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ABSTRACT

Today, urban traffic, growing populations, and dense transportation networks are contributing to an increase in
traffic incidents. These incidents include traffic accidents, vehicle breakdowns, fires, and traffic disputes, resulting
in long waiting times, high carbon emissions, and other undesirable situations. It is vital to estimate incident
response times quickly and accurately after traffic incidents occur for the success of incident-related planning and
response activities. This study presents a model for forecasting the traffic incident duration of traffic events with
high precision. The proposed model goes through a 4-stage process using various features to predict the duration
of four different traffic events and presents a feature reduction approach to enable real-time data collection and
prediction. In the first stage, the dataset consisting of 24,431 data points and 75 variables is prepared by data
collection, merging, missing data processing and data cleaning. In the second stage, models such as Decision
Trees (DT), K-Nearest Neighbour (KNN), Random Forest (RF) and Support Vector Machines (SVM) are used and
hyperparameter optimisation is performed with GridSearchCV. In the third stage, feature selection and reduction
are performed and real-time data are used. In the last stage, model performance with 14 variables is evaluated with
metrics such as accuracy, precision, recall, F1-score, MCC, confusion matrix and SHAP. The RF model outperforms
other models with an accuracy of 98.5%. The study’s prediction results demonstrate that the proposed dynamic
prediction model can achieve a high level of success.
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1 Introduction

Traffic incidents encompass a variety of events, including traffic accidents, vehicle malfunctions,
vehicle fires, and arguments or fights in traffic. These incidents can lead to traffic congestion, which
can have significant social, economic, and environmental impacts, such as increased travel time,
excessive fuel consumption, air pollution, and stress [1,2]. Predicting the duration of traffic events is a
challenging task due to the complexities arising from the stochastic nature of traffic events. Accurate
duration prediction offers advantages to drivers in route selection and traffic operations managers in

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.052323
https://www.techscience.com/doi/10.32604/cmc.2024.052323
mailto:mulu@bandirma.edu.tr


2260 CMC, 2024, vol.80, no.2

congestion management [3]. Efficient traffic incident management (TIM) is essential for mitigating
adverse traffic effects. Continuous enhancement of TIM systems ensures effective incident handling
and minimises traffic disruptions. Accurate estimation of event duration, reliant on environmental
and event-specific analyses, is pivotal to TIM success. Precise duration estimation informs resource
allocation and intervention planning. Diverting affected road users to alternative routes attenuates
the incident impact [4].

Forecasting event duration is vital in traffic event management, representing the temporal gap
from incident onset to clearance. It is essential for assessing the severity of the incident and determining
the temporal and spatial distribution of traffic flow on the road network. Traffic incidents can be
divided into sequential and distinct time intervals, as described by several studies [5–8]. The duration
between the incident occurrence and the response of the traffic control center operators after receiving
the call is known as the detection-reporting time. Preparation-dispatch time is the time between the
receipt of the call by the operators and the dispatch of the response team members to the incident.
The travel time is simply the duration between receiving the dispatch order and arriving at the scene
for the incident response team members. Detection-notification time, preparation-dispatch time, and
travel time are three important time intervals in incident response. Clean-up time is the time between
the arrival of incident response team members at the scene and the completion of the cleanup of the
incident. Clean-up time is especially used in planning and dispatching activities in traffic incident
management. In this study, incident duration is defined as the time between the occurrence of the
incident and the opening of the roadway.

During traffic incidents, TIM centers first attempt to collect incident coordinates and other
relevant information. However, this estimation process is challenging due to the complexity of traffic
events and the multitude of variables affecting duration. Uncertainty is inherent at the outset and
escalates with incident size. The impact of different factors on incident duration during a traffic event
or accident may vary depending on the circumstances, such as partial lane closure, complete road
closure, or long-term road infrastructure works. TIMs may make a decision that no intervention
is necessary in a low-level traffic incident and then make a similar assessment in a very similar
incident that actually requires extensive intervention. Real-time data collection is essential to mitigate
assessment errors. Machine learning algorithms are currently the most effective tools in prediction
studies of traffic events [9].

Recent studies have focused on predicting traffic incident durations with the objective of enhanc-
ing resource allocation, emergency response, and traffic management [10–14]. These studies examine
the sub-components of traffic incident durations, such as intervention, and scene cleaning. They utilize
various methodologies, including machine learning models, hazard-based modeling, and ensemble
learning approaches, in order to improve the accuracy and interpretability of incident duration
predictions. Factors influencing incident duration include road type, casualties, weather conditions,
and the number of vehicles. The necessity of considering time-varying traffic variables during incident
episodes is emphasized, underscoring the importance of dynamic modeling to capture traffic flow
dynamics. For real-time forecasting, variables for which real-time data can be collected should be
examined and their success in forecasting investigated. The present study proposes an integrated
methodology for dynamic estimating traffic incident duration, which addresses a significant gap in
existing literature.

The majority of studies employ regression estimation for the purpose of predicting the duration
of a traffic event. In contrast, classification is performed in a relatively limited number of studies
[15]. In classification studies, the duration of the components of the traffic incident, such as traffic
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incident notification, response and traffic accident scene cleaning, was studied instead of the total time
between the occurrence of the traffic incident and the cleaning of the scene [16]. Unlike previous studies
focusing on regression, our novel approach employs classification methods for real-time prediction,
reducing the initially examined variables to enhance predictive accuracy. Furthermore, the current
study differs from previous research in that it considers the entire period from the occurrence of a
traffic accident to the completion of the cleanup, rather than focusing on specific sub-components
of traffic incident duration. The present study employs four machine learning methods to categorize
traffic accidents and incidents into four duration classes. In order to facilitate dynamic prediction
and more effective solutions, we initially reduced the number of variables, which had previously
been extensive. Variables that were ineffective in forecasting were eliminated, and it was determined
whether the variables that were effective in forecasting could collect real-time data. Subsequently,
numerous databases containing the data of these variables were integrated, and a dynamic forecasting
environment was provided. The categorization of incident durations and utilization of real-time
data enables the swift intervention of incident management centers, fostering agile decision-making
and resource allocation compared to conventional regression-based approaches. Feature selection
enables the model to improve interpretability while also optimizing training and execution speed, thus
mitigating the risk of overfitting. Ultimately, this study provides a pragmatic solution for dynamic
traffic incident management, facilitating strategic interventions and resource optimization in urban
transportation systems.

An experimental study was conducted in Istanbul to test the model proposed in the study to
predict the duration of traffic events. Istanbul is one of the most crowded and traffic-heavy cities in the
world, connecting two continents. To create the model, we identified the variables that affect incident
duration and collected data from various sources. The objective is to facilitate prompt intervention
from the incident management center by estimating the duration of incidents within a given time
period using current conditions and primary data with minimal variables. To achieve this, Istanbul
was divided into 682 geohash areas. The models were used to forecast the duration of traffic events
during specific time period. The model incorporates dynamic prediction through feature selection to
streamline complex data structures into fewer variables, facilitating real-time forecasting. Unlike other
forecasting approaches, it responds promptly to traffic condition fluctuations by collecting influential
variable data in a real-time database. Temporal and spatial considerations enable precise real-time
predictions, enhancing the reliability and efficacy of traffic management and emergency response
strategies.

The paper is structured as follows: Section 2 reviews prior studies on traffic incident duration,
discussing methodologies and models. Section 3 outlines our proposed model, including the dataset,
performance metrics, and methods employed. Section 4 presents experimental findings derived from
the model. Finally, the concluding section provides objective evaluations of the study and suggests
future research directions.

2 Literature Review

The prediction of traffic event duration plays a crucial role in enhancing TIM systems. Prior
research has employed diverse regression models and statistical forecasting techniques for forecasting
the duration of traffic incidents. Literature suggests that incident delay and duration exhibit variability
contingent upon factors encompassing environmental conditions and incident-specific characteristics.
Models predicting the duration of traffic incidents are based on various factors, such as incident type,
time of day, weather conditions, and traffic volume. These models include regression models [10,15,17],
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cyclic subspace regression [18], and probabilistic statistical models [19–21]. Hazard-based models
were studied by Hojati et al. [1,11,22–24]. Lee et al. [25] analyzed structural equation models, while
Zou et al. [26,27] examined finite mixture models. Zou et al. [27] and Laman et al. [16] investigated
copula-based models. The literature identifies incident characteristics (e.g., type of incident, first
responder, and number of responders), road features (e.g., average annual daily traffic, geometric
features, and functional classification), traffic situations (e.g., month, day, and time), and weather
conditions (e.g., season, precipitation, temperature, and wind) as the most important independent
variables for the developed models.

After a traffic incident, certain information, such as the number of injured individuals, number
of vehicles involved, and cause of the accident, may not be immediately available. To improve model
accuracy, a dynamic prediction model should be developed gradually using primary data such as the
time and location of the incident, incident type, notification time, and weather conditions obtained
after the incident notification. Secondary data, encompassing casualty counts, response time, and
extent of lane obstruction, may serve as inputs for the initial prediction and subsequent refinement
in a two-stage process [28]. Obtaining clear data on the number of fatalities or injuries may take days
after the accident has occurred, and the scene may have been cleared during this time, making dynamic
forecasting difficult.

Time-series methods can be used to calculate the duration of traffic incidents [29]. Various
approaches and techniques, such as genetic algorithms [30], fuzzy logic [31], and Bayesian networks
[32,33], can be employed in these models. However, machine learning algorithms have become more
preferred over traditional methods in recent years due to the many variables that affect time and the
constantly changing traffic conditions. Machine learning models are utilized to predict the duration of
traffic incidents by analyzing historical data [9]. These models may undergo training utilising datasets
incorporating variables such as the type of event, temporal occurrence, traffic density, meteorological
parameters, and event duration. Several machine learning and data mining techniques have been
employed to predict the duration of traffic incidents. These models are frequently used in decision
trees [34,35], artificial neural networks [9,28], support vector machines [36,37], and random forests
[9,12]. Li et al. [38] utilized deep learning in their recent studies. Deep learning, particularly Graph
Neural Networks (GNNs), plays a pivotal role in Intelligent Transportation Systems (ITS). GNNs
are extensively utilized in ITS applications due to their capacity to analyze graph-structured data
effectively. They have evolved for a multitude of ITS tasks, including traffic forecasting, demand
prediction, autonomous vehicles, intersection management, and urban planning [39]. Moreover, the
integration of deep reinforcement learning (DRL) within connected and automated transportation
systems has demonstrated potential in tasks related to automated driving systems and connected-
vehicle applications [40]. These advancements in deep learning, including GNNs and DRL, are
enhancing the efficiency, safety, and coordination of transportation modes within modern ITS
infrastructure, thereby illustrating the potential of data-driven solutions to address complex challenges
in the transportation domain.

Traffic incident duration can be divided into sequential time intervals, typically two, three, four,
or five. Traffic incident durations are classified as either other or severe/major incidents. Lin et al. [41]
defined durations as below or above 60 min, while Zhang et al. [42] defined them as below or above 120
min. The triple classification divides tasks into minor/short, medium, and major/long. According to
Smith et al. [43], short tasks take less than 15 min, medium tasks take between 15 and 30 min, and long
tasks take over 30 min. The US Department of Transportation [44] and Islam [45] define short tasks
as taking less than 30 min, medium tasks as taking between 30–120 min, and long tasks as taking over
120 min. In this study traffic event durations were stratified into four distinct categories, delineated



CMC, 2024, vol.80, no.2 2263

according to the frequency of minor events and the implementation of traffic event management
protocols. Simple incidents are those that last less than 10 min and do not require intervention.
Minor incidents are incidents that require intervention but last between 10 and 30 min, while mid-
level incidents last between 31 and 60 min. The study considered incidents that required 61 min or
more and a large amount of resources as major incidents.

Recent studies have shown an increase in research on estimating traffic incident duration.
Unlike various statistical methods for designing data-driven models, machine learning techniques
are frequently utilized and have demonstrated effectiveness [8,38]. These studies have examined the
factors that affect incident duration, focusing on individual components of post-event duration, such
as notification, response, and cleanup [16]. Our study proposes a model that takes a different approach
to estimating traffic event durations. The model employs four machine learning methods and was
tested in an experimental study conducted in Istanbul, a large metropolis with complex traffic. The
study classified traffic accidents and incidents into four duration classes and estimated their duration
based on which duration class the incidents were in. The model simplified the problem by reducing the
number of complex features. As a result, instead of extracting data from numerous databases, a few
databases were integrated, enabling real-time data for dynamic forecasting.

3 Methodology

This paper presents a model for forecasting the duration of traffic incidents and an experimental
study of the model. In this context, the prediction of the duration of traffic incidents is approached
as a classification problem rather than a regression problem. The accurate forecasting of the duration
of a traffic accident is very difficult, and the specific estimation of the duration is not very useful
for traffic management. Instead, knowledge of the accident duration class is much more useful for
traffic management. This is because interventions and resources allocated for similar accidents with
similar durations of traffic incidents do not differ. The purpose of this study is to manage traffic events
and provide resource management by enabling decision-makers to act strategically. This includes
determining whether urgent measures need to be taken and directing traffic police based on the
duration of the incident in an agile manner. Additionally, reducing the number of features can simplify
the model, resulting in faster training and execution, and decreasing the risk of overfitting. This can
also improve the model’s ability to generalize and make it more interpretable. It can also prevent
resource waste and facilitate effective management by eliminating unnecessary features.

Four machine learning methods were selected for the experimental study: Decision Trees (DT), K-
Nearest Neighbors (KNN), Random Forest (RF), and Support Vector Machine (SVM). DT is suitable
for modeling simple, non-linear relationships, while KNN excels in classification with easy integration
of new data points. RF is chosen for its high performance and robustness, while SVM demonstrates
excellent generalization ability and adapts well to high-dimensional data. While other classification
methods exist, this study focuses on these four due to their strong performance and general availability,
considering factors such as problem requirements and data structure. Furthermore, the combination
of databases of variables is employed for real-time prediction. The proposed approach, as illustrated
in Fig. 1, allows for the immediate estimation of the duration of traffic incidents.
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Figure 1: Stages of the proposed approach

The proposed approach for predicting traffic events comprises four distinct stages. The initial stage
involves data preprocessing, which is undertaken to refine the dataset for subsequent analysis. The
creation of the data set was realized in four steps. In the first step, data was collected with information
from nine different open sources or institutions. In the second step, merging was done according
to time and location information. In this merging, coordinate information about the location was
converted into Geohash codes with ArcGIS. This is because when the coordinates are pointwise,
the merging process will be very difficult. In the study, other variables existing in the existing area
were integrated thanks to the coordinates converted to a 6-cell geohash area (0.74 km2 area with a
cell width of 1.22 km and a cell height of 0.61 km). In this context, it is thought that data merging
is rarely done. Missing data were then identified. In cases where missing data were not eliminated,
data cleaning was performed, and a data set was prepared to estimate traffic event duration in
certain areas. Following this, in the second stage, a non-real-time prediction of the times of the
traffic events is carried out using machine learning models. These models leverage the abundance
of variables inherent in the initial problem domain. Since this is a critical stage in training four
different machine learning models, the hyperparameters must be done carefully. In this context,
GridSearchCV was integrated into four different machine learning models and hyperparameters were
adjusted. At the same time, the performance of four different machine learning methods was analysed.
Subsequently, the complexity of the problem is mitigated through the application of feature reduction
and hyperparameter optimization techniques, which facilitate the amalgamation of databases for
real-time prediction while refining algorithmic performance. This process culminates in the real-time
estimation of traffic event times within a simplified framework, enabling swift and accurate predictions
by leveraging optimized algorithms. In this context, feature selection was made with the GridSearchCV
algorithm based on the model that gave the best result in the previous stage. In the last stage, with the
decreasing number of variables and the real-time data set, the overall prediction of the traffic event
duration was dynamically calculated with four different machine learning models. In this context,
the performance of the model was compared with the situation in the second stage, and the results
obtained from the effective use of resources were evaluated.
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3.1 Decision Trees (DT)

DT are a widely used algorithm for classification problem in data mining. They are used to
represent classification and regression trees. The advantage of decision trees is their ease of creation
and interpretation [46]. The algorithm resembles an upside-down tree, with a structure that extends
from the root to sub-branches and new steps that multiply after the sub-branches. Each newly formed
branch retains the characteristics of the main branch to which it is connected in the trunk. The data
obtained from a selected column in the dataset is applied to the entire tree or dataset [47].

The DT is a classification method that generates a tree structure model composed of decision
nodes and leaf nodes based on classification, feature, and target. The feature selection measure
provides a ranking for each feature that defines the given training topics and determines which feature
will be selected [47]. Measures such as information gain, gain ratio, and Gini index are commonly
used in feature selection. Although it is possible to obtain multiple trees from a dataset, the tree with
the smallest size is preferred. To terminate the iteration within the decision tree model during variable
selection, it is requisite that all constituents within the node are assigned to a singular class. This
condition that all elements in the leaves will be in the same class and there will be no values left to
classify. Consequently, the iterative process within the decision tree model is halted, culminating in the
finalization of the decision tree structure. DT has advantages such as simplicity, interpretability, and
flexibility to work with categorical and numerical data. However, it has disadvantages such as bias,
tendency to overfitting, and susceptibility to data imbalance.

3.2 Random Forest (RF)

The RF model is an advanced form of the bagging method used for both classification and
regression. It is based on two parameters: the number of trees and the number of randomly selected
independent variables in each node separation [48]. When creating decision trees, a sample is created
using the bootstrap method by replacing as many samples as there are in the original dataset.
The RF methodology represents a classification approach that harnesses the collective predictive
power of multiple DT to enhance classification accuracy. Prediction outcomes are derived through
a process of majority voting, wherein the aggregated predictions of all constituent trees within the
forest are considered [3,49]. Critical features of the method include generalization error, parameter
adjustment, distance between samples, data imputation, and variable importance, which measures the
predictiveness of variables in the decision tree.

RF exhibits proficiency in managing extensive feature sets and demonstrates robust performance
even in the presence of missing data. The learning algorithm affords flexibility in generating a pre-
determined number of trees through the utilization of the “n_estimators” parameter, or alternatively,
by employing the “random_state” parameter to introduce randomness in tree selection [3]. In our
research, no restrictions were imposed on the number of trees to be created, and no pruning was
performed. RF has advantages such as high performance, requiring little hyperparameter tuning,
resistance to overfitting, and the ability to handle multiple feature types. However, it has disadvantages,
such as the increase in computational cost with the increase in the number of trees.

3.3 K-Nearest Neighbours (KNN)

The KNN algorithm is a non-parametric, memory-based learning classification algorithm. It
memorizes training examples for prediction instead of learning a model. The algorithm classifies the
k training points (r) r = 1, 2, . . ., k closest to a known query point x0 using majority voting among k
neighbors. Similarity is defined as the distance between two data points, as measured by a metric [50].
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Although the Euclidean distance is the most commonly used metric, other metrics such as Manhattan,
Chebyshev, and Hamming distances have also been employed in studies.

The algorithm’s speed is noteworthy as it does not rely on training data sets to make general-
izations, keeping the entire training data set in memory during the testing phase. The size of the
neighborhood is determined by the k parameter. Setting k to 1 results in low bias but high variance
[51]. A k value of 1 means that predictions are made using the single training sample that is closest
to the new patterns to be predicted. It is important to note that this prediction method relies heavily
on the single closest training sample and may not be as accurate as methods that consider a larger
number of training samples. The appropriate k value depends on the size of the data set. In this
research, the Manhattan distance metric was selected as the distance parameter due to its capability
to accommodate both continuous and categorical variables. While kNN offers advantages such as
simplicity, effective classification performance, and easy integration of new data points, it also has
disadvantages such as high computational cost, a curse of dimensionality, and sensitivity to noise in
the dataset.

3.4 Support Vector Machine (SVM)

The SVM algorithm, originally conceived for binary classification tasks, has undergone adapta-
tion to accommodate both multi-class classification and regression models. Initially constrained to
the analysis of continuous variables, SVM has evolved to encompass the examination of categorical
variables as well. This expansion entails the automatic conversion of categorical variables into
numerical representations, thereby enabling the normalization of both categorical and continuous
data within SVM frameworks. The algorithm aims to achieve the most suitable separation between
the two classes on the plane. In cases where there are overlapping classes, basic approaches are used to
reduce the effects on data points. These include reducing the discriminant margin and reflecting data
points into a high-dimensional space using the kernel method, facilitating efficient linear separation.
Additionally, the problem can be formulated as a second-order optimization problem at the solution
point [52–54].

SVM uses different parameters. The complexity parameter regulates the degree of flexibility
exhibited by the decision boundary in class segregation. A setting of 0 mandates strict adherence to the
margin, whereas the default value typically stands at 1. Additionally, a crucial parameter to consider is
the selection of kernel function. The most elementary among these is the linear kernel, which delineates
data instances using a linear decision boundary, often represented as a straight line or hyperplane. The
polynomial kernel facilitates the separation of classes by employing a curved or nonlinear decision
boundary, the degree of which is contingent upon the exponent value. The radial basis function
kernel emerges as a widely adopted and potent alternative, leveraging intricate boundary shapes to
effectively segregate classes [52–54]. For this study, default parameters were used, including linear,
polynomial, and RBF kernels. SVM has the advantages of good generalisation ability, adaptability to
high dimensional data, and flexibility through various kernel functions. However, it has disadvantages
such as high computational cost in large data sets and the need for careful tuning of hyperparameters.

3.5 GridSearchCV

GridSearchCV is a hyperparameter optimization method used to determine the best hyperparam-
eters for machine learning algorithms. Exhaustively explores all combinations within a defined set of
hyperparameters in pursuit of identifying the optimal values associated with superior performance.
This method determines the optimal hyperparameter values by exhaustively testing all combinations
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in a predetermined set [55,56]. K-fold cross-validation is used for each hyperparameter value, and the
results are recorded in a score matrix. The process tests all necessary combinations to obtain the best
hyperparameter values [55,57].

3.6 SHAP

Shapley Additive Explanations (SHAP) is a method proposed by Lundberg and Lee in 2017 to
evaluate how attributes affect the results. It is an explainability method developed to understand the
complexity of machine learning models and explain their prediction results. It can be applied to a
wide range of models, from tree-based models to deep learning models, and is an important tool in
explainability research. SHAP offers a unique approach to understanding why the model makes a
certain prediction and making the model’s decisions more transparent [58].

The SHAP method is based on strong theoretical foundations, making it particularly useful in
regulated contexts. It draws on principles from game theory and uses Shapley values to provide specific
predictions by assigning importance values (SHAP values) to individual features. These SHAP values
adhere to key properties: (1) local accuracy, ensuring the explanation model aligns closely with the
original model’s output; (2) missingness, where features absent in the original input have no discernible
impact; and (3) consistency, ensuring that increasing dependence on a particular feature in model
revisions does not diminish its importance, irrespective of other features [59].

3.7 Performance Matrix

Numerous criteria are employed to evaluate and compare the efficacy of machine learning
algorithms. This study evaluates performance using accuracy, precision, recall, Matthews correlation
coefficient, F1-score, jaccard and confusion matrix. The confusion matrix is a tool used in machine
learning and statistics to measure the performance of a classification model. The confusion matrix is a
2 × 2 matrix that displays four different combinations between actual class and predicted class values:
true positive (TP), true negative (TN), false positive (FP), and false negative (FN) [3].

Accuracy shows the percentage of samples classified correctly. The accuracy value ranges from 0
to 1.

Accuracy = (TP + TN)

(TP + TN + FP + FN)
(1)

Recall indicates the proportion of actual instances of a class that were correctly classified.

Recall = TP
(TP + FN)

(2)

Precision represents the percentage of samples classified with true labels of a class.

Precision = TP
(TP + FP)

(3)

F1-score is a measure of the balance between precision and sensitivity, calculated as the weighted
average.

F1 − score = 2 ∗ (Precision ∗ Recall)
(Precision + Recall)

(4)
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The Matthews correlation coefficient (MCC) is a preferred criterion for evaluating the perfor-
mance of a classification model or function with two or more classifications. The coefficient takes
values between −1 and 1, where −1 indicates reverse classification, 0 indicates average classification
performance or poor performance, and 1 indicates perfect classification or prediction [3,60].

MCC = (TP ∗ TN − FP ∗ FN)√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(5)

4 Experiment and Results
4.1 Data

The dataset used in the training process is one of the most important elements of machine learning
models. The quality of machine learning models’ predictions is directly dependent on the quality of the
training data. Therefore, it is crucial to meticulously collect data that accurately represents the classes
targeted by the model. The data set on traffic incidents used in our study was obtained from official
institutions, including the Turkish Statistical Institute (TUIK), Istanbul Metropolitan Municipality,
the 1st Regional Directorate of Meteorology, and open data portals such as Google Maps, ArcGIS,
OpenStreetMap Development Library, and IMM Open Data Portal. The database contains a total of
24,431 records of traffic accidents and incidents, including vehicle breakdowns and fires, that occurred
in Istanbul between 2020 and 2021. After collecting the data for analysis, we examined all variables that
could impact the prediction. These variables include time, location, vehicle, traffic index, speed, road
structure and condition, meteorology, social and demographic factors, and district. Table 1 provides
information on the 75 variables and their data types.

Table 1: Data set

Variables Data type Min–Max Variables Data type Min–Max

Year Numeric 2020–2021 Van Numeric 676,470–
719,503

Month Categorical 1–12 Truck Numeric 133,058–
136,741

Day Categorical 1–31 Motorcycle Numeric 334,658–
392,207

Special day Categorical 1–4 Special purpose
vehicle

Numeric 8391–9673

Incident day Categorical 1–7 Total number
of vehicles

Numeric 4,206,858–
4,520,493

Time period Categorical 1–12 Bachelor’s
degree rate

Numeric 8–47

District Categorical 1–38 Illiteracy rate Numeric 0.63–2.75
GeoHash Categorical 1–682 Student rate Numeric 0.46–5.77
District population Numeric 74,945–957,398 Average

household size
Numeric 2.35–4.13

Number of
Neighborhoods

Numeric 10–57 Number of
houses

Numeric 43,045–
428,810

(Continued)
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Table 1 (continued)

Variables Data type Min–Max Variables Data type Min–Max

Area measurement Numeric 7.17–1040.42 Number of
private
workplaces

Numeric 5675–
109,383

Minimum speed Numeric 1–70 Agricultural
field

Numeric 0–415,346

Maximum speed Numeric 19–211 Number of
hospitals

Numeric 20–111

Average speed Numeric 10–265 Number of
schools

Numeric 67–284

Number of unique
vehicles

Numeric 11–1247 University Numeric 0–11

Min traffic index Numeric 1–17 University
facility

Numeric 0–24

Maximum traffic
index

Numeric 9–255 Police Numeric 41,018–
456,861

Average traffic index Numeric 2–105 Fire station Numeric 0–152
Number of vehicles
per day

Numeric 32–251,198 personSOS Numeric 18,743–
456,860

Daily average speed Numeric 4–120 Metrobus
station

Categorical 0–1

Traffic percentage Numeric 1–90 Metro station Categorical 0–1
Temperature Numeric (−4.3)–35.7 Port Numeric 0–1
Road temperature Numeric (−99)–57.9 Number of

parking lots
Numeric 8–221

Humidity Numeric 3–100 Number of
banks

Numeric 11–253

Rainfall amount Numeric 0–27.6 Number of
ATMs

Numeric 40–586

Wind speed Numeric 0–22.4 Number of
shopping malls

Numeric 0–16

Wind direction Numeric 0–360 Number of
markets

Numeric 0–18

Ground information Categorical 1–3 Number of
mini markets

Numeric 3–136

Road type-1 Categorical 1–17 Number of
super markets

Numeric 2–78

Road type-2 Categorical 2–3 Number of
hotels

Numeric 0–980

(Continued)
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Table 1 (continued)

Variables Data type Min–Max Variables Data type Min–Max

Number of lanes Categorical 1–12 Number of
stores

Numeric 38–5549

Divided road Categorical 1–3 Industrial area Numeric 0–540
Speed Numeric 0–100 Number of

bars/clubs
Numeric 0–94

Width Numeric 0–65 Number of
cafes

Numeric 9–674

One way Categorical 1–4 Number of
museum
galleries

Numeric 0–52

Car Numeric 2,889,938–
3,100,848

Sports facility Numeric 7–248

Minibus Numeric 96,608–97,896 Number of
theaters

Numeric 0–73
Bus Numeric 38,561–40,784

4.2 Study Area

Istanbul was chosen for this study because of its cosmopolitan structure and its complex
transportation network. The duration of traffic incidents was estimated by considering all locations in
the database. The study obtained coordinate-based information on accidents and incidents in Istanbul
and used ArcGIS to assign 6th geohash codes to these coordinates. Geohash is a coding system that
converts geolocation data into a string and uses it to express the latitude and longitude coordinates of
a location in an abbreviated format. Geohash defines a rectangular cell and divides location data into
cells. In this way, we attempted to estimate traffic incident duration by performing spatial modeling
with geohash areas.

The traffic incident time refers to the moment when a traffic incident takes place. In our study,
we divided the 24-h day into 2-h periods, as shown in Table 2, and assigned the start times of traffic
events to these segments. This approach aims to detect hidden patterns between events in the same
time period and to more accurately predict the duration of a traffic event that may occur during a
specific time period.

Table 2: Traffic event time

Time range ID Time range
incident
occured

Time range ID Time range
incident
occured

Time range ID Time range
incident
occured

1 00:00–01:59 5 08:00–09:59 9 16:00–17:59
2 02:00–03:59 6 10:00–11:59 10 18:00–19:59
3 04:00–05:59 7 12:00–13:59 11 20:00–21:59
4 06:00–07:59 8 14:00–15:59 12 22:00–23:59
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The literature has established various time intervals for traffic incident duration. To ensure clarity,
in our study, four classifications have been made. This is because incidents that last longer than
90 min are rare in Istanbul, while those that last less than 10 min occur more frequently. Simple
incidents are those that do not exceed 10 min and typically involve minor vehicle malfunctions or
short stoppages. These types of incidents do not require TIM intervention. When examining events
that require intervention, it is evident that their duration is between 23 and 31 min at most. Table 3
presents four categories related to the duration of traffic event.

Table 3: Traffic event duration

Traffic event type Event type ID Duration (min)

Simple 0 0–10
Minor 1 11–30
Mid-level 2 31–60
Major 3 61 and over

4.3 Setup for the Experiment

The study began with data preprocessing activities. These activities involved combining data from
different databases, improving incomplete and noisy data, and obtaining a structured dataset for
analysis. To estimate the duration of traffic incidents, the Scikit-learn library was used in the Python
program. Four different machine learning models were used: DT, RF, KNN, SVM. The performance
of the classification algorithms was then measured. Feature selection was performed, followed by
hyperparameter optimization through feature reduction. GridSearchCV was utilized to find the
optimal hyperparameter values by testing all combinations within a specified set of hyperparameters.
After verifying the feasibility of reduced features, we conducted hyperparameter optimization to
evaluate the accuracy of predictions using a real-time database. Experiments were conducted in the
Anaconda3 2021.05 environment. A computer with Intel i5 processor, 2.4 GHz, 16 GB RAM and
Windows 10 64-bit operating system was used for the experiments.

4.4 Results and Discussions

The experimental study yielded the best results for four different machine learning algorithms
when 25% of the test data sets and 75% of the training data sets were used. The performance metrics
of the DT, RF, KNN, and SVM models were calculated in terms of accuracy, recall, precision, and
F1-score. Table 4 presents the performance of the four models applied.

Table 4: Model test results

Performance metrics DT RF KNN SVM

Accuracy 0.825 0.981 0.931 0.862
Balanced accuracy 0.94 0.988 0.966 0.865
Precision micro 0.825 0.981 0.931 0.861
Precision macro 0.596 0.940 0.847 0.711
Recall micro 0.825 0.981 0.931 0.861

(Continued)
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Table 4 (continued)

Performance metrics DT RF KNN SVM

Recall macro 0.941 0.988 0.966 0.659
F1 micro 0.825 0.981 0.931 0.861
F1 macro 0.693 0.963 0.896 0.469
Model processing time (min) 5.110 8.980 12.950 61.450

Table 4 displays the accuracy rates for predicting traffic incident duration, with RF achieving the
highest rate of 98%, followed closely by other machine learning models such as KNN, SVM, and DT.
In terms of precision, both RF and KNN exhibit high precision on both micro and macro scales, while
DT shows slightly lower performance. At recall value, both RF and KNN exhibit high success rates
on both micro and macro scales. Additionally, both models have high F1-scores on both scales. The
fact that the KNN model has the second highest accuracy rate may be due to its ability to effectively
recognise similar examples in the data set. The DT model is that they tend to overfit when a single
tree is used. The reason why SVM has a low accuracy rate compared to other models may be due to
factors such as high computational costs and class imbalances in the data set. While the DT model
works with the lowest time, the running times of the KNN and RF models are at an ideal level, and
SVM has the highest time values. The unbalanced distribution of traffic events by duration for four
traffic event duration classes was a situation that prevented the training dataset from overlearning in
the RF model. RF generates a more robust prediction by combining many decision trees together using
an ensemble approach. RF requires less precise hyperparameter tuning, making it less susceptible to
data instability and noise, resulting in more consistent results.

In our study, ten experiments were conducted in which the data was randomly selected to reduce
the randomness of the model due to the selection of training and test samples. Eight evaluation metrics
were obtained for each experiment. In order to determine whether there was a significant difference
between the DT, RF, KNN, and SVM algorithms used in the study, a normality test was first performed
in order to ascertain whether the data was normally distributed. Once it was determined that the
data were not normally distributed, the Kruskal-Wallis test with 5% significance level was applied to
ascertain whether there was a significant difference in the performance of the methods. The Kruskal-
Wallis test evaluates the significance of differences in population medians for a dependent variable
across all factor levels. While the null hypothesis (H0) states that there is no significant difference
between the methods, the alternative hypothesis (H1) states that there is a significant difference
between the methods. Upon examination of Table 5, it can be seen that the value of Sig. (0.000) is
less than 0.05, indicating that the null hypothesis is rejected. Results implies that there is a significant
difference between the four methods in all performance metrics.

The analysis revealed a correct classification rate of 98%, with a 2% error. However, incorrect
predictions were made in some cases, leading to significant differences in performance metrics between
classifications. These findings will serve as a valuable reference for future studies in the field. To
improve the results, we removed unnecessary variables. Table 4 presents the results obtained from
75 variables using the GridSearchCV algorithm for hyperparameter optimization. The Scikit-learn
library was used for optimization, and the GridSearchCV algorithm was employed to cross-validate
the models and search for the best parameters. It is important to note that the performance of the
models is affected differently by various parameters. Finding the optimal value for each parameter
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can be computationally expensive. Currently, we have analyzed the parameters that have a greater
impact on the outputs. Please refer to Table 6 for the definition of the model parameters. The feature
selection process reduced the number of variables from 75 to 14. Table 7 displays the order and weights
of the variables selected for the traffic incident duration.

Table 5: The Kruskal-Wallis test results at 95% significance level

Performance metrics
Accuracy Balanced accuracy Precision micro Precision macro

Methods DT RF KNN SVM DT RF KNN SVM DT RF KNN SVM DT RF KNN SVM
Mean rank 5.5 35.5 25.5 15.5 15.5 35.5 25.5 5.5 5.5 35.5 25.5 15.5 5.5 35.5 25.5 15.5
Kruskal-Wallis Ist. 36.963 37.051 36.984 37.182
P (Asymp. Sig.) 0 0 0 0

Recall micro Recall macro F1 micro F1 macro
Methods DT RF KNN SVM DT RF KNN SVM DT RF KNN SVM DT RF KNN SVM
Mean rank 5.5 35.5 25.5 15.5 15.5 35.5 25.5 5.5 5.5 35.5 25.5 15.5 15.5 35.5 25.5 5.5
Kruskal-Wallis Ist. 36.984 37.041 36.956 36.838
P (Asymp. Sig.) 0 0 0 0
Note: ∗H0 represents a hypothesis based on no significant difference between machine learning algorihms.

Table 6: GridSearchCV parameters

Hyperparameter Value

n_estimators 100, 200, 300, 400
n_splits 5
shuffle True
random_state 3
verbose 0

Table 7: Variables used for duration prediction after feature reduction

Variable Sort Weight Explanation

Number of unique vehicles 1 0.0457 The number of different vehicles in the
relevant geohash area in the given hour.

Number of vehicles per day 2 0.0445 The number of vehicles passing daily in
the relevant geohash area.

Temperature 3 0.0433 The air temperature in the relevant time
zone.

Wind direction 4 0.0427 Wind direction in the relevant time
zone.

Maximum speed 5 0.0411 Maximum speed within the relevant
geohash area at the given time.

Average speed 6 0.0399 Average speed of vehicles within the
relevant geohash area at the given time.

Wind speed 7 0.0398 Wind speed in the relevant time zone.

(Continued)
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Table 7 (continued)

Variable Sort Weight Explanation

Humidity 8 0.0388 Humidity in the relevant time zone.
General traffic percentage 9 0.0382 The overall traffic percentage of all

geohashes at that hour.
Time period 10 0.0381 Relevant time period range.
GeoHash 11 0.0377 Geohash Value of Latitudes and

Longitudes. Geohash length is 6.
Incident day 12 0.0355 Day of the week.
Day 13 0.0344 Day of the month.
Month 14 0.0283 Relevant month.

Reducing the number of features from 75 to 14 was a successful outcome in the feature selection
phase of the study. This demonstrates the ability of the ML models used to select the most important
variables and reduce the complexity of the model, resulting in improved prediction performance. Fewer
features allow for more effective predictions with fewer variables. The reduction of features from 75
to 14 indicates that the study’s methodology achieved successful and efficient feature selection. The
performances of the algorithms in experiments with 14 variables are given in Table 8. Although the
number of variables decreased, there were only minor changes in accuracy rates.

Table 8: Model performances after reducing features

Performance metrics DT RF KNN SVM

Accuracy 0.816 0.985 0.926 0.851
Balanced accuracy 0.935 0.986 0.962 0.855
Precision micro 0.816 0.985 0.926 0.851
Precision macro 0.604 0.986 0.823 0.649
Recall micro 0.816 0.985 0.926 0.851
Recall macro 0.935 0.986 0.962 0.403
F1 micro 0.816 0.985 0.926 0.851
F1 macro 0.698 0.968 0.888 0.457
MCC 0.471 0.864 0.837 0.523
Model processing time (min) 3.110 4.980 7.450 28.75

The RF model was found to be the best model, with an accuracy rate increase from 0.981 to
0.985. It has been observed that model processing times are lower with feature reduction. While the
RF model’s pre-feature reduction time was 12.95 min, the post-feature reduction time decreased to
7.45 min. This shows that feature reduction increases the speed of the classification process and creates
a more efficient and dynamic model. The MCC value of the RF model is 0.864, which means that the
model performs very well. This indicates that the model is very good at making correct predictions
and has few false predictions. A high value of MCC indicates that the model correctly distinguishes
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between positive and negative classes. The KNN model also performs well. SVM and DT models show
average performance, so these two models have lower performance than the others.

Fig. 2 shows the model’s accuracy results with 75 variables and the accuracy results without using
61 variables with feature reduction. In this context, it was observed that parallel results were obtained
for 14 important variables. Since the feature reduction was best achieved with RF, a small improvement
was observed, while the accuracy rates of other models showed a small decrease.

Figure 2: Model results

Fig. 3 displays the complexity matrix of the RF model, which produced the most successful results.
The confusion matrix in Fig. 3 includes four different time classes of incident durations. Class 0
represents the intervention time between 0 and 10 min, as shown in Table 3. Class 1 represents a time
interval of 11–30 min, and Class 2 represents a time interval of 31–60 min. Class 3 includes events
that last more than 61 min. There were 5200 traffic incidents in Class 0 and only 41 in Class 1. First
class constitutes 85% of all accident classes. An unbalanced class distribution may cause the model to
over-learn. However, the results show that overlearning did not occur. The confusion matrix indicates
that the model made correct predictions in 40 out of 41 predictions in the 0th class, 563 out of 566
predictions in the 2nd class, and 322 out of 326 predictions in the 3rd class. The model distinguished
between clusters in the data set with an unbalanced distribution. It accurately predicted situations
that required emergency intervention and those that did not. The model’s success in classes 0 and
3 indicates its high accuracy. Other metrics also demonstrate the model’s overall success in clearly
separating classes without excessive learning.

The SHAP method is a mathematical approach based on game theory concepts that is used to
explain the predictions of machine learning models. In our study, we used the SHAP method to
calculate the contribution of 14 features to the prediction. As a result, we were able to reveal the effects
of each feature on the prediction of different classes after the feature reduction phase. Fig. 4 illustrates
the influencing rates of 14 independent variables used to predict the duration class of the dependent
variable. The time period variable has the most weight in prediction compared to other variables. This
means that the time of day when the accident occurs has the greatest impact on the intervention time.
Heavy traffic in the city during the daytime is expected to be a priority due to the increased risk of
accidents at the beginning and end of work. Response time is also expected to be significantly affected
by traffic.
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Figure 3: RF confusion matrix

Figure 4: SHAP values
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The “GeoHash” attribute is one of the primary variables for all four different classes. While this
variable is of secondary importance after the time period in the estimation of 0, 2, and 3 classes, it is
in the fourth place after the “Temperature” and “Day” attributes in the estimation of the 11–30 min
event durations of Class 1. “GeoHash” provides location information where the accident occurred.
It is important to note that the distribution of traffic and accidents on the roads varies due to the
non-homogeneous population density in Istanbul. Knowing where the accident took place is crucial
information for crime scene intervention, following the time of the accident. Temperature is ranked
third in importance for Class 0, second for Class 1, sixth for Class 2, and fifth for Class 3. The study’s
use of different time periods and variable weights contributed to the prediction’s accuracy.

5 Conclusion

This study presents a machine learning-based model for forecasting traffic event duration,
integrating feature selection and dynamic modeling. Through comprehensive testing, the model
reduced 75 variables to 14 significant ones, enabling predictions prior to incidents. Real-time database
structuring facilitates dynamic forecasting. The performance evaluations conducted with machine
learning algorithms, including DT, RF, KNN, and SVM, revealed that the RF model achieved the
highest accuracy and balanced accuracy rates. The model demonstrates effectiveness in traffic incident
duration prediction, particularly in complex urban environments, suggesting potential for sustainable
prediction systems with reduced variables. Experimental findings underscore its significance for
traffic management and planning. We utilized the SHAP technique to identify 14 features that
contribute to predictions. The time period holds particular importance for emergency response.
Variables such as GeoHash and temperature also significantly influence prediction accuracy across
time classes, highlighting the nuanced dynamics of incident duration prediction in urban environments
like Istanbul. Each method has its own strengths and weaknesses, highlighting the importance of
selecting the appropriate method for a specific problem. RF’s non-parametric nature allows for
versatile application across diverse datasets, avoiding rigid assumptions and identifying intricate data
patterns. RF minimizes individual tree variations by aggregating predictions from multiple decision
trees trained on distinct data subsets, resulting in more accurate predictions through classification
voting. Both RF and KNN exhibit high precision, recall, and F1-scores. DT’s performance slightly
lags due to potential overfitting with a single tree. Despite its longer runtime, RF is more robust against
overlearning from unbalanced data distributions and less sensitive to hyperparameter tuning, resulting
in consistently superior predictive performance compared to other models.The RF model’s ability to
calculate with 99% accuracy demonstrates its usefulness in dynamic models. It can be executed quickly
and efficiently on high-processing computers, making it a valuable tool for managing traffic incidents
in cities with high accident rates.

Deep learning and neural networks play a crucial role in predicting the duration of traffic incidents.
Various studies have proposed innovative models integrating deep learning techniques such as LSTM,
Bi-LSTM, and ANN autoencoders to enhance prediction accuracy. These models leverage features
such as traffic flow, incident descriptions, and sensor data [38,40]. The fusion of machine learning with
traffic data has shown significant improvements over traditional regression models, achieving up to a
60% accuracy enhancement [40]. Moreover, the interpretability of models such as TabNet has enabled
the identification of key factors influencing incident duration, including road type, casualties, weather
conditions, and vehicle numbers [61]. These advancements in deep learning models offer valuable
insights for efficient resource allocation, emergency response, and traffic management strategies. It
is therefore anticipated that even more significant outcomes may be achieved with this proposed
approach in future studies as the field of deep learning continues to evolve.
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The generalizability of the study can be improved by extending the estimation of traffic incident
duration to larger geographical areas. Conducting similar analyses in various regions and countries
beyond Istanbul will enable us to gain a broader perspective on the impacts of urban features
and traffic infrastructure. Examining various geographic scaling methods can offer a more detailed
analysis to determine the most suitable scaling strategy for predicting the duration of traffic events. In
this regard, it is crucial to evaluate the impact of geohash scaling and alternative scaling methods.
Integrating dynamic factors is essential for the prediction model to better adapt to real-world
conditions. With the advent of IoT solutions and smart city applications, traffic event data can now
be obtained much faster and independently of human input. By incorporating hard-to-obtain data,
the prediction success of the model can be increased, allowing for more effective traffic management
strategies and quicker responses to potential issues.
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