swiftly and accurately retrieve relevant information, furnishing essential
background knowledge and reference materials for the task at hand. Moreover, their exceptional lan-
guage comprehension and generation capabilities enable them to grasp intricate contexts and produce
coherent text, thereby aiding in resolving complex challenges inherent to the task. Additionally, LLMs
possess the capacity to process multimodal information, amalgamating diverse modalities to enhance
task efficiency. Through continuous learning and updates, these models sustain their effectiveness and
applicability in knowledge-intensive tasks, furnishing robust support for seamless task execution.

Additionally, LMMs play a crucial role in the realm of scientific research, offering a versatile
toolkit for analyzing and synthesizing diverse forms of data. By integrating information from multiple
modalities such as text, images, and audio, these models enable researchers to gain deeper insights
and perspectives into complex scientific phenomena. For example, in fields like biology and medicine,
LMMs can aid in the interpretation of medical imaging data alongside textual patient records, leading
to more comprehensive diagnoses and treatment plans. Similarly, in environmental science, these
models can combine satellite imagery with textual weather data to better understand and predict
changes in climate patterns. Overall, LMMs facilitate interdisciplinary collaboration and innovation
by providing researchers with richer, more holistic datasets to draw upon in their scientific inquiries.

4.4.2 Education

LLMs can function as a supplementary teaching tool for students, aiding them in writing and
reading [311,312] while also generating coherent responses across various disciplines, enhancing
multidisciplinary learning. LLMs enable teachers to craft tailored plans and allocate tasks suited to
individual students, thereby enhancing the efficiency and relevance of lesson preparation. Moreover,
LLMs can furnish students with more comprehensive learning materials, enriching their educational
experience [313,314].

Moreover, transcending the remarkable contributions of conventional LLMs to education, LMMs
also offer sophisticated support within the educational domain. For the average student, LLMs
employ the generation of images and videos to foster a deeper understanding of the inputted text.
When it comes to teaching more abstract content, the introduction of LLMs enhances the appeal of
educational methods compared to traditional approaches [315]. For students with disabilities, LMMs
offer fairness and convenience in their learning and everyday lives. Through methods incorporating
images, texts, and audio-visual conversion, these tools provide invaluable assistance in overcoming
inherent limitations, especially for those with visual or auditory impairments. Regarding personalized
learning, leveraging GPT-4 enables the customization of learning plans according to students’ interests,
hobbies, work-rest patterns, and other subjective factors. This approach aims to meet diverse student
needs, enhance enthusiasm, and uncover potential [316].

While the widespread application of LLMs and LMMs has brought new momentum to the field
of education, it is imperative not to wholly entrust students to them. One significant reason is the
inherent inaccuracy often present in their outputs. Without human intervention, students may acquire
erroneous knowledge, particularly within LMMs, where the complexity of generating content—such
as converting text to images or images to videos—greatly amplifies the unpredictability of outputs.
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Moreover, allowing students unrestricted use of these models can foster dependency, diminishing their
capacity for independent thinking and impeding holistic development.

4.5 Others

Apart from the previously highlighted tasks, the deployment of LLMs and LMMs in assorted
additional domains is slated for exploration. LLMs have recently found increasing application in the
sophisticated areas of video and language processing, as evidenced by numerous studies such as PG-
Video-LLaVA [317], PaLM-E [23], PALI [212].

In this groundbreaking model, PG-Video-LLaVA stands out as a pioneer in its field, offering pixel-
level precision for enhanced understanding of video context through its audio-to-text transcription
feature. The architecture seamlessly merges CLIP ViT-L/14 with an innovatively tailored visual
encoder for video processing, further enhanced by a standard tracker and an advanced localization
component. This component, a synergy of GroundingDINO, DEVA, and SAM, is adept at generating
segmentation masks and maintaining tracking IDs. Empirical results showcase PG-Video-LLaVA
exceptional spatial localization abilities, outperforming in benchmark tests like Vid-STG and HC-
STVG and exceeding its peers in zero-sample visual quizzes, as seen in its use of MSRVTT-QA
and MSVD-QA datasets. Notably, it excels beyond similar models, such as Video-ChatGPT, in
providing detailed and contextually precise video descriptions. The mentioned studies all focus on
the development of multimodal models, that is, the ability to integrate different types of inputs (such
as text, images, videos) to improve processing and understanding. They are both designed to handle
highly complex and diverse tasks such as robot control, visual problem solving, image description,
and cross-language and cross-modal tasks. This integration of modalities enables a comprehensive
approach to data processing that significantly extends the capabilities of AI systems. LLMs and LMMs
show significant potential in enhancing natural resource management and ecological research [318–
320]. These models excel in synthesizing diverse data sources, aiding in more accurate environmental
analysis and resource estimation [321]. Furthermore, the capabilities of LMMs to handle complex
visual data are underscored by several studies [322], demonstrating the effectiveness of multimodal
models in performing under challenging visual conditions. This proficiency in managing diverse data
types underscores the broader applicability of these models. Additionally, LLMs and LMMs have
also demonstrated their utility in enhancing geospatial and semantic analyses across various domains
[323–325].

In summary, the application of LMMs is seen as highly promising for enhancing fairness. Through
the integration of visual, textual, and other data forms, an accurate response to diverse requirements
can be achieved. Mitigating biases inherent in single-source data improves the fairness and inclusivity
of services. For instance, in fields such as healthcare and education, data can be analyzed more
comprehensively. It ensures that equitable services are provided to users from varied backgrounds.
To be specific, traditional LLMs architectures need to be improved to accommodate multi-modal
data processing. For example, the fusion of the ViT [96] and the BERT [12] model achieves a
unified architecture for processing visual and text data. As LMMs mature, application scenarios
have gradually expanded. From initial image description generation, visual question answering, to
complex cross-modal retrieval and augmented reality applications, LMMs have demonstrated their
powerful ability to fuse and understand multiple sources of information. The transformation from
large language models to multi-modal models marks the advancement of AI from single-modal
processing to multi-modal fusion. In this process, technological breakthroughs such as expanded data
input types, cross-modal embedding, improved model architecture, and joint training strategies have
enabled AI systems to demonstrate stronger understanding and generation capabilities in complex
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and diverse application scenarios. This transformation not only increases the breadth and depth of AI
applications, but also provides a broader development space for future intelligent systems.

5 Discussion

LLMs and LMMs continue to hold vast potential for future development. Establishing com-
prehensive and challenging cross-modal datasets and benchmarks is a crucial direction for the
future. This will enable researchers to assess and compare the performance of different models,
facilitating their application in more complex scenarios. In multimodal models, effectively integrating
and understanding information from various senses, such as vision, hearing, and touch, is vital
for enhancing natural human-machine interaction. Moreover, as the scale of models increases, so
does their energy consumption and environmental impact. Future research should explore designing
more energy-efficient model training processes, such as by improving algorithm efficiency, optimizing
hardware usage, or employing green energy sources. Additionally, cultivating an open, collaborative
research environment will accelerate technological advances and promote the widespread adoption of
large model technologies. The ultimate goal is to create models that not only excel in performance but
also operate transparently and ethically, making a positive impact on society.

6 Conclusion

In this paper, we explored the transition from LLMs to LMMs, emphasizing the development
and integration of AI systems capable of understanding various data formats beyond text. We
introduced the foundational concepts of attention in LLMs and LMMs, explored the structure and
architectures of both LLMs and LMMs, discussed training methods and data sources, and examined
the emergent abilities of LLMs, including ICL, instruction following and step-by-step reasoning. We
discussed the unresolved issues confronting large language models and multi-modal models. These
issues include context understanding, illusion correction, cognitive ability assessment, and accuracy
reasoning. Additionally, we presented new research findings in various fields. We highlighted the
specific applications of large language models and multimodal models in various fields, including
medicine, economics, robotics and others. Furthermore, we discussed the potential for these models to
be utilized across different domains in the future. This paper summarized technological advancements,
potential applications, and challenges related to data integration, cross-modal comprehension, and
ethical considerations.
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