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ABSTRACT

In minimally invasive surgery, endoscopes or laparoscopes equipped with miniature cameras and tools are used
to enter the human body for therapeutic purposes through small incisions or natural cavities. However, in
clinical operating environments, endoscopic images often suffer from challenges such as low texture, uneven
illumination, and non-rigid structures, which affect feature observation and extraction. This can severely impact
surgical navigation or clinical diagnosis due to missing feature points in endoscopic images, leading to treatment
and postoperative recovery issues for patients. To address these challenges, this paper introduces, for the first
time, a Cross-Channel Multi-Modal Adaptive Spatial Feature Fusion (ASFF) module based on the lightweight
architecture of EfficientViT. Additionally, a novel lightweight feature extraction and matching network based on
attention mechanism is proposed. This network dynamically adjusts attention weights for cross-modal information
from grayscale images and optical flow images through a dual-branch Siamese network. It extracts static and
dynamic information features ranging from low-level to high-level, and from local to global, ensuring robust
feature extraction across different widths, noise levels, and blur scenarios. Global and local matching are performed
through a multi-level cascaded attention mechanism, with cross-channel attention introduced to simultaneously
extract low-level and high-level features. Extensive ablation experiments and comparative studies are conducted on
the HyperKvasir, EAD, M2caiSeg, CVC-ClinicDB, and UCL synthetic datasets. Experimental results demonstrate
that the proposed network improves upon the baseline EfficientViT-B3 model by 75.4% in accuracy (Acc), while
also enhancing runtime performance and storage efficiency. When compared with the complex DenseDescriptor
feature extraction network, the difference in Acc is less than 7.22%, and IoU calculation results on specific datasets
outperform complex dense models. Furthermore, this method increases the F1 score by 33.2% and accelerates
runtime by 70.2%. It is noteworthy that the speed of CMMCAN surpasses that of comparative lightweight models,
with feature extraction and matching performance comparable to existing complex models but with faster speed
and higher cost-effectiveness.
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1 Introduction

Minimally invasive surgery, as a pivotal advancement in modern medicine, has found widespread
application in clinical practice. By utilizing small incisions or natural body cavities for therapeutic
interventions, minimally invasive surgery reduces trauma, postoperative pain, and the occurrence of
complications, while also shortening patient recovery times and improving surgical safety and efficacy.
Leveraging advanced surgical instruments and sensor-guided imaging technologies such as endoscopes
or laparoscopes, minimally invasive surgery ensures the accuracy and success rate of procedures.
However, the intraoperative visual quality in minimally invasive surgery is often influenced by factors
such as hardware performance, optical lens quality, and visual processing algorithms, and is susceptible
to lighting conditions, noise, and non-rigid structures of observed objects. Consequently, efficient and
accurate extraction of features from endoscopic images and real-time matching have been longstanding
research concerns among scholars.

Traditional feature extraction methods for medical endoscopic images mostly rely on handcrafted
features (such as SIFT, SURF, ORB, etc.). These methods are sensitive to factors like lighting,
viewpoint, occlusion, and often require manual parameter tuning to adapt to different scenes and
datasets. Alternatively, machine learning-based approaches (such as SVM, Random Forest) suffer
from the need for extensive labeled data for training, and their performance heavily depends on the
choice of feature extraction and classification algorithms, limiting their flexibility. Deep learning-based
methods (such as CNNs, RNNs) require substantial labeled data and computational resources for
training. Additionally, these models have large parameter sizes, which may not be suitable for resource-
constrained environments.

Based on neural networks, the extraction of medical image features demands feasibility, real-
time capability, and high accuracy, especially in applications like clinical medicine and surgical
navigation where endoscopic imaging is employed. However, the significant computational and storage
requirements associated with these networks pose substantial challenges for their deployment in
medical robotics. Motivated by this practical challenge, we design efficient feature extraction and
fusion modules tailored for resource-constrained endoscopic images and surgical navigation systems,
characterized by limitations such as weak texture, uneven illumination, and non-rigid structures.
These modules aim to provide denser, more accurate, and real-time feature data for subsequent tasks.
Lightweight networks such as the SqueezeNet series boast smaller model sizes by reducing parameter
count using 1 × 1 convolutional kernels, yet they may sacrifice some accuracy in certain complex
tasks. The ShuffleNet series, on the other hand, employs an efficient channel shuffling mechanism
to reduce computational complexity and model size, though it may not outperform other models in
certain tasks. MobileNet series reduces model size by utilizing depthwise separable convolutions to
decrease computational load, albeit potentially sacrificing accuracy compared to some tasks. The
IGCV series combines Inception structures to enhance model performance and versatility across
various tasks, albeit with larger model sizes compared to others. EfficientViT introduces a compound
scaling method, which optimally selects scaling ratios for width, depth, and resolution dimensions,
enabling the model to achieve higher accuracy. Building upon these considerations, this paper proposes
a method for feature extraction and matching in monocular medical endoscopic images based on
adaptive attention mechanisms. The aim is to perform feature extraction and matching in real-time,
effectively, and densely. The contribution of this paper lies in:

• Lightweight Feature Extraction and Matching Network CMMCAN: Inspired by EfficientViT
lightweight convolutional neural networks, this paper proposes a cross-modal and cross-stage
multi-level cascaded adaptive attention feature extraction and matching network CMMCAN



CMC, 2024, vol.80, no.2 2763

based on an encoder-decoder structure for medical endoscopic images. For the first time,
this network calculates grayscale and optical flow information, adapts attention weights
hierarchically between layers, and introduces context feature guidance and aggregation between
encoders and decoders, integrating features extracted from multiple layers from low-level to
high-level, local to global, especially suitable for handling medical endoscopic images with low
texture and uneven illumination.

• Cross-Channel Cross-Stage Adaptive Attention Module ASFF: This paper proposes for the first
time a lightweight module ASFF based on a Siamese network for cross-channel and cross-stage
adaptive attention. This module extracts from low-level local information to high-level semantic
features in each branch of the dual-branch network. An adaptive attention module SCIM
is introduced between layers of the dual-branch network, which adaptively adjusts attention
weights at different levels to extract cross-modal features of grayscale and optical flow, fully
utilizing the static and dynamic information of endoscopic images, thereby making the network
have photometric consistency and texture robustness, and also improving its understanding of
limited endoscopic data.

• Global Context Feature Guidance and Aggregation Module GCGFA: Between Encoder and
Decoder: By guiding the processing of the decoder and gradually integrating cross-modal and
cross-channel multi-level cascaded features, cascading and feature aggregation from local to
global features, from low-level to high-level features are performed. Since this module processes
low to high-level features extracted from the five-level extraction, and does not start training
from the original data with a large amount of redundant information of unstructured features,
the training and inference time costs are not high, thereby ensuring the lightweight of the entire
network.

• Dataset: In addition to the publicly available medical endoscopic datasets Hyperkvasir, EAD,
M2caiSeg, CVC-ClinicDB, and UCL synthetic datasets, we also collected clinical endoscopic
videos and CT data from 83 anonymous patients from Tianjin Academy of Traditional
Chinese Medicine Affiliated Hospital, forming an experimental dataset for model training and
quantitative/qualitative evaluation.

2 Related Works
2.1 Feature Extraction Related Technology

Feature extraction stands as the most critical stage in automated machine learning methods.
Significant progress has been made in improving the efficiency of this stage over the past few years.
Features can vary in type, including statistical features such as mean, standard deviation, skewness,
kurtosis, geometric features like area, perimeter, circularity, equivalent diameter, texture features, color
features, multi-resolution features, etc. Although most feature descriptors were initially developed for
computer vision tasks with natural images, these descriptors have been widely utilized in medical
image analysis problems such as classification and lesion detection. The most common feature
extraction techniques include Local Binary Patterns [1], Oriented Gradient Histograms [2], Gray-
Level Co-occurrence Matrices [3], Discrete Cosine Transform [4], Scale-Invariant Feature Transform
[5], Discrete Wavelet Transform [6], Curvelets [7], etc. Features obtained using these methods are
referred to as handcrafted or engineered features. However, certain features obtained using different
feature extraction methods may be redundant or irrelevant for specific tasks, leading to dimensionality
reduction and performance degradation. Feature selection techniques play a crucial role in addressing
these issues by selecting the most suitable data representation. These techniques aid in understanding
the data, reducing computation time, and avoiding the curse of dimensionality. The most commonly
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used methods are filter, wrapper, and embedded methods. Filter methods use statistical metrics to
select features based on their intrinsic properties and then use the selected features to train predictors.
In contrast, wrapper and embedded methods optimize objective functions to find feature subsets
that offer the highest predictor performance. Embedded methods perform feature selection and
algorithm training in parallel. Additionally, some dimensionality reduction methods, such as Principal
Component Analysis, Linear Discriminant Analysis, etc., have been widely applied in medical image
analysis tasks. In medical image analysis, selecting a good feature descriptor for a specific task heavily
relies on domain knowledge and remains a challenging task [8]. Therefore, feature learning-based
methods have recently garnered development in this field.

2.2 Transformer with Medical Images

To enhance feature extraction efficiency and improve downstream task performance, many
scholars consider introducing the self-attention mechanism of Transformers for intelligent processing
of medical images. Liao et al. [9] proposed a Multiscale Context Fusion (MSCF) module, which
constructs a pyramid pooling structure and an anisotropic strip pooling structure using pooling kernels
of different sizes and shapes. Pyramid pooling can extract features with different receptive fields,
enriching feature representation, while anisotropic strip pooling can establish long-range dependencies
from different directions, enhancing the recognition ability of elongated organs. Compared to other
feature extraction modules such as Transformers and expanded convolution, MSCF can establish
long-range dependencies in specific directions with fewer parameters and floating-point operations,
and can more effectively handle irregularly shaped organs. A Dual Self-Attention (DSA) [10] module
was developed, establishing global information connections from both spatial and channel domains.
This module utilizes shift convolution to extract spatial features from each channel’s feature map.
Shift convolution consists of multiple hot operators and does not involve any trainable parameters.
Residual modules are designed in skip connections to compensate for information loss caused by
downsampling and avoid redundant transmission of shallow features. The residual module enables the
framework to focus more on important features such as small targets and image edges. Fan proposed a
CNN-based U-Net backbone and SA parallel network ccap-unet. The encoder comprises two parallel
branches of CNN and Transformer, extracting features from input images while considering global
dependencies and local information. Since medical images come from specific frequency bands within
the spectrum, their color channels are not as uniformly distributed as natural images. Moreover,
medical segmentation focuses more on the lesion regions in images. The Attention Fusion Module
(AFM) concatenates channel attention and spatial attention, fusing the output features of the two
branches. The essence of medical image segmentation tasks lies in locating the boundaries of objects
in images. The Boundary Enhancement Module (BEM) is designed in the shallow layers of the
network, focusing more on pixel-level edge details. Ou et al. [11] proposed a novel encoder-decoder
visual Transformer architecture, Patcher, for medical image segmentation. Unlike standard visual
Transformers, it utilizes patcher blocks to segment images into large blocks, each of which is further
divided into small patches. Transformers are applied to the small patches within the large blocks,
limiting the receptive field of each pixel. We intentionally let the large patches overlap to enhance
communication within patches. The encoder adopts cascaded patch blocks with increasing receptive
fields to extract features from local to global levels. This design enables Patcher to benefit from
common coarse-to-fine feature extraction in CNNs and superior spatial relationship modeling in
Transformers. We also propose a new decoder based on Mixture of Experts (MoE), which treats feature
maps from the encoder as experts and selects an appropriate combination of expert features to predict
labels for each pixel. However, these models, due to the introduction of Transformers, exhibit good
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network performance, but the real-time performance of the entire network needs to be improved due
to model complexity.

2.3 Lightweight Network with Medical Images

Subsequently, scholars have proposed methods to reduce the model size to ensure lightweight
models meet the real-time requirements of clinical surgery [12]. AIADI proposes a single-layer unsu-
pervised lightweight ear print recognition network that uses convolutional neural networks (CNN)
and principal component analysis (PCA) for ear recognition [13]. The main novelty of MDFNet is
its simple architecture, effectiveness, good trade-off between processing time and performance, and
high robustness to occlusion. Chen et al. proposed a new lightweight network designed specifically
for skin disease image segmentation [14], aiming to significantly reduce the number of parameters
and floating-point operations while ensuring segmentation performance. Its designed ConvStem
module features full-dimensional attention, learning complementary attention weights in all four
dimensions of the convolution kernel, effectively enhancing the recognition of irregularly shaped lesion
areas, reducing the number of model parameters and computational complexity, thereby promoting
model lightweighting and performance improvement. The SCF Block reduces feature redundancy
through spatial and channel feature fusion, significantly reducing the number of parameters while
improving segmentation results. However, this method exhibits noticeable decreases in parameter and
computational efficiency, and still lags behind EGEUnet in terms of parameter count. Additionally,
the limited dataset and model generalization are areas for further research.

In summary, the technical gap for endoscopic images lies in finding an approach that can accu-
rately and efficiently perform computational inference on medical images or videos with characteristics
such as low texture, uneven illumination, and limited data volume, while also meeting the real-time
requirements of clinical surgery and the constraints of computational resources on endoscopic devices.
Therefore, we propose a lightweight feature extraction and matching network for endoscopic images
based on adaptive attention, which efficiently extracts and matches features to meet the requirements
of downstream tasks and clinical surgery.

3 Cross-Channel Multimodel Multistage Cascade Attention Network

Endoscopic images typically require real-time or fast feature extraction and matching to sup-
port surgical navigation and real-time decision-making. Therefore, the computational efficiency of
algorithms must be prioritized. Inspired by the lightweight cascading group attention convolutional
neural network EfficientViT, we designed a Cross-Channel Multimodal Multistage Cascade Attention
Network (CMMCAN). CMMCAN is a lightweight network that can adaptively cascade attention
across different modalities and stages under various constraints, enabling it to maintain high perfor-
mance while accommodating fewer computational resources. The architecture overview is shown in
Fig. 1.

The network architecture we have designed is based on an encoder-decoder framework at its
core. During the encoding stage, the input undergoes preprocessing steps such as Downsampling,
overlap embedding, and initialization, collectively referred to as the DOI module. Subsequently, we
introduce our cross-modal adaptive attention module, ASFF, wherein twin network branches share
weights to effectively capture both appearance and motion cues, enhancing scene comprehension.
Following feature extraction at each layer, both branches feed into the SCIM module to extract multi-
modal complementary information and facilitate bidirectional transmission. Each branch adopts a
convolutional neural network (CNN) architecture with distinct depths and structures to accommodate
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diverse input modalities. Leveraging normalization and residual connections, coupled with self-
adapting cross-modal attention via ASFF, accelerates model convergence. Moreover, the GCGFA
module, positioned between encoders and decoders, orchestrates the aggregation of global context
features through self-attention and cross-attention mechanisms, facilitating fusion and integration
across different hierarchical levels and feature maps. Adaptive attention weights are then employed
to weigh features from each location, ensuring robust performance in non-rigid environments,
low-texture scenarios, and under uneven lighting conditions, typical of surgical navigation scenes often
plagued by noise and blur.
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Figure 1: Network architecture with all pipeline

Our proposed lightweight network features adaptive attention, with the algorithm balancing
global and local attention to enhance feature point extraction accuracy and density in scenarios with
limited data quantity and quality. For details of the network framework design, refer to Section 3.1
Method Overview. Preliminary work and preprocessing details are provided in Section 3.2 Pre-
Processing. The implementation strategy of the lightweight network with adaptive attention involves
redesigning convolutional kernel sizes and quantities, adjusting convolutional network structures,
designing lightweight modules, executing bitwise shifting and negation operations to replace multi-
plication in convolutions, reducing computational redundancy, and increasing computational speed
to ensure real-time performance in clinical surgical scenarios. We propose cross-modal, cross-channel
attention for global matching, introducing spatial attention for global matching of image features
to address the limitations of quality prioritization and small data volume in monocular medical
endoscopic images, enabling the network to achieve adaptive attention weight. Technical details of
the encoder and decoder are provided in Section 3.3 Encoder-Decoder Architecture for Lightweight
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Networks. Our proposed cross-modal adaptive attention module ASFF is detailed in Section 3.3.2
Multi-Modal Adaptive Self-Attention Feature Fusion Module–ASFF. The lightweight global context
guidance and feature aggregation module are detailed in Section 3.3.3 SCIM, MFEM, HFAM, HFE
Module. Additionally, the lightweight sparse optical flow module, overcoming inconsistencies in
illumination and weak texture features, is detailed in Section 3.3.4 Location Search and Optical Flow
Regression, facilitating keypoint detection and tracking to compensate for movement and deformation
issues in limited data. For details on loss function design and other parameters and technical details,
refer to Section 3.4 Loss Formulation.

3.1 Method Overview

The lightweight feature extraction and matching network for monocular endoscopic medical
images based on adaptive attention, as proposed in this paper, is illustrated in Fig. 1. The network
is built upon a classic encoder-decoder structure. We introduce an adaptive attention module based
on cross-channel attention into a simple lightweight contrastive learning framework, along with a
lightweight optical flow tracking module based on bottleneck structures to fuse multimodal image
feature information. In the encoder, the input image’s single channel is first downsampled, overlap-
patch embedded, and initialized. It then enters our designed Multi-Modal Adaptive Self-Attention
Feature Fusion Module (ASFF) to address inconsistencies in illumination and weak texture features
for keypoint detection and tracking. This module leverages information about dynamic object motion
from the optical flow map and appearance/color information from the RGB image. The twin branches
within the ASFF module share weights, allowing them to simultaneously capture appearance and
motion information for a more comprehensive scene understanding. Subsequently, in the decoder,
interpolation is performed followed by decoding. In between, we design a global context feature
guidance and aggregation module to compensate for the priority of medical endoscopic image
quality and small data volume. Using orthogonal projection methods simplifies feature extraction
calculations without considering factors like illumination, shadows, or distortions, while introducing
perspective projection enhances spatial distribution feature calculations. By utilizing the uncorrelated
relationship of features and introducing self-attention and cross-attention for weighting, both global
and differential features can be effectively extracted in real-time and densified feature extraction and
matching can be achieved.

Cross-modal, cross-channel attention is employed for global matching, while spatial attention
is introduced for global matching of image features. Lightweight sparse optical flow features are
contrastively learned with RGB features across modalities, utilizing different channels and optical
flow signals for self-supervised learning of different views and features in the input image, extracting
global and local features across channels and modalities, and simultaneously performing keypoint
detection and tracking. Spatial attention is introduced to focus on specific regions of interest within
the image. Cross-stage attention is introduced to facilitate the sharing of attention weights and feature
information between different layers of the network.

3.2 Pre-Processing

Preprocessing: Endoscopic images are often affected by issues such as illumination, noise, and
blur, thus requiring image quality assessment and preprocessing. Firstly, medical endoscopic image
data undergo preprocessing, including image segmentation, scaling, normalization, and extraction of
features from regions of interest (such as lesion areas). This includes denoising, contrast enhancement,
and mitigating illumination changes.
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Downsampling: To make the model more robust to input variations and increase the receptive field
of each pixel, enabling the network to capture global information better, the input image sequences
are uniformly downsampled to 512 × 512 size images. Experiments are also conducted with images at
256 × 256 and 128 × 128 sizes as control groups.

Overlap Embedded: By partitioning the input data into overlapping blocks, each block can capture
local feature information, enhancing translational invariance and reducing the number of parameters.
This approach also aids in capturing input feature information more comprehensively in subsequent
self-attention mechanisms.

Initialization: Once all blocks are embedded into the feature vector space, initialization operations
can be performed on these features. Initialization typically involves assigning initial weights or
parameters to each dimension in the feature vector space, to be adjusted during subsequent training
to perform specific tasks such as feature matching, object detection, etc.

Thus, block embedding operations are first performed to prepare the feature representation of the
image, followed by initialization on these features. Subsequent training operations may then follow to
fine-tune and learn network parameters to adapt to the specific task requirements.

3.3 Encoder-Decoder Architecture for Lightweight Networks

The implementation approach of the lightweight network with adaptive attention involves
redesigning the size and number of convolution kernels, adjusting the convolutional network
structure, designing lightweight modules, and performing bit shift and negation operations instead of
multiplication in convolutions to reduce computational redundancy and improve processing speed,
ensuring real-time performance in clinical surgical scenarios. We propose cross-modal, cross-channel
attention for global matching, introducing spatial attention for global matching of image features,
addressing the priority of quality in monocular endoscopic images and the limitation of small data
volumes, enabling the network to adaptively adjust attention weights.

3.3.1 Siamese Network Framework

The lightweight Siamese network is a neural network architecture designed to measure the
similarity between two input data pairs by comparing their feature representations. It is primarily used
for metric learning and similarity comparison tasks. Based on the classical Siamese network structure,
we designed a contrastive network structure based on RGB and optical flow (FLOW), which calculates
the distance and correlation between RGB and FLOW feature vectors. This design is suitable for small
datasets such as those found in medical scenarios and offers good interpretability. The output feature
representations of these two subnetworks will be used to measure the similarity between input data
pairs. Through maximizing the similarity of positive sample pairs and minimizing the similarity of
negative sample pairs, the network learns in a self-supervised manner. The classical Siamese network
structure is illustrated in Fig. 2a. Inputs x1, x2 are fed into two branches of the subnetwork, and the
outputs Ew are obtained through the loss function. Gw represents an inference calculation comparing
two branch networks in a network. When the loss function adopts the L2 distance metric, the output
of the network can be represented as:

Ew (X1, X2) = ||Gw (X1) − Gw (X2) || (1)
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Figure 2: The Siamese network architecture and MFEM module. (a) Classic siamese network archi-
tecture, (b) MFEM module

The lightweight Siamese network framework we designed is an architecture composed of two
identical five-layer subnetworks, as shown in Fig. 1. Each subnetwork receives an input data pair, and
each layer at different levels has its own unique features to extract.

During the inference phase, the proposed framework is formulated as a local single-shot detection
task. By precomputing the template branches of the Siamese subnetworks, the relevant layer represen-
tations are expressed as trivial convolution layers (Identity Convolution Layer) for online tracking,
without introducing new feature transformations, but simply passing the input data directly to the
output, serving to maintain the feature maps. This effectively increases the depth of the network with-
out introducing additional non-linear transformations. The inputs to the two Siamese subnetworks
are the single-channel information Ii processed through Downsampling, Overlap PatchEmbeded, and
Initialization, and the inferred flow map Fi, which are also inputs to the ASFF module. The weights
to be shared by the two subnetworks are first adaptively adjusted by the SCIM (Self-Adaptive Cross-
Modal Interaction Module) module, and finally, the last two layers, in addition to passing through
the SCIM module, also enter the MFEM (Multiscale Feature Enhancement Module) module [15],
which encourages complementary information fusion between different modalities and different levels.
The SCIM module and the MFEM module are illustrated in Figs. 1 and 2, respectively. We employ
SCIM five times because different levels have their unique feature information to extract. Lower
layers contain spatial local information, while higher layers contain semantic global information, both
crucial for subsequent fusion stages. MFEM is used twice, enhancing the feature representation in
medical endoscopy and surgical navigation scenarios by introducing multiscale feature enhancement
and depth separable convolution. The joint use of these two modules can enhance the diversity of
features fed into the attention heads, reducing redundancy in the attention map, ensuring feature
extraction accuracy, and minimizing the number of parameters as much as possible.

3.3.2 Multi-Modal Adaptive Self-Attention Feature Fusion Module—ASFF

The flow map provides information about the dynamic motion of objects, while the RGB
image provides appearance and color information. The twin branches in the ASFF module share
weights, enabling them to simultaneously capture appearance and motion information, thereby
comprehensively understanding the scene. After each branch undergoes feature extraction, they enter
the SCIM module separately to extract multimodal complementary information. Each branch adopts
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a convolutional neural network (CNN) architecture, and the features of the two branches have different
depths and structures to adapt to different input modalities.

The ASFF module we designed is based on Siamese networks, incorporating five feature extrac-
tion layers for RGB and Flow. Depth separable convolution is used to reduce the network structure
and capture different hierarchical features. An Adaptive Attention Module (SCIM) is added after
each feature extraction layer for adaptive adjustment of window, stride, and neighborhood range.
Here, features weighted by adaptive attention are combined with flow features. This allows the model
to adjust the importance of features based on the similarity between positive and negative samples
determined by attention-weighted features. Finally, the last two layers introduce MFEM to enhance
the feature representation in medical endoscopy and surgical navigation scenarios by introducing
multiscale feature enhancement and depth separable convolution, ensuring feature extraction accuracy
while minimizing the number of parameters.

To restore spatial details and fully utilize global context information, an HFAM module is added
after the five layers of flow feature extraction to recover some lost detailed information under the
guidance of high-level semantic information. The features mapped and weighted by attention are
multiplied after the fusion of RGB and flow through HFE, yielding attention-adjusted features for
subsequent tasks. Matching and information fusion between RGB images and flow maps, input
into the twin branches of the Siamese network, typically require the design of appropriate network
architectures and training strategies. Table 1 summarizes the key components and specific operational
steps of the Siamese network. For detailed calculations, please refer to Section 3.3.3.

Table 1: Key components and steps of the siamese network architecture

Step Description

1 Input RGB image and optical flow
2 Extract features from RGB image and optical flow using feature extractors
3 Fuse the RGB and optical flow features
4 Process the fused features through the task-specific layer
5 Calculate the loss between the network output and the true labels
6 Perform backward propagation using the loss value and update the network

parameters
7 Output the network predictions
8 Evaluate the network performance using a validation or test set

3.3.3 SCIM, MFEM, HFAM, HFE Module

The SCIM module can focus on information differences in each local area of the RGB and Flow
graphs, filter out redundant information, and select more prominent feature representations. Taking
the first layer as an example, the two Siamese network branch inputs are respectively Ii and Fi. First,
the adjusted and supplemented RGB and Flow feature extraction are carried out I i

rec, Fi
rec, respectively.

I i
rec = (Conv1 × 1 (Ii)) ⊕ (Conv1 × 1 (Fi) ⊗ Conv1 × 1 (Ii)) (2)

Fi
rec = (Conv1 × 1 (Fi)) ⊕ (Conv1 × 1 (Fi) − Conv1 × 1 (Ii)) (3)
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where, Conv1×1 denotes 1 × 1 convolution layer. Then the fusion operation is carried out to further
optimize the two parallel branches and supplement the detailed information. Specifically, this is
achieved by performing global average pooling along the RGB and Flow channel directions, reducing
the amount of computation by reducing the size of the feature map. The pooling follows the 1 × 1
convolution, Sigmoid activation function and is multiplied by itself. The refined sum is expressed as
I i

ref and Fi
ref :

I i
ref = σ

(
Conv1 × 1

(
GAP

(
I i

rec

))) ⊕ I i
rec (4)

Fi
ref = σ

(
Conv1 × 1

(
GAP

(
Fi

rec

))) ⊕ Fi
rec (5)

GAP denotes an adaptive average pooling operation. The output of the SCIM module is
expressed as:

Ai
scim = Cat

[
Ai

cross, I i
ref

] ⊕ Cat
[
Ai

cross, Fi
ref

]
(6)

where, Cat [.] represents the concatenation operation, σ is the sigmoid activation function. The selected
features and complementary features are generated to achieve cross-modal integration [16].

While adjusting adaptive attention weights across modes, lightweight networks are not as powerful
as large-scale models in terms of feature extraction and information depth. In order to make more
efficient use of Feature information of various scales, a Multiscale Feature Enhancement Module
(MFEM) module was introduced into the last two layers of the ASFF module, as shown in Fig. 2.
The MFEM module helps to encourage the fusion of complementary information between different
modes and between different levels. The MFEM input first passes through the 1 × 1 convolutional
layer, and then introduces the depth separable convolution of the common lightweight network design,
reducing the number of model parameters and computational effort, while maintaining high feature
extraction performance. This process can be explained by the following expression:

xi = Convup
1 × 1

(
Conv2i

DW (x)
)

, (i = 1, 2, 3) (7)

xj = × 2(j−3)
(
Conv(j−3)

DW

(
Convdn

1 × 1

(
ConvDW

(
Convup

1 × 1 (x)
))))

, (j = 4, 5) (8)

x6 = × 10
(
AMP

(
Convdn

1 × 1

(
ConvDW

(
Convup

1 × 1 (x)
))))

(9)

Mi
ME = Convdn

1 × 1 (Cat [x1, x2, x3, x4, x5, x6]) (10)

where, ConvDW represents discrete separable convolution, i represents dialation rate; Convup
1 × 1 represents

a 1 × 1 convolution for channel increment; Convdn
1 × 1 denotes 1 × 1 convolution for channel decrement;

and ×2, ×4, and ×10 denote the different upsampling multiples; AMP (·) denotes average maxpooling.

As we all know, the high-level features that guide the whole world have rich semantic information.
As the width and depth of the network model increase, some detailed features will be lost, and
the actual sensitivity field in convolution calculation is smaller than the theoretical sensitivity field.
Therefore, in order to recover spatial details and make full use of global context information, this
paper introduces HFAM [16] in the ASFF fusion feature layer. Specifically, the last two layers of high-
level semantic features through SCIM are simply merged into global context guidance Bi. Since the
low-level detail features vary according to scale, we first adaptively adjust the size to fit the low-level
detail features, which helps to reduce the number of parameters. We first along the channel dimension
connection high-level semantics and detail characteristics, and through the global average pooling
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will change R × C × H × W into R × C × 1 × 1. We then use the full connection layer to reduce the
channel to C/r and then use the Relu function. After repeating these two operations, the final weight
is obtained, and the weight changes according to the characteristics of different details. HFAM is
used to recover some lost details under the guidance of advanced semantic information. The specific
calculation method is as follows:

Hi = × 2 (FC&Relu) (GAP (Cat ([AU (G)] , Conv1 × 1 (Fi)))) ⊗ AU (G) ⊕ Conv1 × 1 (Fi) (11)

AU denotes adaptive upsampling through which the high-level semantic features are adjusted to
the size of the detail features, × 2 represents two repeated fully connected, Relu represents activation
function, GAP indicates adaptive average pooling.

3.3.4 Location Search and Optical Flow Regression

To address the issue of photometric changes, we introduce the Cross-Positioning Downsampling
(CPD) and Optical Flow Regression (OFR) modules within the ASFF module. These modules
facilitate the sharing of attention weights and feature information between different levels of the
network’s lateral connections. The Optical Flow Regression consists of simple convolutional layers,
an optical flow estimation layer, and an optical flow regression layer. The optical flow estimation
layer computes the optical flow between two consecutive frames, which is then regressed through the
optical flow regression layer to predict the movement of key feature points between different frames.
Dense optical flow estimation attempts to estimate the optical flow vector for every pixel in the image,
whereas sparse optical flow estimation selects only a specific set of pixels for estimation.

Therefore, we introduce the lightweight model LiteFlowNet [17] to assist in optimizing RGB
attention weights. LiteFlowNet aims to reduce the model’s size by employing techniques such as
depth separable convolution, making it suitable for resource-constrained environments, particularly
for real-time optical flow estimation on mobile devices and embedded systems, such as mobile robots,
autonomous vehicles, and drones.

3.4 Loss Formulation

Combining network architecture, task types and data characteristics, we design a loss function
consisting of adaptive attention, location search and optical flow regression. Adaptive attention loss:
The output of the adaptive attention module is the attention weight A, and the true label is Atrue. We
use cross entropy loss to measure the difference between them:

Lossattention = CrossEntropyLoss (A, Atrue) (12)

Position search loss: Assume that the output of the position search module is the predicted position
coordinates P, and the true position is Ptrue. We use the mean square error loss to measure the difference
between them:

Lossloc = 1
N

∑N

i=1
‖Pi − Ptruei‖2

2 (13)

Optical flow regression loss: Considering the possibility of deformation and noise in the endo-
scopic image, we use smoothness loss to estimate that the optical flow estimate is smooth between
neighboring pixels. Huber Loss can reduce sensitivity to outliers and is suitable for noise or uncertainty
that may be present in medical images.
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Lossflow =
{

0.5 (F − Ftrue)
2 , if |F − Ftrue| ≤ δ

δ |F − Ftrue| − 0.5δ2, if |F − Ftrue| > δ
(14)

where, F is the predicted optical flow in the output of the optical flow regression task Ftrue is the
real optical flow. In summary, the synthetic loss function can be the weighted sum of these sub-loss
functions:

TotalLoss = ωattentionLossattention + ωlocLossloc + ωflowLossflow (15)

ωattention, ωloc and ωflow are the weights for each subtask to balance the importance of different
tasks, adjusted along with the network training process to balance the importance of different tasks in
model reasoning. In the overall network, this comprehensive loss function is used to guide the network
through training to determine the best parameter and weight configuration so that the network can
achieve the goal of feature extraction and matching.

4 Experiments
4.1 Dataset and Implementation Details

4.1.1 Experimental Environment and Datasets

The feature extraction and matching method of monocular medical endoscope image based on
adaptive attention mechanism is proposed in this paper. With the help of deep learning framework
PyTorch, the corresponding calculation and training process are realized by using the function
of appearance calculation and automatic differentiation. We employed the PyTorch framework to
construct the network model, which was accelerated on a single NVIDIA RTX 4080 GPU with
12 GB of video memory, and equipped with a Gen Inter Core i9-13900H CPU, ensuring sufficient
processing power for the learning algorithms. This comprehensive experimental setup ensured a robust
and reliable environment for conducting the experiments and obtaining accurate results.

Furthermore, in our medical applications, we adhere strictly to medical standards and privacy
regulations to ensure that the processing and storage of image data comply with all legal requirements.
The datasets utilized in this study are outlined in Table 2. For model training and cross-validation, we
employed medical datasets containing endoscopic images, including HyperKvasir, EAD, M2caiseg,
CVC-ClinicDB, Kvasir-SEG, and UCL synthetic datasets. Additionally, clinical endoscopic videos
and CT data from 83 anonymous patients from the Tianjin Academy of Traditional Chinese Medical
Affiliated Hospital (all data approved for use and all anonymized) were also included, collectively
comprising the experimental dataset used for model training and evaluation. The first line of Fig. 5
shows a representative sample of the dataset. During the training phase, we utilized adjacent frames
from each video with varying intervals. To strike a balance between overlap and spacing between frame
pairs, three intervals were selected for experimentation: 1, 4, and 16. Consequently, the final dataset
consisted of 8352 training pairs and 2217 testing pairs. Both testing and training input frames were
resized to 256 × 256 pixels to ensure consistency and compatibility with the model architecture.

4.1.2 Model Training and Hyperparameters

In this paper, the training process utilized a batch size of 16 and executed 300,000 iterations. An
Adam optimizer with a learning rate of 0.00002 was employed for optimization. During the warm-up
phase of network training, the learning rate gradually increased from 6% to 100% of its standard value
over 8000 training epochs. Subsequently, the learning rate was maintained at 0.0008 for 180,000 epochs
before gradually decreasing to 5% of its standard value. The model input size was 256 × 256, and data
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augmentation techniques were applied to enhance the robustness and generalization capabilities of
the model. Given the utilization of a novel siamese network model in lieu of the mainstream cascade
attention-based EfficientViT lightweight model, we evaluated the model comprehensively in terms of
model parameters, memory footprint per execution, floating-point operations (FLOPs), model size,
and runtime. Furthermore, we conducted a comparative analysis with lightweight models released
by MIT and the Chinese University of Hong Kong, namely EfficientViT, ShuffleNet, GCGLNet,
FMMI, and DenseDescriptor. The training results of different methods on the six listed datasets
are summarized in Table 5. According to the model training process, the optimal hyperparameter
configuration during our training is shown in Table 3.

Table 2: Datasets used in the study

Dataset name Data type Dataset size Train size Test size

Kvasir-SEG [18] Colonoscopy images Approx. 1,1 million
images and video frames

100,000 20,000

EAD Datasets [19] Endoscope surgery
images

11552 Images
(2002–2021)

8710 1742

M2caiSeg [20] Endoscope images, CT,
MRI

Approx. 307 images 260 47

CVC-ClinicDB [21] Colonoscopy images Approx. 612 images 500 112
UCL Synthetic Dataset [22] Synthetic image data Varies by task 260 47
Clinical endoscopic video
and CT data from 83
anonymous patients

Endoscope surgery
Images & CT

A large and diverse
sample of images

70 13

Table 3: Initially hyperparameters setup

Batch size β1 β2 Learning rate Epoch-1 Epoch-2 α γ Linear increase

4/8 0.9 0.999 2e-5 70 10 0.0001 0.9 0.005

4.2 Homography Estimation and Loss/Accuracy Curve

For each matching pair of points (x, x′), where x denotes the coordinates of a point in one image
and x′ represents the corresponding coordinates of that point in the other image, the homography
matrix H can be solved using the following linear system: x′ = Hx. Following the EfficientViT model,
we report the precision and recall rates for matching encounters with GT, with a reprojection error
threshold of 3 pixels. Additionally, we evaluate the accuracy of estimated homographies from the
correspondences using both robust and non-robust solvers: Random Sample Consensus (RANSAC)
and weighted Direct Linear Transformation (DLT) [23]. For each image pair, we compute the average
reprojection error at the four image corners and report the area under the cumulative error curve
(AUC) for thresholds up to 1 px and 5 px. In alignment with best practices for benchmarking, unlike
past works [24,25], we employ state-of-the-art robust estimators and conduct extensive threshold
tuning for each method individually. When compared to classical sparse feature extraction and
matching methods [26,27], we report the highest-scoring results, with quantitative computations
summarized in Table 4. The findings indicate that CMMCAN can generate superior correspondences,
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exhibiting the highest precision (P) and recall (R). Consequently, this leads to more accurate results
when estimating homographies using both RANSAC and even the faster least-squares solver, DLT.

Table 4: CMMCAN homography estimation. R-high recall, P-highest precision

Features + Matcher R↑ P↑ AUC-RANSAC AUC-DLT↑
Orin SD20 SD45 K32 K52 Orin SD20 SD45 K32 K52 @1 px @5 px @1 px @5 px

Dense LoFTR – – – – – 92.7 92.5 92.4 92.5 92.0 41 78 38 70
SuperPoint Sparse 1 72.1 72.0 71.7 71.9 71.7 68.8 68.7 68.6 68.4 67.9 35.1 75.7 32.4 20.8

Sparse 2 98.2 98.0 98.3 98.0 98.4 81.4 81.2 81.0 81.3 81.2 37.4 76.4 33.8 76.9
Sparse 3 99.1 99.1 95.0 94.9 94.7 83.6 83.4 83.3 83.5 83.2 38.6 79.0 34.6 77.9
CMMCAN 99.8 99.7 94.6 94.2 93.6 89.2 89.1 89.1 89.0 88.8 38.3 79.6 35.1 78.5

In addition, in order to verify the robustness of the model to noise and fuzzy, based on the test
data set, random sampling divided the test set into two parts, and added Gaussian noise with standard
deviation of 20 and 45 respectively to generate a new disturbed data set with noise, as shown in Fig. 3.
The perturbation data set is used to test the CMMCAN model and calculate the performance index
under noise interference. It is listed in columns SD20 and SD45 of the Fig. 3.

Original

Gauss-SD20

Gauss-SD45

Fuzzy 
convolution 
kernel 3×3

Fuzzy 
convolution 
kernel 5×5

Figure 3: Examples of varying levels of noise and blur to validate the robustness of CMMCAN, (from
the EAD dataset). The first row showcases original image examples, while the second row depicts
images with added Gaussian noise with a standard deviation of 20. The third row displays images with
added Gaussian noise with a standard deviation of 45. The fourth row illustrates examples of images
blurred using a 3 × 3 convolutional kernel, while the fifth row shows examples of images blurred using
a 5 × 5 convolutional kernel
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Furthermore, to evaluate the model’s robustness to noise and blur, we partitioned the test dataset
into two subsets by randomly sampling, each augmented with Gaussian noise of standard deviation
20 and 45, respectively, generating new noisy perturbed datasets as illustrated in Fig. 3. We tested the
CMMCAN model using these perturbed datasets and computed performance metrics under noise
interference, listed in the columns SD20 and SD45 of Table 4.

To assess the model’s resistance to disturbances, we introduced motion blur into the test dataset
using convolution operations typically associated with moving objects in a consistent direction. The
blur kernel angle was set randomly, simulating various degrees of blur by adjusting the level of rotation
matrix. We applied 3 × 3 and 5 × 5 convolution kernels for different levels of blur, where larger kernels
corresponded to higher levels of blur and smaller kernels led to more localized blur. Convolving the
original clear images with this series of blur kernels, we generated corresponding blurry endoscopic
image datasets as depicted in the fourth and fifth lines of Fig. 4. The CMMCAN model was evaluated
using these blurred datasets, and performance metrics under random degree of blur were listed in
columns K32 and K52 of Table 4, respectively.

Figure 4: Loss (a) and accuracy (b) curve of the model during the model inference process with Epoch
80 on the EAD original map

Experimental results demonstrate that CMMCAN can establish better correspondences, exhibit-
ing the highest precision (P) and recall (R). Therefore, this leads to more accurate results when using
RANSAC or even faster least squares solver DLT to estimate homography. The introduction of
different levels of noise had negligible impact on the performance of CMMCAN feature extraction and
matching, with the recall rates decreasing by only 0.11% and 0.22% when introducing Gaussian noise
with standard deviations of 20 and 45, respectively, and the highest precision decreasing by 0.63% and
0.22%. Introducing varying degrees of blur resulted in a decrease in recall rate by 0.11% and the highest
precision by 0.34%. This indicates that different levels of noise and blur have minimal impact on the
performance, and the accuracy is hardly affected. Thus, validating the proposed model’s robustness to
noise and blur.
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4.3 Quantitative and Qualitative Comparison with Prior Work

4.3.1 Quantitative Comparison with Prior Work

We conducted a comprehensive comparison of GCGLNet against 6 state-of-the-art (SOTA)
methods, including EfficientViT-MIT [28], EfficientViT-CUHK [29], ShuffleNet [30], GCGLNet
[16], FMMI [31], and DenseDescriptor [32]. The first three methods were originally designed for
image classification in constrained scenarios, emphasizing lightweight network models. GCGLNet
and FMMI, on the other hand, focus on scene understanding based on multimodal information
fusion. DenseDescriptor is capable of extracting dense feature points from endoscopic medical images.
To ensure a fair comparison, we modified the input image sizes and conducted all computations on
our platform, leveraging the reported descriptions and released codebases. To assess the quality of
the extracted features, we use a simple random forest to classify organs of concern within the visual
threshold. The quantitative results of different method models’ inferences on the various datasets are
summarized in Table 5.

Table 5: CMMCAN performance results on transfer learning datasets. Our model achieves new state-
of-the-art accuracy for 6 out of 6 datasets, with 9.6× fewer parameters on average. Bold indicates the
best results calculated with the same data set. Acc is the Top5 Set the Epoch to 60

Methods Acc↑ IoU↑ Precision/%↑ F1↑ Params/M↓ FLOPs/M↓
HyperKvasir EfficientViT-MIT-B3 53.1 30.6 68.3 0.5563 49 124

EfficientViT-CUHK-M4 48.8 34.9 62.1 0.5546 8.8 299
ShuffleNet-V2 29.8 16.9 50.7 0.4768 6.9 427
GCGLNet 60.8 55.6 78.5 0.6163 7.87 7209
FMMI 64.2 59.0 86.2 0.6629 593 6264
DenseDescriptor 89.2 72.8 89.0 0.7463 1365 12149
Ours 85.6 68.5 86.1 0.7390 11.7 89

EAD EfficientViT-MIT-B3 50.0 22.5 56.8 0.5454 49 135
EfficientViT-CUHK-M4 51.7 36.2 61.4 0.4733 8.8 324
ShuffleNet-V2 20.0 15.1 44.1 0.4587 6.9 398
GCGLNet 61.2 43.6 79.8 0.6223 7.87 7382
FMMI 70.8 58,1 78.3 0.6505 593 6478
DenseDescriptor 90.6 73.8 86.5 0.7889 1365 13306
Ours 88.4 74.1 82.7 0.7852 9.6 92

M2caiseg+ CVC-
ClinicDB+Kvasir-SEG

EfficientViT-MIT-B3 46.7 10.9 43.5 0.4679 49 523

EfficientViT-CUHK-M4 35.5 11.9 57.3 0.3567 8.8 517
ShuffleNet-V2 12.7 0.0 34.4 0.3343 6.9 461
GCGLNet 22.4 5.9 68.2 0.6346 7.87 8962
FMMI 35.6 6.2 76.8 0.5166 593 8325
DenseDescriptor 65.4 9.6 82.1 0.7421 1365 26703
Ours 55.2 12.7 76.9 0.7939 11.7 217

UCLSynthetic Dataset EfficientViT-MIT-B3 53.2 36.2 72.8 0.4465 49 132
EfficientViT-CUHK-M4 57.7 45.5 74.3 0.5768 8.8 119
ShuffleNet-V2 31.4 15.9 65.2 0.5697 6.9 310
GCGLNet 67.2 51.2 78.9 0.7456 7.87 6450
FMMI 73.0 62.8 95.5 0.7637 593 4621
DenseDescriptor 95.9 78.9 96.7 0.8058 1365 102972
Ours 89.2 73.2 93.9 0.7923 11.7 58
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Our evaluation criteria encompassed various metrics that reflect the performance of each method
in terms of accuracy, efficiency, and robustness. By comparing GCGLNet against these diverse
SOTA approaches, we aimed to demonstrate its superiority in handling endoscopic medical image
analysis tasks, particularly in scenarios that require multimodal information fusion and dense feature
extraction.

From the perspective of feature extraction accuracy, the DenseDescriptor method demonstrated
the highest accuracy in feature extraction. However, due to its larger model size, it requires more
computational resources for dense feature extraction, resulting in longer processing time and thus
limited efficiency. In contrast, our proposed CMMCAN method eliminates redundant computations
and modules, enabling it to better utilize complementary information from multimodal descrip-
tions without increasing computational overhead. This allows for more accurate and faster feature
extraction and matching. Although CMMCAN may slightly lag behind DenseDescriptor in terms of
absolute accuracy, it exhibits a significant advantage in feature extraction efficiency. Moreover, results
demonstrate that compared to EfficientViT-B3 with cascading attention, the proposed algorithm
achieves an 75.4% improvement in Acc, along with enhanced runtime performance and storage
efficiency. Furthermore, the proposed approach improvement F1 score by 33.2% accelerates runtime
by 70.2%, and achieves a better balance between model training cost, real-time performance, and
precision.

4.3.2 Qualitative Comparison with Prior Work

The qualitative comparison results of different methods on the corresponding six datasets are
presented in Fig. 5. These qualitative findings are generally consistent with the quantitative results
shown in Table 5. The results indicate that CMMCAN outperforms the comparison methods in terms
of efficiently extracting feature points. Notably, DenseDescriptor achieves the best performance in
feature extraction, but due to its larger model size, it requires more time and computational resources,
making it suitable for extracting dense feature points. Conversely, ShuffleNet-V2 extracts the fewest
feature points. While this model has a smaller size, its cost-effectiveness for feature extraction in
monocular endoscopy scenarios is relatively low.

In summary, CMMCAN offers the highest cost-effectiveness in feature extraction compared to
the comparison methods. Specifically, it utilizes the most efficient model to extract the maximum
number of accurate feature points. This advantage of CMMCAN makes it a promising approach for
endoscopic image analysis tasks that require accurate and efficient feature extraction.
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Figure 5: Comparison of qualitative results. The four columns on the left (a)–(d) are the four datasets
corresponding to Table 5, and the last column (e) is the patient cases obtained from the hospital

4.4 Ablation Studies

In this subsection, we conducted ablation experiments to assess the performance of our algorithm
under different settings of model modules and variables. Specifically, we conducted ablation studies on
the cross-channel cascade attention module (CrossCAM), adaptive attention module (CAM), cross-
modal cascade adaptive attention module (ASFF), and the number of cascade layers (N). Quantitative
evaluation results were provided for each experiment. As primary evaluation metrics, we employed
accuracy, precision, model parameter count, mean accuracy (mACC), mean intersection over union
(mIoU), average runtime, and endpoint error (EPE) for optical flow analysis. Additionally, recall and
precision were also considered. To present the performance more clearly, we visualized the results
using confusion matrices and ROC curves. Through these ablation experiments, we aimed to gain
insights into the individual contributions of each module and variable to the overall performance of
our algorithm. This analysis allowed us to identify the most effective configurations and optimize the
model for improved accuracy, efficiency, and generalizability. The ablation experimental results of the
model on the HyperKvasir and EAD datasets are shown in Table 6.
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Table 6: The ablation experimental results of the model on the HyperKvasir and EAD datasets.
The symbol “�” indicates the utilization of the module proposed in this study. “ALL” signifies
the evaluation of all pixels, whereas “NOC” specifically refers to the testing conducted solely on
pixels in non-occluded regions. The average results of the ablation experiments, including param
(model parameters), precision, recall, and times (average runtime), are provided separately for the
HyperKvasir and EAD datasets

Network setting HyperKvasir EAD Param/M Precision Recall Time (ms)

D1-all (%) 3 px (%)

CrossC CAM ASFF N NOC ALL NOC ALL

– – – 2 56.5 34.3 43.9 42.1 6.02 60.1 90.5 11.3
� – – 2 52.1 58.2 56.2 47.8 7.33 62.6 92.1 42.5
� � – 2 68.2 64.5 69.7 63.7 9.77 68.9 92.6 46.3
� � � 2 74.4 72.4 70.5 69.3 9.86 76.4 94.7 52.1
� � � 3 84.1 82.9 81.0 80.2 10.05 80.5 96.2 68.7
� � � 4 89.6 87.0 88.2 85.3 10.65 84.4 97.0 89.5

The ablation experiments tested the key modules of the model: cross attention, channel attention,
ASFF, and the number of convolutional layers. The cross-attention module improved the model by
28%, CAM improved the model by 20.5% on average in the two data sets, and ASFF improved the
model performance by 5.43%. The more convolutional layers, the more accurate the calculation, but
the correspondingly longer the time. Therefore, the setting of the model and the number of layers
should balance local computing resources and timeliness requirements to make appropriate cuts.

5 Conclusion and Discussion

To address challenges such as low texture, uneven illumination, and non-rigid structures in
endoscopic surgical scenes, this study introduces a novel Cross-Channel Multi-Modal Adaptive Spatial
Feature Fusion (ASFF) module based on the lightweight architecture of EfficientViT. Additionally,
we propose a novel lightweight feature extraction and matching network, named Cross-Modal Multi-
Channel Attention Network (CMMCAN). This network dynamically adjusts the attention weights for
cross-modal features of different channels and optical flows within the contrastive learning framework
of a dual-branch Siamese network. It integrates both static and dynamic information of endoscopic
image sets to counteract common issues like texture degradation, lighting variations, and non-rigid
structures. This ensures the robustness of feature extraction across various widths, noise levels, and
blur scenarios.

While the proposed method achieves superior quantitative and qualitative results in comparative
experiments, there are still areas for improvement. Firstly, the proposed model assumes that the
observed data has low texture, uneven illumination, and non-rigid structures. Performance degrada-
tion may occur under non-assumed conditions, indicating the need for further research on model
generalization. Additionally, medical endoscopic datasets are inherently limited in quantity and
quality. Although we employ enhancement methods such as cropping, scaling, and normalization
in preprocessing, richer datasets for model training may lead to better results. Finally, in clinical
surgical scenarios, there is a particular emphasis on real-time and accurate AI tools. Therefore,
optimizing model parameters and extracting denser features more efficiently to enhance downstream
task performance and quality remains a focus of our ongoing efforts.
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