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ABSTRACT

Object tracking is one of the major tasks for mobile robots in many real-world applications. Also, artificial
intelligence and automatic control techniques play an important role in enhancing the performance of mobile
robot navigation. In contrast to previous simulation studies, this paper presents a new intelligent mobile robot for
accomplishing multi-tasks by tracking red-green-blue (RGB) colored objects in a real experimental field. Moreover,
a practical smart controller is developed based on adaptive fuzzy logic and custom proportional-integral-derivative
(PID) schemes to achieve accurate tracking results, considering robot command delay and tolerance errors. The
design of developed controllers implies some motion rules to mimic the knowledge of experienced operators.
Twelve scenarios of three colored object combinations have been successfully tested and evaluated by using the
developed controlled image-based robot tracker. Classical PID control failed to handle some tracking scenarios in
this study. The proposed adaptive fuzzy PID control achieved the best accurate results with the minimum average
final error of 13.8 cm to reach the colored targets, while our designed custom PID control is efficient in saving
both average time and traveling distance of 6.6 s and 14.3 cm, respectively. These promising results demonstrate
the feasibility of applying our developed image-based robotic system in a colored object-tracking environment to
reduce human workloads.
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1 Introduction

Mobile robots are one of the most important research topics in the field of robotic systems.
They are still being designed and developed to accomplish service tasks based on the basic structure
of wheeled mobile robots. Therefore, they have been applied in many real-life applications, such
as industry, entertainment, education, and healthcare [1], as shown in Fig. 1. For example, these
applications include indoor cleaning, security patrols, assistance to elderly people, and supplying food
and medicaments to COVID-19 patients in hospitals [2,3]. Also, applications of wheeled mobile robots
include logistic services of mining and transportation in industrial environments such as ports and
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warehouses [4]. Recently, autonomous navigation of robots has become essential for the development
of autonomous personal vehicles. However, this field of research still has open challenges [5–8].

Figure 1: Applications of mobile robots

To perform autonomous navigation, a robot must be equipped with electronic sensors to allow
adaptive interaction with its environment. Therefore, the visual navigation of mobile robots is
considered one of the important research topics of robotics in the last years, for instance, indoor mobile
robot navigation [9,10], crop picking robots [11], and robotic mobility devices [12]. Vision information
can be obtained from a monocular camera to achieve tracking and localization tasks with potential
obstacle avoidance [13,14]. Hence, real-time image processing algorithms are required to support
the positioning, recognition, and tracking of the robot, based on acquired image measurements and
segmentation procedures [15]. In this study, a monocular imaging system as an external surveillance
camera has been used to guide the wheeled mobile robot for the colored target location. Moreover,
automatic control systems present a main module of the robot navigation system to verify the desired
robot performance to reach the target location successfully. These control systems apply adequate
input velocities to correctly drive the robot towards its desired destination. However, controlling
mobile robots still has open problems because of nonlinear and time-variant multivariable driftless
system, motion constraints, delayed closed-loop system, and uncertain variability in applied forces and
torques to the robot [16,17]. Therefore, this study presents an adaptive control methodology to handle
the possible challenges and difficulties of operating wheeled mobile robots accurately and efficiently.

1.1 Related Work

Mobile robot navigation has been applied in many real-world applications to reduce human work-
loads using different navigation techniques, including path planning, object detection, and tracking.
These navigation techniques were fuzzy logic [15,18], neural networks [19], genetic and evolutionary
algorithms [20,21], and/or hybrid methods [22]. Table 1 illustrates a review of previous methods in the
literature to control mobile robots. In the last several years, the proportional integral derivative (PID)
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controller has been proposed as one of the most important control strategies. PID controller uses
a control function to apply an accurate and responsive correction [21]. In papers [22–24], different
methods have been proposed using PID controllers. For example, the authors in [22] suggested a
standard PID controller for solving the path-tracking problem, which was a straightforward solution.
However, the proposed controller was designed based on a simple linearized mobile robot model,
including an integrator with a delay. In [23], the authors used an optimized standard PID controller for
high-speed line tracking. Moreover, in their study, the designed controller was practically implemented
and could successfully handle nonlinear and unstable systems. Nevertheless, the authors added an
array of ten Infrared reflective sensors to track a non-reflective line using a wired mobile robot.
Normey-Rico et al. [24] proposed an adaptive PID control of the leader-follower robots. Their
proposed adaptive controller was stable without knowing the speed of the master robot. However, the
state feedback linearization method was used to derive the control law of the proposed PID algorithm,
nonlinear dynamics of the system are also needed to get complete velocity information of the leader
robot. A fuzzy logic controller is another famous control strategy. The fuzzy logic controller uses a
mathematical method to analyze logical values, taking on continuous values between 0 and 1 [25]. In
papers [26–29], the authors used fuzzy control techniques for navigation. The authors in [26] used a
fuzzy logic controller, a successful switching fuzzy logic controller, to track under curvature constraints.
However, simulation study and the controller have been used to track only piece-wise linear paths.
In [27], the authors used a model-based PI-fuzzy controller to introduce an optimal path-planning
solution for four-wheeled omnidirectional mobile robots. Nevertheless, the tuning parameters of
the proposed controller are required to obtain practical results for the path planner under external
disturbances. Paper [28] proposed a generalized type-2 fuzzy controller, which could handle the
uncertainty of the mobile robot better than other fuzzy controllers. Though, the theoretical study
was without practical validation. Sanchez et al. [29] proposed an embedded neuro-fuzzy controller.
Furthermore, the low-cost field programmable gate array (FPGA)-based embedded controllers have
been developed for autonomous car-like robots, and it was validated in both simulation and practical
studies. However, the developed controller did not consider the presence of disturbances in complex
robotic systems. More different methods and techniques were used in the papers [30–32]. An adaptive
neural network controller method was proposed in [30]. Moreover, this robust intelligent controller
could handle nonlinear and unknown characteristics of nonholonomic electrically driven mobile
robots. In [31], a parallel compact cuckoo search algorithm was proposed. This new bio-inspired
optimization algorithm was proposed for the path planning of unmanned robots in a complex three-
dimensional (3D) environment. Garcia et al. [32] suggested an ant colony optimization with a fuzzy
cost function evaluation method. In addition, this proposed novel path planning method was used
to avoid static and dynamic obstacles, named simple ant colony optimization distance and memory
(SACOdm). However, the practical validation was not conducted in the theoretical study in papers
[30–32]. Further details can be found in [1,23].

1.2 Contributions of This Study

According to the above previous studies, it is obvious that many computer-based simulation results
have been demonstrated in these studies without including the practical implementation of mobile
robots. In addition, artificial intelligence and automatic control techniques play an important role
in enhancing the performance of mobile robot navigation. Therefore, this paper aims to develop an
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efficient and well-controlled mobile robot to reach colored target objects based on real-time image
processing and fuzzy-tuning PID controller in different practical scenarios.

Table 1: A review of control methods of mobile robots in previous studies

Author(s) Method Advantages Disadvantages

Normey-
Rico et al. [24]

Standard PID controller
for solving the
path-tracking problem

Very simple solution. The proposed controller
was designed based on a
simple linearized model of
the mobile robot, including
an integrator with a delay.

Balaji et al. [25] Optimized standard
PID controller for
high-speed line tracking

The designed controller
was practically
implemented and could
successfully handle
nonlinear and unstable
systems.

An array of ten Infrared
reflective sensors have been
added to track a
non-reflective line using a
wired mobile robot.

Shen et al. [26] Adaptive PID control of
leader–follower robots

The proposed adaptive
controller was stable
without knowing the
speed of the lead robot.

The state feedback
linearization method was
used to derive the control
law of the proposed PID
algorithm, but nonlinear
dynamics of the system are
also needed to get complete
velocity information of the
robot leader.

Moustris et al. [27] Fuzzy logic controller Successfully switching
fuzzy tracker under
curvature constraints.

The simulation study and
the controller have been
used to track only
piece-wise linear paths.

Hashemi et al. [28] Model-based PI–fuzzy
control

Introducing an optimal
solution for path
planning problems for
four-wheeled
omnidirectional mobile
robots.

Tuning parameters of the
proposed controller are
required to obtain practical
results for the path planner
under external
disturbances.

Sanchez et al. [29] Generalized type-2
fuzzy control

This controller could
handle the uncertainty
of the mobile robot
better than other fuzzy
controllers.

Theoretical study without
practical validation.

(Continued)
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Table 1 (continued)

Author(s) Method Advantages Disadvantages

Baturone et al. [30] Embedded
Neuro-Fuzzy controller

low-cost FPGA-based
embedded controllers
have been developed for
autonomous car-like
robots and validated in
both simulation and
practical studies.

The developed controller
did not consider the
presence of disturbances in
complex robotic systems.

Song et al. [31] A parallel compact
cuckoo search
algorithm

A new version of the
bio-inspired
optimization algorithm
was proposed for the
path planning of
unmanned robots in a
complex
three-dimensional (3D)
environment.

Theoretical study without
practical validation.

The remainder of this article is structured as follows: Section 2 describes the main hardware and
software components of our proposed robotic system with adaptive fuzzy logic-based tuning of the
PID controller. Section 3 shows the practical results and comparative evaluation of this study. A
detailed discussion about our mobile robot navigation system for solving colored object localization
is followed by conclusions and future work in Sections 4 and 5, respectively.

2 Materials and Methods
2.1 Materials

The system used in this research is conceptually illustrated in Fig. 2. The system consists of three
main components: a mobile robot, a notebook, and an IP camera. All these components communicate
together over a Wi-Fi network established by an access point. The mobile robot used in this study
is called Adeept RaspTank (Fig. 3a). It is a two-motor drive robot tank equipped with 4-degree-of-
freedom (DOF) robot arm and some sensors that are irrelevant to this research. The robot is controlled
by a Raspberry PI 3 B+ board (Fig. 3b) with a 64-bit quad-core processor, 1 GB RAM, and many
other capabilities including support for Wi-Fi connectivity. The overhead video is shot using a V380
IP camera (Fig. 3c) capable of producing an HD 720 p video and supporting Wi-Fi connectivity.

The software is split into two parts. The first part of the software is the desktop application
that runs on the notebook. This application is a multi-threaded program implemented in Python and
does most of the heavy lifting in the system. The application provides a user interface that allows the
choosing of the order in which the colored regions are visited by the robot and displays robot status
updates in real-time. The main thread of the application processes each video frame received from
the camera in real-time to identify the position/orientation of the robot and the position of the target
region (to be visited next by the robot). The image processing is done in this part using the Python
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OpenCV library [33]. More details about this part will come later in Section 2.2. Other threads of the
desktop application are used to communicate and exchange information with all other parts of the
system (i.e., mobile phone, camera, and robot). The second part of the software is the program that
runs on the Raspberry PI board in the robot. This program is also implemented in Python. Its two main
purposes are: (1) to establish a communication channel with the desktop application through which
the robot receives the commands and status updates (such as its position, orientation, etc.), and (2) to
control the robot motors accordingly. The program utilizes the Python libraries provided by the robot
manufacturer to interface with the hardware. It also implements various control methods (including
proportional integral differential (PID) and fuzzy control) to derive the motors signals. Further details
about these control methods are provided in the following sections.

Figure 2: Schematic diagram of the proposed robotic system for tracking colored objects

Figure 3: Main hardware components of the system: (a) Mobile robot; (b) Raspberry PI; and (c) IP
camera
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2.2 Methods

2.2.1 Colored Object Detection

The algorithm used to segment out a colored region/object in an image and identify its position
is implemented in Python and the OpenCV library [33]. The algorithm has the following steps:

• Color space conversion: The image is converted from the Red-Green-Blue (RGB) space to the
Hue-Saturation-Value (HSV) space (using the cvtColor() method). In the HSV space, the color
information is separated from the intensity information and hence it becomes easier to identify
specific colors.

• Smoothing: The HSV image is smoothed with Gaussian Blurring (using the GaussianBlur()
method) to reduce the noise and details.

• Thresholding: the smoothed image is thresholded using a mask that captures the lower and
upper limits of the HSV color space of interest (using the inRange() method). The lower and
upper thresholds for the colors of interest are experimentally chosen and fine-tuned to the
camera position/orientation and the lighting conditions. Table 2 includes the HSV thresholds
used in this study.

• Contour detection: the contour of the colored region of interest is identified (using the
findContours() method).

• Position detection: the center of the colored region of interest is detected by calculating the
weighted average of all the pixels within the contour (using the moments() method).

Table 2: The lower and upper HSV thresholds for the colors of interest

Color Purpose Hue thresholds (0–180) Saturation thresholds
(0–255)

Threshold values
(0–255)

Lower Upper Lower Upper Lower Upper

Black Robot back 0 180 0 156 0 28
Red Robot front 0 7 50 255 16 255
Yellow Region #1 20 40 110 255 110 255
Green Region #2 60 97 95 255 0 255
Blue Region #3 105 136 129 255 50 255

The positions of the three colored regions are identified using the previous algorithm. The
algorithm is also used to identify the positions of the front and back regions of the robot. The
orientation of the robot is determined by calculating the inclination of the straight line that connects
the centers of the front and back regions.

2.2.2 PID Control

The basic control law of PID structure [34] is given by

u (t) = Kpe (t) + Ki

∫ t

0

e (τ ) dτ + Kd

de (t)
dt

(1)

where the error signal e(t) is the difference between the targeted and measured trajectories. The PID
controller gains are Kp, Ki, and Kd. In the above control law expression (1), the first term, Kpe (t),
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presents the proportional control action, which is proportional to the error signal. The second term
is the integral control action to eliminate any steady-state error. The last term is the derivative control
action. It works as a predictor using the change rate of error signals. Although the derivative control
term is used to accelerate the controlled system time response, it is highly sensitive to unwanted noise
signals.

2.2.3 Custom PID Control

The main idea behind this control strategy is to engage the PID controller for a specific period
te and then disengage it for another period td and repeat that process continuously. The values of
the periods te and td are fine-tuned and experimentally determined to reduce the possibility of robot
overshooting while having an acceptable overall performance (i.e., rotational and linear speeds). The
average values of te and td are 1.0 and 0.3 s, respectively.

2.2.4 Fuzzy Logic Control

The main structure of the fuzzy control system is composed of four successive stages, i.e., the
fuzzification, the fuzzy inference engine linked with the knowledge rule-base, and the defuzzification
[35], as depicted in Fig. 4. In the fuzzification stage, crisp input signals, i.e., error signals e(t) and �e(t)
are associated with fuzzy sets including a membership function μ = [0, 1] with a specific universe
of discourse for inputs. The knowledge rule-base includes a group of fuzzy if-then statements as
follows [36]:

R(k) : IF x1 is Ck
1 and . . . and xn is Ck

n Then y1 is Dk
1 and . . . and ym is Dk

m (2)

where Ck
n and Dk

m are the linguistic variables of the fuzzy sets. The total number of if-then rules is
k = 1, 2, . . . , K. The fuzzy inputs and outputs are x = (x1, . . . , xn)

T , and y = (y1, . . . , ym)
T , respectively.

Then, fuzzy inference gives a nonlinear mapping from input to output fuzzy sets based on the above
if-then rules. In the last stage, the defuzzification is executed to convert the linguistic results of the
fuzzy inference engine to crisp output, yi, as

yi =
∑K

j=1(
∏n

j=1 μCk
1
(xj))y

k
i∑K

j=1(
∏n

j=1 μCk
1
(xj))

, i = 1, 2, . . . , m (3)

where μCk
1

is the input membership function. yk
i is the crisp output for the fuzzy set μDk

i
(yi) to achieve

the maximum value of one. Utilizing fuzzy logic is advantageous for controlling robots because of its
powerful linguistic representations to mimic the knowledge of experienced operators in the presence of
uncertain dynamical parameters of the robot [15]. However, human thinking is not the optimal control
action of robots. Therefore, the designed fuzzy logic control has been used to achieve the adaptive PID
control system of our proposed mobile robot.

2.2.5 Developed Image-Based Robot Tracking

Fig. 5 depicts the schematic diagram of our developed image-based mobile robot for tracking
colored objects. A Wi-Fi camera is used to acquire real-time 2D positioning of colored objects. Then,
the acquired image is sent remotely to a laptop for measuring the distance, dm, and orientation, θm,
between the current position of the mobile robot and the targeted object. The aim of controlling the
robot is to achieve the desired distance, dd, and the desired orientation, θd, at zero or the center of
colored objects, as shown in Fig. 5. Assuming the shape of all targeted objects is a circle in this study.
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Figure 4: Main structure of a fuzzy control system

Figure 5: Schematic diagram of developed image-based mobile robot for tracking colored objects using
Wi-Fi camera

Two fuzzy-PID controllers have been developed to control the distance and orientation of the
mobile robot. As depicted in Fig. 6, the generated control action of the fuzzy-PID controller is Vcontrol,
which is the voltage drop on the differential motor drive of robot wheels. The inputs of each fuzzy-PID
controller are the error and the change of error of both distance and orientation. Their range values
are scaled from −1 to +1. The proposed fuzzy tuner provides online adjustments, ΔKp, �Ki, and
ΔKd for the corresponding PID control gains, Kp, Ki, and Kd, respectively. The triangular membership
functions, namely negative (N), zero (Z), and positive (P) for fuzzification and defuzzification stages
are shown in Fig. 7. The fuzzy tunning rules of ΔKp, �Ki, and ΔKd are similar for two PID controllers,
as illustrated in Table 3.

3 Experimental Results

Fig. 8 depicts the experimental setup of this study, as described above in Section 2. The robot
operates in a 140 cm × 100 cm rectangular workspace. The size of the workspace is selected such that
it is both large enough for the robot (whose dimensions are: 20 cm × 15 cm) to maneuver within and
small enough to match the viewing angle of the camera. The colored regions are chosen to be circular
shapes to allow being approached from any direction with equal advantage. They are located as far as
possible from each other with enough space left for the robot to turn upon reaching the boundaries
of the workspace.
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Figure 6: Block diagram of developed fuzzy-PID controller for the distance and orientation of the
mobile robot

Figure 7: Triangular membership functions negative (N), positive (P), and zero (Z) for fuzzy inputs
and outputs

Table 3: Fuzzy rule-base for auto-tuning PID control gains with ΔKp, ΔKi, and ΔKd for controlling
distance and orientation of the mobile robot to the target

Change of error (Δe)
Error (e) Negative (N) Zero (Z) Positive (P)

Negative (N) P/N/P P/P/P Z/P/P
Zero (Z) P/N/N P/Z/Z N/P/P
Positive (P) Z/Z/Z N/P/P N/P/N

The experiments of this study have been conducted in twelve different scenarios of our controlled
robot for tracking colored objects. In each scenario, the robot begins its trip from a common starting
location and visits three colored regions in a specified order. Visually, the robot is ordered to follow
a three-step trajectory in each scenario. For instance, in the first scenario, the robot moves from the
starting location (S) to the blue region (B) as a first step, and then from the blue region (B) to the
green region (G) as a second step, and finally from the green region (G) to the yellow region (Y) as a
third step. A picture of the workspace when the robot is about to start to follow one of the scenarios
is presented in Fig. 8.
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Figure 8: Experimental setup of proposed image-based robot tracking with a processed acquired frame
of IP camera to localized colored targets and controlled mobile robot

Each experimental scenario is run once for each controller of interest, namely, classical PID,
adaptive fuzzy, and custom PID. The parameter values of all tested controllers are illustrated in
Table 4, including orientation and distance control, as depicted above in Fig. 5. All controller gains are
fixed during the experiments, but adaptive fuzzy control modifies these gains automatically to achieve
accurate performance results.

Table 4: Parameter values of all tested controllers concerning orientation and distance control

Type of controller Orientation control Distance control

Kp Kd Ki Kp Kd Ki

Classical PID 0.40 0.50 0.10 0.40 0.50 0.05
Custom PID 0.80 0.30 0.40 0.20 0.20 0.30
Adaptive
fuzzy

Initial 0.40 0.50 0.10 0.40 0.50 0.05
Final 1.43 1.53 1.08 0.46 0.56 0.10

In each experiment, three performance metrics are measured for each step: the traveling time, the
traveling distance, and the final error. The traveling time is measured in seconds and refers to the time
taken by the robot to reach the destination of the current stage. The traveling distance (measured in
centimeters) refers to the length of the path followed by the robot to reach the destination of the current



2192 CMC, 2024, vol.80, no.2

step. The final error (measured in centimeters) is defined as the distance between the center of the robot
and the center of the destination region at the end of the current step. Table 5 illustrates the evaluation
results obtained by running the twelve different scenarios that are considered in this study with each
of the three controllers. A comparison between the performance of the three controllers is visualized
in Fig. 8. On average, the custom controller achieves less traveling-time and distance. However, when
the fuzzy controller is engaged, the robot tends to become more accurate and get relatively closer to
the center of the target region.

Table 5: Experimental results for twelve tested tracking scenarios in this study

Scenarios. Step Traveling time (s) Traveling distance (cm) Final error (cm)

From To PID Fuz. Cust. PID Fuz. Cust. PID Fuz. Cust.

1 S B 10.7 6.7 7.5 48.6 58.0 55.1 20.1 15.0 14.2
B G 21.4 10.6 8.1 88.4 105.5 91.3 11.8 11.3 12.4
G Y 8.4 13.0 6.4 90.0 92.1 63.9 12.9 12.4 17.7

2 S B 11.4 7.1 7.4 53.2 74.9 55.6 15.0 14.2 13.4
B G 8.0 10.0 8.1 87.0 72.0 96.4 12.1 15.6 11.8
G B 8.5 9.8 9.8 90.0 97.5 86.5 14.8 14.0 14.8

3 S B 10.9 7.0 10.4 55.1 54.8 58.3 15.0 15.3 14.2
B Y 9.3 9.3 7.9 68.5 87.3 69.6 12.9 12.4 16.7
Y G 9.5 10.6 3.8 60.2 104.7 65.5 16.1 15.6 11.5

4 S B 9.5 9.9 6.3 49.7 93.5 52.4 19.9 12.1 13.7
B Y 28.5 10.6 7.7 83.0 88.4 60.4 11.8 13.4 13.7
Y B 20.4 16.0 6.3 125.4 84.1 59.6 11.8 12.1 12.9

5 S G 9.8 6.0 11.8 32.5 25.5 37.9 11.5 19.6 12.4
G B 9.4 5.1 7.2 102.9 74.9 67.7 13.4 11.5 11.8
B Y 26.7 19.6 4.1 120.0 91.8 60.7 12.1 16.1 15.3

6 S G 10.0 6.2 6.1 30.3 34.1 38.7 13.7 17.5 14.5
G B 10.6 11.4 3.7 70.6 88.6 65.8 14.2 15.3 15.8
B G 7.4 9.1 5.0 96.9 120.6 82.7 14.5 16.7 11.0

7 S G 9.8 11.3 5.9 33.0 36.5 46.2 11.0 13.7 15.3
G Y 12.0 7.7 7.2 72.8 67.4 86.7 16.1 14.2 11.5
Y B 9.1 26.8 6.1 84.3 152.5 54.5 16.7 12.1 15.8

8 S G 9.5 6.2 6.1 33.3 31.4 35.2 11.3 14.2 15.0
G Y 6.6 11.6 8.6 65.0 96.1 82.4 13.4 13.4 11.5
Y G 8.1 14.3 7.4 101.5 143.7 79.8 13.4 11.3 11.5

9 S Y 19.8 4.4 6.7 93.5 89.4 96.1 12.1 11.8 12.4
Y B 7.3 12.7 7.8 88.4 83.8 67.4 14.5 15.3 14.5
B G 7.9 6.7 6.5 87.5 96.7 51.6 13.2 12.1 15.6

10 S Y 14.2 10.1 5.8 101.0 96.1 98.0 17.2 12.1 12.4
Y B 23.5 17.9 6.2 107.4 109.3 51.6 17.5 15.6 16.1
B Y 9.0 22.8 4.0 106.3 187.2 61.0 15.8 12.1 16.4

11 S Y 26.9 8.0 5.6 110.1 94.8 96.9 14.5 12.6 11.3
Y G 40.1 5.1 2.9 137.2 63.6 51.0 11.5 17.5 18.5
G B 17.0 5.7 9.0 83.0 56.1 91.0 17.7 14.5 13.4

12 S Y 28.6 7.9 6.0 101.0 92.4 94.8 15.6 11.8 11.5
Y G 11.4 5.5 3.3 139.1 53.4 52.4 13.7 12.4 17.7
G Y 22.0 10.0 3.8 113.3 105.3 76.3 16.9 11.3 17.5

Average 14.3 10.4 6.6 83.6 86.2 67.8 14.3 13.8 14.1
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4 Discussion

The above practical results demonstrated different successful scenarios of our proposed image-
based mobile robot for tracking colored objects. The mobile robot has been controlled using three
control methods, which are classical PID, fuzzy control, and custom PID. As shown in Fig. 9, classical
PID control achieved the worst results in this study. Therefore, it is not sufficient for the tracking
tasks of the mobile robot. In contrast, the proposed fuzzy controller, as given in Fig. 5, achieved the
best minimal error among the other two controllers with the longest traveling-distance to the colored
targets, as shown in Fig. 9. In addition, our custom PID control achieved the shortest traveling-time
and distance path to reach the targets.

Figure 9: Comparing the three performance metrics (traveling time, traveling distance, and final error)
for PID, fuzzy, and custom PID controllers

In Table 5, three evaluation metrics, namely traveling-time, distance, and final error have been
applied to evaluate the control performance of the image-based mobile robot. Twelve scenarios of
three colored object combinations have been tested by the controlled image-based robot tracking, as
depicted in Fig. 8. Classical PID control could not handle these tracking tasks successfully, resulting
in the longest traveling-time of 14.3 s, traveling-distance of 83.2 cm and the final error of 14.3 cm.
Nevertheless, adaptive fuzzy PID control (see Fig. 6) achieved the best accurate results with the
minimum final error of 13.8 cm to reach the colored targets successfully. The impact of the fuzzy
rule base plays an important role in adapting PID control gains (see Tables 3 and 4), achieving the
best average errors. However, it requires more time and a traveling distance of 86.2 cm to reach these
targets because of cost computations, as illustrated in Table 5. The proposed custom PID is a simpler
rule-based controller than fuzzy control. It is efficient to save both time and traveling distance of
6.6 s and 14.3 cm, respectively, but its final error is relatively high (14.1 cm) because of the designed non-
linear if-then rules to operate the mobile robot. For both proposed intelligent controllers, the designed
mobile robot tracker achieved better performance in tracking RGB-colored objects than classical PID
control because of their adaptive features to handle the targeted robot tasks like experienced human
operators instead of traditional mathematical approaches, as given in Table 5 and Fig. 9.

The control performance of the proposed image-based mobile robot can be enhanced by using
other fuzzy control schemes, such as Type-2 and intuitionistic fuzzy approaches [37,38]. Also,
integrated bio-inspired optimization techniques with robot controllers have been proposed to estimate
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the optimum path [39]. Additionally, optimal extremum machine learning (ELM) with a firefly
optimization algorithm can be applied to overcome the decoupling problem between the camera
coordinates and the image moment features for a vision-based robotic system [40]. However, these
advanced approaches require more cost computations by extending the hardware resources including
the memory size and processors for practical applications. Therefore, the proposed fuzzy and custom
PID controllers are still valid to achieve good performance of image-based mobile robot tracking, as
presented in Fig. 9.

5 Conclusion and Future Work

In this paper, we presented a new intelligent mobile robot to accomplish multi-tasks by tracking
objects in a real experimental field. This development was achieved by using real-time image pro-
cessing, fuzzy-tuning and custom PID controllers. The proposed approach was used to recognize and
segment a colored object in an image. The adaptive fuzzy logic achieved an accurate tracking result as
a practical intelligent controller. In general, our developed multi-purpose robotic system’s promising
results can be employed in various applications to reduce human workloads in different environments,
such as delivering medical tablets for patients with infectious diseases [41].

For future work, this research can be extended to track different colored shapes with changing
the floor color [42], such as industrial robots for painting applications or tracking balls and trajectory
prediction using sports robots [43,44]. Also, we aim to improve the performance of developed image-
based robot controllers by implying various lighting disturbances of reflection and shadows. Adding
obstacles and moving colored targets will also be considered in the prospects of this study.
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