
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.052218

ARTICLE

Classification and Comprehension of Software Requirements Using Ensemble
Learning

Jalil Abbas1,*, Arshad Ahmad2,*, Syed Muqsit Shaheed3, Rubia Fatima4, Sajid Shah5,
Mohammad Elaffendi5 and Gauhar Ali5

1School of Computer Science and Technology, Anhui University, Hefei, 230039, China
2School of Computing Sciences, Pak Austria Fachhochschule, Institute of Applied Sciences and Technology,
Haripur, 22620, Pakistan
3Department of Computer Science and IT, University of Lahore, Lahore, 55150, Pakistan
4Department of Computer Science, Emerson University, Punjab, Multan, 60000, Pakistan
5EIAS (Emerging Intelligent Autonomous Systems) Data Science Lab, Prince Sultan University, Riyad, 12435, Saudi Arabia

*Corresponding Authors: Jalil Abbas. Email: jalil02085@stu.ahu.edu.cn; Arshad Ahmad. Email: yaarshad@gmail.com

Received: 26 March 2024 Accepted: 18 June 2024 Published: 15 August 2024

ABSTRACT

The software development process mostly depends on accurately identifying both essential and optional features.
Initially, user needs are typically expressed in free-form language, requiring significant time and human resources
to translate these into clear functional and non-functional requirements. To address this challenge, various machine
learning (ML) methods have been explored to automate the understanding of these requirements, aiming to
reduce time and human effort. However, existing techniques often struggle with complex instructions and large-
scale projects. In our study, we introduce an innovative approach known as the Functional and Non-functional
Requirements Classifier (FNRC). By combining the traditional random forest algorithm with the Accuracy Sliding
Window (ASW) technique, we develop optimal sub-ensembles that surpass the initial classifier’s accuracy while
using fewer trees. Experimental results demonstrate that our FNRC methodology performs robustly across different
datasets, achieving a balanced Precision of 75% on the PROMISE dataset and an impressive Recall of 85% on
the CCHIT dataset. Both datasets consistently maintain an F-measure around 64%, highlighting FNRC’s ability
to effectively balance precision and recall in diverse scenarios. These findings contribute to more accurate and
efficient software development processes, increasing the probability of achieving successful project outcomes.
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1 Introduction

Requirement engineering techniques, both traditional and advanced, play a vital role in organizing
software requirements, aligning essential project needs with innovative strategies to address the
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complexities of modern software development [1]. In this context, understanding functional require-
ments (FRs) and non-functional requirements (NFRs) is fundamental to the software development
process. FRs encompass all the essential features and services a software system must provide to
its users, including user authentication processes, efficient data archiving systems, advanced search
functionalities, and secure payment processing mechanisms. Conversely, NFRs define the software’s
inherent constraints and desired quality attributes, such as scalability, user-friendliness, robust security
measures, performance efficiency, and accessibility [2].

A high-quality software system is built upon both FRs and NFRs, adapting to meet user demands
while ensuring exceptional performance and efficiency. Accurately identifying user requirements from
their informal expressions presents a significant challenge in the early stages of software development.
This crucial step shapes the direction of the entire project, demanding considerable investment in
terms of time and effort. Addressing communication and coordination challenges during requirements
change management is essential for effective requirement engineering in software development [3].
Moreover, manually sifting through textual documents to uncover these requirements is impractical
due to the associated time, cost, and potential for error [4]. Therefore, automatic requirement classifi-
cation is essential for managing large volumes of textual documents. By accurately comprehending
and interpreting user-expressed requirements into tangible FRs and conceptual NFRs, software
solutions can be created that not only meet but exceed user expectations in terms of functionality
and effectiveness. Extensive research has been conducted on NFRs, with various studies employing
different methods and techniques to extract and organize NFRs from diverse types of documents.

Understanding user requirements expressed in natural language has long been a challenge that
demands considerable human effort. To alleviate this workload and streamline the process, a wave
of innovation has introduced several machine learning (ML) based methods [5,6]. By harnessing the
potential of ML, developers can unlock new possibilities, paving the way for more efficient and user-
centric software solutions. The use of ML techniques for extracting NFRs from software requirement
documents or other textual sources has gained popularity due to their ability to process and analyze
large datasets efficiently. Commonly used supervised methods include Random Forest, Support Vector
Machines (SVM), and Naive Bayes. However, several limitations and challenges remain associated
with this approach.

Random Forest algorithms, known for their versatility and robustness, are increasingly utilized
for extracting FRs and NFRs from textual data. This ensemble learning technique, which constructs
multiple decision trees (DTs) and combines their outputs for more accurate and stable predictions, is
particularly favored for its effectiveness in handling diverse data types and its resistance to over-fitting
[7]. However, when applied to the specific task of FR and NFR extraction, Random Forest algorithms
encounter certain limitations. Their traditional strength in handling structured, numerical datasets
does not always translate well to the processing of high-dimensional, sparse textual data typical in
requirement documents. This can result in challenges in accurately distinguishing between different
types of requirements.

This study delves into the detailed aspects of FRs and NFRs, exploring methods for identifying
user needs and their impact on new product development. It emphasizes the significant role of FRs
and NFRs in creating innovative and efficient software systems. To address the above-said limitations,
we propose an enhanced version of the Random Forest algorithm, known as the Functional and
Non-functional Requirements Classifier (FNRC). This novel approach incorporates an innovative
Accuracy Sliding Window (ASW) mechanism, designed to prune inefficient DTs and identify an
optimal sub-ensemble, thereby improving accuracy and reducing time complexity. By evaluating our
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proposed FNRC on a dataset of FRs and NFRs, we demonstrate its superiority over other state-of-
the-art algorithms in terms of classification accuracy, time efficiency, and memory consumption.

The rest of the paper is structured as follows: Section 2 provides details of previously introduced
methods for classifying FRs and NFRs. Section 3 describes the proposed methodology, followed by
experiments and results in Section 4. Section 5 addresses threats to validity, and Section 6 concludes
the paper along with suggestions for future work.

2 Related Work

Software requirement specifications (SRS) documents are typically written in natural language,
containing a mixture of functional requirements (FRs) and non-functional requirements (NFRs).
Data analytics has revolutionized requirement engineering by enabling the efficient prediction and
management of NFRs. Despite their importance, NFRs often receive less attention than FRs in the
hierarchy of system requirements. The study [8] aimed to develop a reliable technique for predicting
NFRs in software development. By utilizing data analytics techniques, the system analyzes user
behavior, system performance, and environmental factors to predict NFRs. This systematic approach
employs advanced machine learning (ML) and statistical methods to process and analyze data,
identifying patterns and trends related to specific NFRs. The goal is to provide software developers
with a reliable tool to proactively address potential NFR issues and optimize software systems. This
research holds the potential to enhance software quality and performance by giving due attention to
both FRs and NFRs.

Software failures often result from neglecting non-functional requirements (NFRs), emphasizing
the need for automated prediction and management systems. Software Requirement Specifications
(SRS) documents cover all stakeholder requirements and technical specifications. Despite ML and
NLP advancements suggesting semi-automated methods for optimizing requirements, their complex-
ity limits adoption. Recent research uses word embeddings like Word2Vec and FastText to build
CNNs for categorizing functional requirements (FRs) [9,10]. Study [11] focused on managing NFRs in
agile projects, while study [12] highlights the need for standardized approaches due to diverse expert
opinions on NFRs. Currently, there is no standardized stage for evaluating NFRs in requirements
engineering.

Authors of [13] proposed automating the identification of NFRs in user app reviews to help
developers meet user needs. Study [14] investigated categorizing requirements based on app review
change logs, which enhances classification accuracy for both FRs and NFRs. Study [15] emphasized
the importance of early identification of NFRs in software development, noting the labor-intensive
nature of this task and advocating for automated methods. Study [16] introduced an automated
method using information retrieval techniques to identify and categorize NFRs, improving efficiency
and accuracy, and aiding software teams in addressing critical requirements early in development.

The field of security requirements classification is increasingly important in software engineering
[17]. However, the implementation of advanced ML methods is limited by the lack of extensive
datasets. Study [18] focused on classifying software requirements with an emphasis on maintainability,
while Mahmoud et al. [19] proposed a method for extracting NFRs to enhance software quality.
Study [20] developed Urdu benchmark corpora for OCR training. Lu et al. [21] introduced an
automated approach to categorize app user reviews into functional and non-functional requirements.
Li et al. [22] classified NFRs into behavioral and visual categories. Studies [23] and [24] presented
ML methodologies for NFR classification. Rahman et al. [25] used Word2Vec and RNNs for
advanced requirements management. Study [26] applied NLP and ML methods in software contexts.
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Win et al. [27] tested the Analytic Hierarchy Process on the RALIC dataset. Gnanasekaran et al. [28]
explored ML for automatic NFR categorization, and Jha et al. [29] mined NFRs from app store
reviews.

Study by Younas et al. [30] assessed differences between frequently used indicator terms and
requirement statements to improve NFR classification accuracy. Handa et al. [31] provided a thorough
analysis of recent methods developed for predicting NFRs. In [32], the authors proposed a refined
approach to resolve conflicts, particularly when two NFRs are contradictory, by distinguishing
between external and internal issues. Study [33] analyzed the structural aspects of a Shallow Artificial
Neural Network (ANN) for classifying NFRs. Shah et al. [34] also used a Shallow ANN to categorize
NFRs by examining its structural characteristics. Shankar et al. [35] explored the elicitation, formu-
lation, and verification of NFRs in the early phases of engineering design projects. Another study
[36] developed a model to extract and evaluate security aspects from scenarios based on predefined
security goals and requirements. Cho et al. [37] used NLP and ML to differentiate FRs from NFRs.
Researchers in [38] utilized ML to represent text data from SRS and classify requirements into FRs
and NFRs. Horkoff [39] presented an ML-based method using massive data to train algorithms.

Researchers have developed various methods to enhance software requirement classification,
addressing both FRs and NFRs. Numerous techniques have been proposed to improve the function-
ality, interpretability, and effectiveness of these classifications. For instance, study [40] conducted a
comparative analysis of random forest and gradient boosting algorithms, concluding that random
forest offers superior classification accuracy for FRs. Research [41] highlighted that random forest
is faster to train and effective with large datasets, making it popular in industries for its ability
to handle complex problems and maintain accuracy in imbalanced datasets. Despite its robustness
and versatility, random forest has drawbacks in complexity [42], as each tree generates separate
rules, creating numerous decision paths that complicate the model’s interpretability. To improve
the classification process, we propose several innovative strategies, including a modification of the
random forest algorithm. This enhanced algorithm, named FNRC (Functional and Non-Functional
Requirements Classifier), is meticulously designed to accurately classify both FRs and NFRs. Our
approach focuses on refining the existing algorithm to more effectively distinguish and categorize
diverse software development needs. The ultimate goal is to streamline the development process and
significantly improve the quality of the final product.

3 Proposed Methodology

This section describes about the overall methodology of the proposed technique. It is based on
the preprocessing of the data and detailed description of FNRC. The architecture of the proposed
methodology is shown in Fig. 1.

3.1 Data Pre-Processing

We obtained datasets from PROMISE, a repository for software engineering research data, and
CCHIT, which focused on health information technology [43,44]. The PROMISE dataset is a well-
established collection of software engineering requirement documents, including project proposals
and software specifications. We employed this dataset to evaluate the effectiveness of NFR extraction
solution in the context of free-text documents, as they provide a realistic representation of requirements
in their natural form. On the other hand, the CCHIT dataset consists of requirement statements
specifically related to healthcare IT systems, presenting a challenge as each requirement statement
contains multiple NFR types.
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Figure 1: Proposed methodology for extraction of NFRS

For both datasets (PROMISE and CCHIT), we have used 70% of the data for training, 10%
for pruning, and 20% for testing. Our experiments were conducted on a 40-core Intel machine with
4 × 2.4 GHz Intel 10-core E7-8870 Xeon processors and 256 GB of RAM, using R version 4.3.2
for modifications of the Random Forest algorithm and implementation of the Accuracy Sliding
Window (ASW) mechanism. After the selection of datasets, we initiated the data pre-processing phase.
This started with data tokenization, where input data was separated into individual tokens (words).
Subsequently, we applied several pre-processing techniques to the dataset. During tokenization, we
performed case folding to standardize all letters to uppercase, ensuring uniformity. Next, we removed
stop words—such as pronouns, conjunctions, and prepositions—using a predefined list of irrelevant
words for the analysis. This step involved scanning the text and filtering out these irrelevant words.
Finally, we applied stemming and transformation, extracting the root forms of words through suffix
stripping and lemmatization.

The transformation step is performed using TF-IDF, where we calculated the Term Frequency
(TF)-Inverse Document Frequency (IDF) score. This TF-IDF-based information is then utilized to
apply our proposed Functional and Non-functional Requirements Classifier (FNRC). The FNRC
addresses previous shortcomings by introducing an Accuracy Sliding Window (ASW) mechanism for
pruning trees to identify an optimal sub-ensemble. These optimal sub-ensembles require significantly
fewer trees to achieve accuracy equal to or greater than that of the initial ensemble classifier. The
detailed methodology of the proposed FNRC is explained in Section 3.

3.2 Functional and Non-Functional Requirements Classifier ‘FNRC’

After pre-processing data, we split dataset as 70% of the dataset as the training dataset, 10% as
the pruning dataset and 20% of the dataset as testing dataset. Before implementing FNRC, we train a
baseline Random Forest model with the preprocessed data.
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3.2.1 Random Forest

Random forest is a famous ML-based algorithm widely used by researchers for both regression
and classification problems [45]. It gives output in the form of decision trees on different data samples
as shown in Fig. 2. In the case of classification, it opts for the majority vote while in the case of
regression, it takes the average value. It combines the tree to offer more accurate consolidated results.
One of the famous features of the random forest is handling continuous variable data for classification
and categorical variable data for regression. The major strength of this algorithm is handling complex
data and eliminating the problem of over fitting.

Figure 2: Working of random forest algorithm

The random forest algorithm is based on four steps as follows:

Step 1: In this step, a decision tree is built by using subsets of features and data points. n number
of random data points and m features are selected from the dataset of k records. The typical order of
magnitude for “n”, “m”, and “k” in the context of a Random Forest algorithm is k ≥ n > m, with “k”
being the largest as it represents the total size of the dataset, “n” being potentially equal to but often
less than “k”, and “m” being the smallest, signifying a subset of the total features.

Step 2: In this step, each sample is used to construct the individual tree.

Step 3: Here, the output is generated by using each decision tree.

Step 4: In the last step, the final output is obtained for classification by using majority voting and
for regression by using average values.

The Random Forest algorithm, while powerful and versatile, does face limitations due to its inher-
ent complexity, particularly in terms of interpretability and the generation of complex instructions.
Each tree in a Random Forest generates its own set of rules based on the training data, and when
combined into an ensemble, the multitude of decision paths can be difficult to trace and understand.
This complexity can pose challenges in situations where explaining the model’s decisions is crucial.

3.2.2 ASW Approach to Prune an Ensemble

To overcome the problem of complex instructions, a modified random forest algorithm is
proposed named FNRC (Functional and Non-Functional Requirements Classifier) by introducing an
Accuracy Sliding Window (ASW) for tree pruning to identify an optimal sub-ensemble. Tree pruning
in ML involves trimming parts of the tree to simplify the model. In the context of Random Forest,
it refers to reducing the number of trees in the ensemble. We introduced ASW to identify the most
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effective subset of trees that contribute to the overall accuracy, without unnecessarily complicating it.
We performed the following steps:

Step-1: We started by training Random Forest algorithm, using our preprocessed dataset.

Step-2: To visualize and document the results, we used an algorithm titled “Classifier Ensemble
Filtering”to prune a classifier ensemble. This algorithm creates a subset of effective classifiers based on
the ensemble’s performance on the pruning set (Prd) and its ability to accurately classify both minority
and majority classes.

Algorithm 1: Classifier Ensemble Filtering
Input: Cens = cf1. . .cfα where Cens is a classifier ensemble that has been trained on Trd, Prd, Tsd

Data: There are three sets: the Training Set (Trd), the Testing Set (Tsd), and the Pruning Set (Prd)
Pruning:
1. Initialize:
2. Let Cens be the initial ensemble of classifiers. // Initializing classifiers
3. For each pj in pruning data set Prd: // Checking the Pruning set
4. Extract ci(xj), // ci’s prediction on pj.
5. For each classifier ci in Cens:
6. Initialize Aij, Bij, Cij to 0 for each j
7. For each data point xj in Prd:
8. If ci(xj) == yj and ci(xj) is in the minority group:
9. Aij = 1 // ci correctly predicts yj, minority group
10. Else if ci(xj) == yj and ci(xj) is in the majority group:
11. Bij = 1 // ci correctly predicts yj, majority group
12. Else if ci(xj) == yj:
13. Cij = 1 // ci correctly predicts yj
14. // Calculate Composite Influence Score for classifier ci
15. ICi = ∑

_(j=1)∧N (Aij ∗ (2v(j)max - v(j)ci(xj)) + Bij ∗ v(j)sec + Cij ∗ (v(j)correct - v(j)ci(xj) -
v(j)max));

16. Output: Sub Ensemble Classifier

Step-3: Evaluated the initial ensemble model’s performance on the dataset to establish baseline
accuracy.

Step-4: Begin the iterative pruning process:

• Temporarily removed the tree from the ensemble.
• Re-evaluated the ensemble’s accuracy on the validation dataset without the removed tree.
• Determine if the accuracy of the ensemble with the tree removed falls within the predefined

accuracy window.
• If it does, keep the tree removed; otherwise, put it back into the ensemble.

Step-5: Iterated through all the trees in the ensemble using the process described above. This
resulted in a subset of trees that contribute to the desired accuracy.

Step-6: The subset of trees that remained after the iterative pruning process constitutes the optimal
sub-ensemble. This subset contains trees that collectively contribute to the overall accuracy within the
defined accuracy window.
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Step-7: Assessed the performance of the optimal sub-ensemble on a separate testing dataset to
ensure it maintains good generalization to unseen data.

We designed an algorithm titled “The Accuracy Sliding Window,” which dynamically adjusts
the number of trees in a Random Forest classifier to maximize accuracy. It iteratively evaluates the
performance of the classifier with different numbers of trees and updates the ensemble based on
accuracy improvements, ultimately resulting in an optimized ensemble of pruned trees. The detailed
Algorithm 2 is discussed below:

Algorithm 2: The Accuracy Sliding Windows
1. Classifier, nTree, and nCount
Input: Classifier, nTree, nCount // Initializing input variables.
2. Data: Trd, Prd, Tsd // Defining Training, Pruning, and Testing sets.
3. Initialize:
4. Accuracy = calculateAccuracy(); // Function to calculate initial accuracy.
5. Pruning Process:
6. While nTree > 0 do: // Loop for processing Random Forest.
7. RandomForestClassifier <- generateRandomForest(nTree); //Generating Forest.
8. currentAccuracy <- calculateAccuracy(RandomForestClassifier); // Calculating accuracy.
9. If currentAccuracy > Accuracy then:
10. nTree += 1; // Increment tree count.
11. Accuracy = currentAccuracy; // Update accuracy.
12. Else If (currentAccuracy == Accuracy) and (nCount <= 2) then:
13. nTree += 1; // Increment tree count if conditions are met.
14. nCount += 1; // Increment nCount within threshold.
15. Output: Ensemble of Pruned Trees // Resultant pruned tree ensemble.

In Fig. 3, we illustrated our innovative method, which focuses on the elimination of underper-
forming DTs within the classifiers, resulting in a subsequent decrease in errors. The core concept of
our proposed FNRC technique is to consistently and effectively reduce errors. In this process, the best
DTs are retained, ultimately forming our optimal sub-ensemble. Notably, the graph depicted in the
figure highlights a critical point where error rates begin to increase. It is at this juncture that we apply
an accuracy sliding window, a mechanism in our proposed algorithm. This step is designed to maintain
the accuracy of our proposed method, preventing it from deteriorating.

4 Results and Discussion

This section explains the experimental setup and results for the proposed technique.

4.1 Results on PROMISE Dataset

The PROMISE dataset, containing extensive potential NFR data, is used to gauge the applica-
bility of the method outlined in Fig. 1. The Table 1 presents a breakdown of NFRs by category and
an evaluation of our proposed method’s accuracy. This evaluation is based on the detailed and labor-
intensive task of manually categorizing each FR to identify it as an NFR. The implemented method
assumes a one-to-one correspondence between each FR and NFR type, determined by evaluating
the similarity between indicator keywords and the FR statement using a specific similarity metric.
An NFR is considered necessary if its similarity score is the highest and exceeds a certain threshold
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value. The complete pseudo-code of the suggested method is detailed in Algorithm 1 and Algorithm
2. The classification performance achieved an accuracy of 75% on the dataset, with an F-measure of
64%. Precision and recall measures were calculated to provide further insight into these outcomes.
Requirements with similarity values below the threshold were classified as FRs, while those above
were categorized as NFRs. Applying this threshold, the system identified 41 feature representations
as NFRs, specifically derived from the highest accuracy (True Positive) predictions in the context of
usability. In our assessment, categories such as legality and portability demonstrated outstanding
precision, achieving up to 100%. The maximum and minimum recall scores were 86% and 29%,
respectively, with availability being the only NFR category where recall exceeded precision. This higher
recall but lower precision indicates more false positives in this category. The type availability category
showed the poorest performance in terms of recall, suggesting a need to refine the indicator keywords
for certain NFR types. Fig. 4 provides a graphical representation of precision and recall for further
clarity.

Figure 3: Comparison of error rates

Table 1: Performance evaluation of FNRC methodology at a criterion of 0.61

NFR Actual TP FP FN P R F-measure

Availability 21 13 21 8 0.38 0.62 0.47
Legal 13 8 0 5 1.00 0.62 0.76
Look and feel 28 21 6 17 0.78 0.55 0.65
Maintainability 17 7 1 10 0.88 0.41 0.56
Operational 62 32 7 30 0.82 052 0.63
Performance 54 30 10 24 0.75 0.29 0.41

(Continued)
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Table 1 (continued)

NFR Actual TP FP FN P R F-measure

Scalability 21 6 2 15 0.75 0.53 0.63
Security 66 35 11 31 0.76 0.61 0.69
Usability 67 41 11 26 0.79 0.50 0.50
Fault Tolerance 10 5 5 5 0.50 1.00 1.00
Portability 1 1 0 0 1.00 0.86 0.72
Functional 255 219 133 36 0.62 0.59 0.64
Average 0.75 0.59 0.64

Figure 4: Precision and recall of different types of NFR

To address shortcomings in the current model’s performance and align with the scholarly focus
on the preliminary processing phase within the domain of Information Retrieval (IR), we employed
a range of pre-processing methods to achieve effective solutions. In addition to our standard pre-
processing techniques, we implemented a semantic similarity strategy to enhance results. Precision,
recall, and F-measure metrics were systematically computed for numerical values ranging from 0.0
to 0.99. Table 2 provides a detailed comparative analysis of three different data processing methods:
Keyword Augmentation, Part-Of-Speech (POS) Tagging, and Traditional Methods.

Table 2: Extraction of requirements by using different strategies at different threshold values

Threshold (λ/ ) Keyword augmentation POS tagging Traditional methods

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

0 0.4250 0.6222 0.4683 0.4393 0.6235 0.4830 0.3372 0.4327 0.3484

(Continued)
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Table 2 (continued)
Threshold (λ/ ) Keyword augmentation POS tagging Traditional methods

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

0.1 0.4250 0.6222 0.4683 0.4393 0.6235 0.4830 0.3372 0.4327 0.3484
0.2 0.5091 0.6225 0.4695 0.5234 0.6238 0.4841 0.3372 0.4327 0.3484
0.3 0.5106 0.6238 0.4870 0.5435 0.6251 0.5160 0.3375 0.4327 0.3486
0.4 0.5524 0.6376 0.5528 0.5913 0.6376 0.5805 0.4531 0.4449 0.4151
0.5 0.6916 0.6452 0.6535 0.6904 0.6426 0.6513 0.5065 0.4111 0.4228
0.55 0.7280 0.6391 0.6680 0.7264 0.6353 0.6649 0.5030 0.3786 0.3988
0.6 0.7512 0.5980 0.6463 0.7489 0.5930 0.6420 0.5039 0.3448 0.3694
0.61 0.7523 0.5881 0.6385 0.7501 0.5831 0.6342 0.5073 0.3442 0.3695
065 0.7454 0.5546 0.6103 0.7383 0.5422 0.5977 0.5064 0.3210 0.3522
0.7 0.6747 0.4123 0.4834 0.6677 0.3999 0.4699 0.5379 0.2932 0.3356
0.8 0.6717 0.3273 0.3956 0.6671 0.3125 0.3784 0.5520 0.2194 0.2563
0.9 0.7184 0.1857 0.2255 0.7203 0.5660 0.6100 0.6225 0.1413 0.1546
0.99 0.4808 0.1149 0.1093 0.4808 0.1149 0.1093 0.0340 0.0833 0.0612

Table 2 provides insights into the performance of various pre-processing methods, evaluated using
precision, recall, and F-measure across a range of threshold values from 0 to 0.99. In the traditional
method, the highest recall of 45% occurs at a threshold of 0.4, an F-measure of 42% at 0.5, and the
highest precision of 62% at 0.9. However, the 62% precision comes with a recall of only 14%. At a
threshold of 0.5, the average performance is 50% precision, 41% recall, and 42% F-measure.

In the Word2Vec method, part of our pre-processing toolkit, words are selected based on their POS
tags, such as NN for common nouns, JJ for adjectives, NP for proper nouns, and DT for determiners.
According to source [35], nouns and adjectives are often prospective keywords. For recall, the highest
value obtained is 64% at a threshold of 0.5, an F-measure of 66.5% at 0.55, and a precision of 75% at
0.61. The improvements in precision, recall, and F-measure are 0.23%, 0.26%, and 0.30%, respectively.
At a threshold of 0.55, the average performance is 73% precision, 64% recall, and 66% F-measure.

In the third phase of our pre-processing approach, we focused on keyword augmentation. After
applying Word2Vec, some requirement statements became too brief, with only three or fewer words,
adversely affecting semantic similarity due to insufficient content. This issue can be mitigated by
repeating the statement, which broadens the dataset, increases keyword possibilities, and improves
threshold achievement. This method of statement expansion proves effective across various types of
NFRs, demonstrating its robustness regardless of the specific NFR category. According to the results
shown in Table 2, the highest recall is 64.5%, the highest F-measure is 66.8%, and the highest precision
is 75.23%. The improvements are 25% in precision, 20% in recall, and 24% in F-measure. Although
only a small fraction of requirement statements undergoes word augmentation processing, this pre-
processing step is efficient. If there are many requirement statements with fewer than four words, then
pre-processing becomes even more beneficial.

In our research, we conducted experiments on the PROMISE dataset to compare the performance
of three methodologies: Random Forest with Word2Vec, Random Forest with Classical Feature
Extraction, and our proposed FNRC, which enhances Random Forest with an Accuracy Sliding
Window. The results, shown in Fig. 5, illustrate the performance metrics Precision, Recall, and
F-measure across these approaches. FNRC achieved the highest Precision, Recall, and F-measure,
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demonstrating its superior effectiveness. This comparison underscores the advantages of FNRC over
state-of-the-art methods and standard Random Forest techniques.

Figure 5: The effectiveness of classical, Word2Vec, and proposed FNRC extraction

4.2 Results on CCHIT Dataset

We evaluated our method’s reliability using the CCHIT Ambulatory dataset, which includes data
related to ambulatory care. Table 3 presents the results of our proposed method for identifying various
NFR types within this dataset, using a threshold of 0.60 after applying Word2Vec and the FNRC pre-
processing. The method utilizes the top 20 keywords identified from research [11] as indicators for
categorizing NFRs. In analyzing the CCHIT dataset, we observed that a single entry can relate to
several NFR types. This complexity requires applying different criteria to determine the relevance
of each NFR type, considering them significant if they score above the set threshold. Due to the
multiple NFR types in CCHIT requirement statements, the recall value is higher than that achieved
with the PROMISE dataset, which has less complexity and fewer NFR types per statement. However,
the CCHIT dataset has a lower precision value than the PROMISE dataset, as the complexity of having
multiple NFR types per statement in CCHIT leads to more false positives.

In our paper, we identified specific quality Non-Functional Requirements (NFRs) that align with
the ISO 9126 model, including operability, usability, fault tolerance, portability, efficiency, reliability,
and maintainability. These attributes conform to the standards set by ISO 9126. Additionally, we
explored quality NFR attributes not covered by ISO 9126 but present in the ISO 25010 standard, such
as legal, look and feel, performance, access control, security, an expanded view of maintainability, and
scalability.
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Table 3: Performance evaluation of FNRC methodology at a criterion of 0.60

Requirements P R F-measure

Access control 0.60 0.75 0.67
Audit 0.67 0.81 0.73
Availability 0.33 1.00 0.50
Legal 0.50 1.00 0.67
Maintenance 0.58 0.78 0.67
Recoverability 0.50 0.60 0.55
Performance 0.33 1.00 0.50
Reliability 0.40 1.00 0.57
Security 0.70 0.82 0.75
Usability 0.50. 0.75 0.60
Functional 0.90 0.84 0.87

5 Threats to Validity

In this section, we outlined potential threats that may impact the validity of our research. While
we aim to comprehensively address these threats, we also provided information on the steps taken to
mitigate their impact.

The applicability of the feature extraction model to other datasets or domains is a concern of this
research. Threats to external validity arise when the model’s performance on PROMISE and CCHIT
datasets does not generalize to different contexts. To address this, we tested the model on diverse
datasets representative of various domains. If the datasets used are not representative of the broader
context, external validity is compromised. We mitigate this by carefully selecting datasets that align
with the research’s domain of interest.

Data quality and preprocessing methodologies can impact the results. Inadequate data cleaning
or inconsistent preprocessing methods may introduce noise. To enhance internal validity standardized
preprocessing methods were established to ensure uniformity in data transformation steps, such
as normalization, tokenization, and stemming. Additionally, data quality assurance measures were
implemented, encompassing data validation checks and quality control processes that addressed issues
during data collection and pre-processing.

Internal validity threats pertain to the accuracy of the research findings. Threats can arise if
the FNRC model’s implementation or parameter choices are not optimal. Any errors or suboptimal
parameter settings can compromise the internal validity of the results. When introducing the accuracy
sliding window, we ensured that the FNRC model’s implementation is error-free and that parameters
such as window size and sliding frequency were chosen appropriately.

6 Conclusion and Future Work

In this paper, the FNRC algorithm, an enhanced version of the random forest approach designed
to address challenges related to high time complexity and low accuracy. By incorporating the Accuracy
Sliding Window (ASW), the FNRC algorithm effectively prunes trees to create optimal sub-ensembles.
These sub-ensembles achieve accuracy levels that meet or exceed those of the initial ensemble classifier
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while using significantly fewer trees. Experimental findings demonstrate the effectiveness of the FNRC
algorithm, which utilizes classical pre-processing techniques such as tokenization, stop word removal,
and lemma generation in combination with a semantic similarity strategy. Through a detailed analysis
of precision, recall, and F-measure values across various threshold levels (ranging from 0.0 to 0.99),
the study identified optimal points for these metrics. Specifically, a recall of 45% was achieved at
a threshold of 0.4, an F-measure of 42% at 0.5, and a precision of 62% at 0.9, although this high
precision came with a low recall of 14%. At a significance level of 0.5, the average performance showed
50% precision, 41% recall, and 42% F-measure. The FNRC algorithm competes with state-of-the-art
algorithms across various metrics, including classification accuracy, time complexity, and memory
consumption, confirming its potential to transform classification paradigms and tackle complex data
while maintaining computational efficiency.

Future work should focus on refining the FNRC algorithm by exploring parameter optimization
and fine-tuning the ASW-based pruning technique for improved accuracy and efficiency. Efforts to
extend the algorithm’s applicability to larger and more diverse datasets, along with investigations into
hybrid models, could lead to broader practical implementations. Enhancing the interpretability of
the FNRC algorithm’s decisions, integrating it into real-world software development processes, and
seeking user feedback for iterative improvements are essential steps. Additionally, staying current
with evolving techniques and adapting the algorithm to specific industries will ensure its continued
relevance and effectiveness in addressing NFR classification challenges.
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