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ABSTRACT

When learning the structure of a Bayesian network, the search space expands significantly as the network size
and the number of nodes increase, leading to a noticeable decrease in algorithm efficiency. Traditional constraint-
based methods typically rely on the results of conditional independence tests. However, excessive reliance on
these test results can lead to a series of problems, including increased computational complexity and inaccurate
results, especially when dealing with large-scale networks where performance bottlenecks are particularly evident.
To overcome these challenges, we propose a Markov blanket discovery algorithm based on constrained local
neighborhoods for constructing undirected independence graphs. This method uses the Markov blanket discovery
algorithm to refine the constraints in the initial search space, sets an appropriate constraint radius, thereby reducing
the initial computational cost of the algorithm and effectively narrowing the initial solution range. Specifically, the
method first determines the local neighborhood space to limit the search range, thereby reducing the number of
possible graph structures that need to be considered. This process not only improves the accuracy of the search space
constraints but also significantly reduces the number of conditional independence tests. By performing conditional
independence tests within the local neighborhood of each node, the method avoids comprehensive tests across
the entire network, greatly reducing computational complexity. At the same time, the setting of the constraint
radius further improves computational efficiency while ensuring accuracy. Compared to other algorithms, this
method can quickly and efficiently construct undirected independence graphs while maintaining high accuracy.
Experimental simulation results show that, this method has significant advantages in obtaining the structure of
undirected independence graphs, not only maintaining an accuracy of over 96% but also reducing the number of
conditional independence tests by at least 50%. This significant performance improvement is due to the effective
constraint on the search space and the fine control of computational costs.
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1 Introduction

Bayesian network (BN) is a network model that expresses the relationship between random
variables and joint probability distributions, which can express and reason about uncertain knowledge
[1]. In recent years, BN has been a research hotspot for many scholars, and it has been successfully
applied in such areas as fault detection [2,3], risk analysis [4], medical diagnosis [5], and traffic
management [6].

In the construction process of BN, the BN structure must first be determined from the given
data, and then the network parameters can be continued to be learned [7]. Therefore, studying the
structure of BN is the first task that needs to be completed. The current BN structure learning methods
can be divided into three types, constraint-based methods [8,9], search-and-score methods [10,11]
and hybrid methods [12,13]. Constraint-based methods include Peter and Clark (PC) algorithm [14],
Three-Phase Dependency Analysis (TPDA) algorithm [15], etc. Usually, these algorithms start from
a fully connected graph or empty graph, and use conditional independence (CI) test to remove as
many unwanted edges as possible. The search-and-score method uses a scoring function to measure the
optimal structure, such as K2 [16], Bayesian Dirichlet with likelihood equivalence (BDe) [17], Bayesian
Information Criterion (BIC) [18], etc., to evaluate each candidate network structure and try to search
for the optimal structure that matches the sample data. The method based on the hybrid algorithm
combines the two ideas to construct the BN structure. Among them, the role of the constraint-based
stage is to construct an undirected independent graph, which is an undirected graph model that can
reflect the CI assertion in its corresponding BN structure. The undirected separation characteristics
of all node pairs in the undirected independent graph are consistent with the CI relationship between
variables in the BN structure.

As shown in Fig. 1, in order to find the CI relationship between node 1 and node 4, it is often
necessary to traverse all nodes. That is, use the first-order CI test to calculate the remaining nodes. If
no results are found, continue to perform higher order CI tests.

X1

X2 X3

X4 X5 X6 X7 X8

Figure 1: CI test sequence description

It can be seen from the literature that the number of 0-order tests of CI test is C2
n , the computational

complexity is O
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)
, the number of first-order CI tests is C2

n × C1
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O
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)
, and the second-order CI tests are C2

n × C2
n−2. the computational complexity is O

(
n4

)
, so the

lower the order and the fewer the number of calls, the better when calculating the CI test. However,
how to find node 2 quickly and accurately, and perform the CI test first, is an urgent problem to
be solved. Through graph observation, it can be found that the nodes are generally adjacent to each
other and the distance from the calculated node is relatively short. Therefore, in order to improve
the execution efficiency of the algorithm and reduce unnecessary computational consumption, a
reasonable approach is to start from the local constraints of the nodes to be calculated and lock the
inspection scope as soon as possible.
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Without prior knowledge, using existing methods to construct undirected independent graphs is
a huge challenge in terms of time complexity or space complexity. Spirtes first proposed the classic
Spirtes, Glymour and Scheines (SGS) algorithm [19], which uses the CI between nodes to determine
the network structure when the order of the nodes is unknown. However, the operating efficiency
of this method is too slow, and the number of CI tests that need to be carried out is exponential.
Subsequently, through improvement, the PC algorithm [20] was proposed. The algorithm started
from a completely undirected graph, and then passed the low-order CI test to reduce the number
of edges. After that, the segmentation set is searched from adjacent nodes, thereby reducing the
time complexity and the number of calls for high-order independence tests. However, because this
method uses randomly selected constraint sets to calculate the CI test between nodes, there are many
uncertainties and excessive randomness.

On this basis, some scholars have proposed to improve the sorting method [21] or independent
method [22] to solve the random problem in the PC algorithm. The order of independent testing of
nodes has no corresponding constraints. This makes the test process randomly and cannot generate
candidate structure well. However, although this kind of method alleviates the problem of false
negative nodes to a certain extent. It cannot solve the problem of false positive nodes or the exponential
problem of the number of inspections.

Later, Cheng et al. [23] proposed a three-stage analysis algorithm TPDA based on mutual
information. This method uses the mutual information between nodes to obtain an initial network
structure. However, this method needs to use the known node sequence for structural learning, and
over-relies on the index of mutual information, which makes the learning accuracy and learning
efficiency decrease. Xie et al. [24] innovatively proposed a recursive algorithm to gradually reduce
the conditional independence test set to the minimum condition set, and finally combine the obtained
local results. However, as the number of vertices in the network increases, finding the variables that
split the set becomes more complex, and there are inherent weaknesses in CI testing. Literature [25]
was based on the Max-Min Hill-Climbing (MMHC) algorithm and uses a heuristic strategy to obtain
an undirected independent graph. This method performs a CI test on all elements in the obtained
candidate parents and children (CPC). The effects of high-level independence tests, exponential tests,
and variable order still restrict the performance of existing algorithms. Therefore, some scholars
proposed to construct the initial undirected independent graph based on Markov blanket method.
Guo et al. proposed the dual-correction-strategy-based MB learning (DCMB) algorithm [26] to
address the issue of false positives and false negatives that may arise during simultaneous correction of
CI tests. The algorithm utilizes both “and” and “or” rules to correct errors, demonstrating advantages
in handling noisy and small-sample data.

Wang et al. [27] proposed an efficient Markov discovery algorithm efficient and effective Markov
blanket (EEMB) discovery algorithm, which consists of two phases: a growing phase and a shrinking
phase. Although the algorithm can get Markov blanket efficiently and quickly, it still needs a large
number of CI tests in the calculation phase. There is no effective reduction of the number and order of
the independent testing of the independent test. Researchers have proposed the Error-Aware Markov
Blanket (EAMB) algorithm [28], which comprises two novel subroutines: Efficiently Simultaneous
MB (ESMB) and Selectively Recover MB (SRMB). ESMB is aimed at enhancing the computational
efficiency of EAMB while minimizing unreliable CI tests as much as possible. SRMB adopts a selective
strategy to address the issue of unreliable CI tests caused by low data efficiency. Experimental results
have demonstrated the rationality of the selection strategy. However, the algorithm relies on parameter
settings.
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It can be seen from the above references that constraint-based algorithms need to quickly and
accurately obtain the constraint space in the early stage of the algorithm. Most algorithms use global
node information to constrain, ignoring the unique local neighborhood relationship between nodes. At
the same time, excessive dependency testing will consume more computing resources, resulting in low
algorithm efficiency. In particular, a large number of high-order CI tests have significantly increased
the complexity of the algorithm. Above on this, we proposed a Markov blanket discovery algorithm for
constraining local neighborhoods. The algorithm first finds the local neighborhood space of the node
accurately by setting the constraint radius, and completes the initialization of the constraints. After
that, the establishment of Markov blanket constraint space was completed through low-level CI test,
and then the construction of undirected independent graph in BN structure learning was completed.
Specifically, the main contributions of this article are as follows:

• Firstly, the initial search space is quickly determined by leveraging the dependencies between
nodes. Subsequently, the local neighborhood of nodes is constrained by an inter-node constraint
radius r to reduce the computational cost of the subsequent algorithm.

• Secondly, to decrease the complexity of the CI tests, the Markov blanket discovery algorithm is
employed to further refine the set of nodes within the constrained local neighborhood, thereby
continuing to reduce the search space.

• Finally, low-order CI tests are used to update the Markov blanket set, ensuring the inclusion
of correct connected edges in the set and generating an undirected independent graph that
accurately represents these connections.

The method proposed in this paper not only uses constraint knowledge to compress the search
space, but also limits the structure search space quickly and accurately, while reducing the order of CI
tests and the number of CI tests. The advantages of the algorithm are verified through comparative
experiments with other algorithms.

The rest of this paper is organized as follows: Section 2 discusses related work. Section 3 presents
the proposed algorithm. Section 4 discusses the experimental results, and Section 5 concludes the
paper and future work.

2 Preliminaries

The BN consists of a two-element array, namely BN = (G, T). Where G = (V , E) is the directed
acyclic graph of the BN network structure, and V is the set of nodes in the network, that is V =
{x1, x2, · · ·xn}, E is the set of directed edges in the network.

2.1 Markov Blanket

In the complete set U of random variables, if X /∈ U and U are the smallest set satisfying the
following conditions:

(X⊥X − {X} − U|U) ∈ � (P) (1)

Then call U the Markov blanket of X in distribution P, denoted by MB(X ).

In the complete set U of random variables, given a graph G, the Markov blanket of X in graph G

is MB(X ), for a given variable X ∈ U and variable set MB ⊂ U (X /∈ MB), if there is:

X⊥ {U − MB (X) − {X}} |MB (X) (2)
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Then it is said that the minimum variable set MB that can meet the above conditions is the Markov
blanket of X , that is, when the set MB is given, X and other nodes in the graph are independent of
each other. It can be proved that these local independence assumptions are factorized on the graph G

Any distribution of is established. When using the Markov blanket discovery algorithm, the purpose
is to quickly find the Markov blanket of the required variables in the full set, shrink the redundancy
of the global information, and reduce the dimension of the feature space.

2.2 Mutual Information

Mutual information MI (X , Y) can quickly detect the dependence relationship between random
variables, which can be used to measure the dependence relationship between random variables. And
the mutual information value between the random variables is positively correlated with the degree of
dependence between the random variables. That is, the higher the degree of dependence between the
random variables X and Y , the greater the mutual information value. There is a directly connected
edge or an indirectly connected edge between the two. Conversely, if the mutual information value
between X and Y is small, it means that the two nodes have a low degree of dependence, which is
reflected in the network structure. That is, X and Y are conditionally independent of each other, and
there is no connecting edge between the two. It can be expressed as:

MI (X , Y) =
∑

X

∑
Y

P (X , Y) log2

P (X , Y)

P (X) P (Y)
(3)

where P (X , Y) is currently the joint probability density function of X and Y , and P(X ) and P(Y ) are
the marginal probability density functions of X and Y , respectively.

Suppose X , Y , Z are three disjoint variable sets, then under the condition of given Z, the mutual
information of X , Y is:

MI (X , Y |Z) =
∑

X

∑
Y

∑
Z

P (X , Y , Z) log2

P (X , Y , Z)

P (X |Z) P (Y |Z)
(4)

Therefore, mutual information is used to judge the connectivity between every two nodes in
the network. Since mutual information has symmetry, that is MI (X , Y) = MI (Y , X), the network
structure composed of mutual information is undirected.

2.3 Conditional Independence Test

Assuming that X , Y , and Z are three independent sets of random variables, if

P (x ∈ X , y ∈ Y) = P (x ∈ X) P (y ∈ Y) (5)

It is said that variables X and Y are conditionally independent, that is X �Y .

Given the variable Z, if

P (x ∈ X , y ∈ Y |z ∈ Z) = P (x ∈ X |z ∈ Z) P (y ∈ Y |z ∈ Z) (6)

It is said that under the condition of a given Z, X and Y are conditionally independent, expressed
as Ind (X , Y |Z), or X �Y |Z.

When testing the CI of nodes X and Y , it is necessary to find a constraint set Z to make the above
formula true, but it is often difficult to achieve in the search process.
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3 Markov Blanket Discovery Algorithm for Undirected Independent Graph Construction

In the process of constructing BN undirected independent graphs, the local neighborhood
topology information of nodes is more often ignored, which makes excessive use of CI tests to constrain
nodes. Moreover, the excessive randomness of selecting nodes also greatly increases the computational
cost. Therefore, in order to improve calculation efficiency and calculation accuracy, we proposed a
Markov blanket discovery algorithm for constrain local neighborhoods. Avoid blindly using the CI
test, and use the local neighborhood information between nodes to constrain it. And use the Markov
blanket discovery algorithm to further reduce the search space. Finally use fewer low-level CI tests to
complete the construction of the undirected independent graph. The specific algorithm is implemented
as follows:

3.1 Algorithm Initialization

In the process of constructing independent graphs using Markov blanket algorithm, since the
number of Markov covering elements increases exponentially with the increase of the number of nodes,
it is necessary to constrain the initial structure of the network. The algorithm initialization starts from
an undirected empty graph, and first needs to calculate the mutual information value of all nodes.
Use the mutual information value to judge the relationship between each node, thereby introducing
the local constraint factor δMI . Connect the edges that meet the judgment conditions to establish a
constrained initial Markov blanket model, and use the following equation to judge the dependency of
the node pair:

MI (X , Y) ≥ δMIMI (X)max or MI (X , Y) ≥ δMIMI (Y)max (7)

where 0 ≤ δ ≤ 1 represents the threshold value that restricts the use of mutual information in the
network to determine the strength of dependence between nodes. MI (X)max and MI (Y)max represent
the maximum mutual information values between node X and node Y and other nodes, respectively.

It can be seen from the above equation that the restriction of the initial model can be completed
by setting the restriction factor δMI . When the constraint factor δMI is small, the number of node pairs
under this constraint is small. However, there are more pairs of nodes with strong dependence, and at
this time, the two nodes are connected by an edge. When the constraint factor value is larger, there are
more node pairs in the network structure that satisfy the constraint model, but there are more node
pairs with weak dependency at this time, and no connection is made at this time. After completing the
above steps, an initial network structure with local constraints is established. The following Algorithm
1 shows the construction process of the initial network structure:

Algorithm 1: Initialization of the network structure
Inputs: Training data D, Mutual information factor δMI

Outputs: Undirected independent graph G1 = (V , E1)

1 Initialize an undirected empty graph, and let G1 be an empty graph;
2 Calculate the MI (X , Y) of each node pair, sort in descending order;

Connect the pairs of nodes that meet the judgment conditions in the empty graph;

3
MI (X , Y) ≥ δMIMI (X)max

MI (X , Y) ≥ δMIMI (Y)max
or

4 Determine whether the current network is connected and repair the connected graph;
5 return G1 = (V , E1);
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The network structure of the BN is generally a connected graph. After the above construction
process, an undirected graph may appear in the middle link, which may be disconnected. Therefore,
the connectivity of the undirected graph needs to be repaired. It can be known from graph theory that
if an undirected graph is a non-connected graph, the undirected graph can be represented by several
connected components. Only by ensuring that these connected components are connected to each
other, the unconnected graph can be restored to a connected graph. Therefore, it is necessary to repair
the connectivity of the current network after the mutual information value is judged.

It can be seen that the current undirected graph network is only established under the condition
of mutual information. If the accuracy of its judgment is further increased, the Markov blanket needs
to be corrected twice by other means.

3.2 Markov Blanket Discovery Algorithm

After the completion of the network initialization and construction in the previous stage, using
mutual information value constraint judgment, more edges are added to the empty graph, and because
the constraint factor δMI is relatively loose, the undirected independent graph construction process may
introduce more edges. Many false positives connect edges.

As a result, in the second phase of the algorithm, through the local characteristic information
between nodes and the CI test, the false positive connection edges are eliminated, and the potential
missing edges are found, and finally a Markov blanket with higher accuracy is established. Therefore,
in this phase, we will conduct two CI tests.

As mentioned in the previous chapter, when there is a connection between two nodes, the CI
test accuracy of adjacent nodes is relatively high, and the amount of calculation is low. In order to
reduce the number of invocations of the CI test and reduce the computational cost, the neighboring
nodes should be used first to perform the CI test. For this reason, a constraint radius r is introduced,
that is, when the distance between two nodes is less than r, we believe that the mutual verification
relationship between the nodes is more reliable. When the distance between two nodes is longer than r,
the connection relationship between the two nodes is not considered, and the CI test is not performed,
which will greatly reduce the calculation cost and improve the calculation efficiency.

r = ln (n + ne)

2
(8)

where n is the number of nodes in the network, and ne is the number of connected edges in the existing
network.

Using the calculated constraint radius r and candidate test node selection rules, the initial set of
Markov blanket set based on local constraints is first generated. In order to reduce the number of CI
test calls, after the Markov cover set is established, the conditional independence of node X and node
Y is detected from the empty set of the constraint set. If it is not true, then select the constraint set
from the initial set, and gradually increase the size of the constraint set. If the conditions of node X
and node Y are established independently, the connecting edge between the two nodes is deleted, and
the node is deleted from the initial set of Markov blanket, otherwise the subsequent procedures are
continued. At this point, the initial Markov blanket set can be obtained through the above operations.
The specific implementation process of the algorithm (Algorithm 2) is as follows:
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Algorithm 2: Markov blanket discovery algorithm
Inputs: Training data D, CI test threshold δCI , Undirected independent graph G1 = (V , E1)

Outputs: Undirected independent graph G2 = (V , E2)

1 Calculate the constraint radius r in the G1 network;
2 for Each node in G1

3 Find the initial set of Markov blanket MB (Xi) of the current node;
4 Perform the CI test under the given constraint set, using δCI constraint;
5 if Xi � Yj holds
6 Delete node Yj, and delete the edge connecting the two nodes;
7 else
8 Increase the scope of the constraint condition set and continue to determine Xi � Yj|Z;
9 end
10 Update the Markov blanket MB (Xi) of each node in the current node Xi

11 end
12 Calculate the maximum mutual information of each node, check whether the edge where the

maximum mutual information exists, and connect if it does not exist;
13 Determine whether the current network is connected and repair the connected graph;
14 return G2 = (V , E2);

In order to prevent the false deletion of true positive connected edges after the second step of the
algorithm is executed. That is, some missing nodes are not added to the Markov cover set, and to avoid
the possibility of incompletely connected graphs in the current graph model. Therefore, the last part of
the algorithm fixes this problem. First, reconfirm its connectivity and repair it, and secondly, continue
to use reliable CI tests to complete this part. On the basis of obtaining the undirected graph of the
second step algorithm, use CI to test the independence relationship between computing nodes, and
correct the nodes in the Markov blanket set. In particular, this part of the adjustment will no longer
delete edges. Finally, we can get a complete connected undirected independent graph G3 = (V , E3).
The specific implementation process of the algorithm (Algorithm 3) is as follows:

Algorithm 3: Repair
Inputs: Training data D, CI test threshold δCI , Undirected independent graph G2 = (V , E2)

Outputs: Undirected independent graph G3 = (V , E3)

1 for Each node in G2

2 The CI test is performed under the given constraint set to determine the CI relationship;
3 if There is a separation set to make the two nodes independent
4 continue;
5 else
6 Add a connecting edge between two nodes;
7 end
8 Detect the graph connectivity of the network structure;
9 Find the V structure and increase the moral side;
10 return G3 = (X , E3);
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3.3 The Time Complexity of Algorithm

In this section, we will analyze the time complexity of the algorithm, and use the worst-case time
complexity as the basis for judgment. Next, we will discuss the time complexity of each step separately.
Assuming there are n nodes and the size of dataset D is m.

In Algorithm 1, we first initialize the network structure, which has a time complexity of O (1).
Next, we calculate the MI for each pair of nodes. This requires computing MI values for n (n − 1) /2
pairs of nodes, resulting in a total time complexity of O

(
n2 × m

)
.

In Algorithm 2, the initial calculation of the constraint radius r has a time complexity O (1). Iterate
through each node in the graph G to find the initial MB(X ) for the current node has a time complexity
of O (n × m). Perform CI tests under the given constraints: Test each neighbor of every node, resulting
in a time complexity of O (n × m). Update the MB(X ) for each node: The time complexity is O (n × m).
Compute the maximum MI for each node and check for edges with maximum MI: The time complexity
is O

(
n2 × m

)
. Check if the current network is connected and repair the connected components if

necessary: The time complexity is O (n). Therefore, the total time complexity of the algorithm is
O

(
n2 × m

)
.

In Algorithm 3, there are steps similar to those in Algorithms 1 and 2. The most time-consuming
step is the CI tests, which have a time complexity of O

(
n2 × m

)
. Therefore, the overall time complexity

of the algorithm is O
(
n2 × m

)
.

4 Experimental

In order to verify the performance of this algorithm, the experiment is divided into two parts
in total. The first part determines the value of the algorithm parameters, and uses the comparison
of various indicators under different data sets to determine the generalization of specific parameters.
The second part brings the parameter calculation results into the subsequent process, and compares it
with the other three similar Markov blanket algorithms to verify the effectiveness of the algorithm. The
experimental platform used in our paper is a personal computer with Intel Core i7-6500U, 2.50 GHz,
64-bit architecture, 8 GB RAM memory and under Windows 10. The programs are all compiled using
the MATLAB software release R2014a.

4.1 Algorithm Parameter Determination

In order to verify the two parameters δMI and δCI mentioned in the algorithm, the experiment
set the parameters to different values, and the parameters were determined by comparing different
indexes.

Parameter experiment setting range, δMI is 0.1 step length each time, increasing from 0.2 to 0.9; δCI

is 0.03 step length each time, increasing from 0.01 to 0.35. As there will be four different situations in
the forecasting process, see Table 1 for details.



2544 CMC, 2024, vol.80, no.2

Table 1: Predict possible outcome situations

Stander Estimation

True False Total

True True Positive (TP) False Negative (FN) True (T)
False False Positive (FP) True Negative (TN) False (F)
Total Positive (P) Negative (N) ALL
Note: False Negative: The prediction result is false, and the prediction error is the actual truth. False Positive:
The prediction result is true, and the prediction error means that the actual situation is false. True Negative: The
prediction result is false, the prediction is correct, the actual is false. True Positive: The prediction result is true, the
prediction is correct, the actual is true.

This article uses the following four indicators to determine the performance of the experiment [29]:

Accuracy:

ACC = (TP + TN) / (P + N) = (TP + TN) /ALL (9)

Euclid Distance:

ED =
√

(1 − TPR)
2 + (1 − FPR)

2 (10)

True positive rate: Sometimes called sensitivity

TPR = TP/ (TP + FN) = TP/T (11)

False positive rate: Sometimes called specificity

FPR = FP/ (FP + TN) = FP/F (12)

The experiment uses 6 different sample data of four standard data sets, namely AMARM network,
CHILD3 network, CHILD5 network and CHILD10 network, each network has 500, 1000 or 5000 sets
of data. The specific information of the data is shown in Table 2.

Table 2: The datasets used in the experiment

Datasets Nodes Edges Data size

ALARM 37 46 500, 1000, 5000
CHILD3 60 79 500, 1000, 5000
CHILD5 100 126 5000
CHILD10 200 257 5000

The horizontal axis of the experimental results represents the results corresponding to different
parameter values of δMI , and the vertical axis represents the results corresponding to different
parameter values of δCI . Each evaluation index is distinguished by the color value. The specific
experimental results are shown in Figs. 2–9.
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(a) (b)

(c) (d)

Figure 2: ALARM-500 data set parameter changes. (a) Accuracy; (b) Euclid Distance; (c) True positive
rate; (d) False positive rate

Figs. 2–4 are the experimental results of the ALARM network under different data sets. According
to the definition of the evaluation metrics, a higher Accuracy value indicates that the algorithm’s
learned undirected graph is closer to the true graph. From Figs. 2–4, it can be observed that as δMI

increases while keeping other parameters fixed, the Accuracy values of the algorithm decrease, and a
similar trend is seen with parameter δCI . Regarding the Euclidean Distance, which reflects the similarity
between the learned undirected graph and the standard model, the smallest Euclidean Distance values
are achieved when δMI is between 0.2 and 0.5, with the trend showing an increase as δMI increases.
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(a) (b)

(c) (d)

Figure 3: ALARM-1000 data set parameter changes. (a) Accuracy; (b) Euclid Distance; (c) True
positive rate; (d) False positive rate

For the metrics of true positive rate and false positive rate, they respectively reflect the proportions
of correct edges and incorrect edges among total edges. Across different datasets of the ALARM
network, both metrics show an increasing trend in error rates as δMI increases. In the initial stage of the
algorithm, the value of δMI determines the proportion of added edges in the empty graph. Therefore, it
is desirable to add a higher number of effective connecting edges in the initial stage to include a greater
number of correct edges. However, as the algorithm progresses into its second stage, the introduction
of parameter δCI validates the initial structure and eliminates false positive connections. To ensure
accuracy, the value of δCI in this stage should not be too large.

In order to find a reasonable parameter setting for generalization, the algorithm’s testing dataset
is further expanded. Subsequent observations will focus on the situations in other networks.
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(a) (b)

(c) (d)

Figure 4: ALARM-5000 data set parameter changes. (a) Accuracy; (b) Euclid Distance; (c) True
positive rate; (d) False positive rate

Figs. 5–9 illustrate the trends of parameter changes across different datasets. Similar to the
ALARM network, the trends of parameter changes in terms of accuracy and Euclidean Distance are
observed. Analyzing the true positive rate and false positive rate, these metrics reflect the proportions
of correct edges and incorrect edges among all relevant statistical results. Therefore, a higher true
positive rate indicates a greater number of correct edges obtained, while a lower false positive rate
indicates fewer incorrect edges. Based on several sets of experimental results, it can be observed that
when the value of δCI is fixed, the true positive rate and false positive rate achieve optimal values when
δMI is between 0.2 and 0.5, and deteriorate as δMI increases beyond this range. Conversely, fixing the
value of δMI has a smaller impact on δCI . Therefore, based on this analysis, to balance the relationships
between these evaluation metrics, we aim to choose intermediate values for the parameters. Specifically,
the value of δMI should be within the range of 0.2 to 0.5, and the value of δCI should be within the
range of 0.05 to 0.1. For the sake of convenience in subsequent simulation experiments, we will set the
parameters to their final values as δMI is 0.35 and δCI is 0.075.
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(a) (b)

(c) (d)

Figure 5: CHILD3-500 data set parameter changes. (a) Accuracy; (b) Euclid Distance; (c) True positive
rate; (d) False positive rate

(a) (b)

Figure 6: (Continued)
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(c) (d)

Figure 6: CHILD3-1000 data set parameter changes. (a) Accuracy; (b) Euclid Distance; (c) True
positive rate; (d) False positive rate

(a) (b)

(c) (d)

Figure 7: CHILD3-5000 data set parameter changes. (a) Accuracy; (b) Euclid Distance; (c) True
positive rate; (d) False positive rate
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(a) (b)

(c) (d)

Figure 8: CHILD5-5000 dataset parameter changes. (a) Accuracy; (b) Euclid Distance; (c) True
positive rate; (d) False positive rate

4.2 Algorithm Performance Results

In order to verify the effectiveness of the algorithm, the algorithm in this paper is compared with
other three algorithms, PC [20], REC [24], EEMB [27], DCMB [26], and the algorithm only compares
the part of the construction of the undirected independent graph. The algorithm in this paper is based
on the Markov blanket algorithm of locally constrained neighborhoods abbreviated as CNL-MB. The
comparative experiment also uses the standard data sets ALARM, CHILD3, CHILD5 and CHILD10
from 5 different databases. ALARM and CHILD3 database select 3 different scale data sets of 500,
1000, 5000. CHILD5 and CHILD10 select 5000 data sets. The evaluation index selects the algorithm
accuracy (ACC), the sum of the number of CI test calls (SNCC), the sum of CI test order for evaluation
(SCO) and running time (TIME). The experimental results are shown in the Tables 3 and 4.
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(a) (b)

(c) (d)

Figure 9: CHILD10-5000 dataset parameter changes. (a) Accuracy; (b) Euclid Distance; (c) True
positive rate; (d) False positive rate

Table 3: Experimental results of different algorithms under different data sets of the alarm network

Dataset CLN-MB PC-MB REC-MB EEMB DCMB

ALARM-
500

ACC 0.9659 0.9403 0.9644 0.9573 0.9689
SNCC 1852 2439 3813 3639 2048
SCO 2152 1673 3869 2980 1721
TIME 2.5694 2.3879 3.5030 2.8431 1.9483

ALARM-
1000

ACC 0.9687 0.9374 0.9603 0.9644 0.9709
SNCC 1603 3533 4052 3968 1921
SCO 3142 3207 4491 3579 3309
TIME 4.3859 5.2727 5.2430 6.9575 3.5977

(Continued)
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Table 3 (continued)

Dataset CLN-MB PC-MB REC-MB EEMB DCMB

ALARM-
5000

ACC 0.9787 0.9488 0.9758 0.9701 0.9733
SNCC 1925 5610 4796 4929 3098
SCO 5408 7362 6970 5988 5621
TIME 28.9073 26.2061 21.8533 23.6907 22.1215

Table 4: Experimental results of different algorithms under different data sets of the CHILD network

Dataset CLN-MB PC-MB REC-MB EEMB DCMB

CHILD3-
500

ACC 0.9738 0.9612 0.9721 0.9765 0.9730
SNCC 2452 4251 9725 8201 2874
SCO 3161 2961 8396 5385 3011
TIME 4.0198 3.7689 4.9793 5.8778 3.8801

CHILD3-
1000

ACC 0.9792 0.9645 0.9758 0.9781 0.9762
SNCC 1982 6463 10,648 8867 2939
SCO 2546 6871 12,230 6564 3947
TIME 3.8979 5.9702 9.0821 7.8169 3.6829

CHILD3-
5000

ACC 0.9863 0.9716 0.9802 0.9831 0.9825
SNCC 2205 13,799 12,524 10,638 3506
SCO 2715 25,525 18,152 9984 4039
TIME 12.3797 41.6837 80.3910 27.4013 14.2084

CHILD5-
5000

ACC 0.9921 0.984 0.9862 0.9903 0.9819
SNCC 3144 25,795 33,719 25,612 5092
SCO 2705 46,233 46,888 20,400 6994
TIME 39.7482 73.8609 126.222 63.8608 47.3822

CHILD10-
5000

ACC 0.9972 0.9917 0.9967 0.9951 0.9970
SNCC 6019 87,071 141,379 62,991 9254
SCO 6869 60,975 201,652 92,497 13,958
TIME 120.1113 168.9319 559.1701 240.1646 145.2847

As can be seen from Table 3, we indicated the optimal value of each result in bold font. Using
the same ALARM network for undirected independent graph restoration process, the algorithm in
this paper not only has advantages in accuracy, but also can use fewer CI tests and fewer low-level CI
tests. When using 500 sets of data, DCMB has a higher accuracy rate. This is because DCMB uses
“and” and “or” rules to correct errors. So that more detailed information can be obtained, and it can
be relatively accurate in the later use of CI judgments. But the opposite effect is that the smaller the
subset, the more CI judgments will be used later. As the scale of the test data set continues to increase,
the algorithm in this paper shows greater advantages. In 1000 and 5000 sets of data, because more
local constraint node information is obtained, it is guaranteed to use fewer and lower-level CI tests in
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the later stage. In terms of running time, since the dataset size is not large, there is not much difference
between the algorithms.

For the CHILD3, CHILD5 and CHILD10 dataset in Table 4, the increase in the number of nodes
and edges has increased the difficulty of obtaining results, but the algorithm CLN-MB in this paper can
still achieve higher accuracy. Compared with the other three algorithms, it still leads other algorithms
CI test. This is attributed to the algorithm’s utilization of a constraint radius during initialization to
obtain superior local information, enabling more efficient conditional independence testing in later
stages.

In contrast to the PC-MB algorithm, because the PC-MB algorithm uses randomly selected nodes
for CI testing during initialization. Therefore, the algorithm in this paper can accurately and quickly
find and connect nodes with high correlation under the guidance of Markov blanket. This also prevents
the algorithm from using high-level CI tests, further saving computational costs. Compared with the
EEMB algorithm, the advantage of this paper is that the EEMB algorithm can only update the
Markov blanket once, which makes it easy to lose key nodes, so the accuracy rate obtained is low.
The algorithm in this paper makes the Markov blanket set more perfect through initialization and
second update, and the low-order CI test also ensures the efficiency of the algorithm. The DCMB
algorithm has a certain advantage in computational efficiency, but as the dataset size increases, our
algorithm demonstrates a greater advantage in the number of CI test calls. From the experimental
data, it is evident that compared to other algorithms, the algorithm presented in this chapter achieves
higher accuracy with fewer conditional independence tests and using lower-order tests. This capability
primarily stems from the adjustment of distance parameters to reduce computational complexity after
the initialization phase of the algorithm. In the case of the ALARM network, where the network size
contains relatively less local information compared to other datasets in this paper, the advantage of
this approach is less pronounced in terms of computational results. However, the algorithm’s ability
to achieve high accuracy with reduced testing frequency and lower-order tests showcases its efficiency
and effectiveness across different datasets and network complexities.

5 Conclusions

We proposed a Markov blanket discovery algorithm based on local neighborhood space, which
restricts the spatial range of the initial set by constraining the local neighborhood space of nodes. At
the same time, the Markov blanket discovery algorithm is used to complete the constraint on the search
space, and the two effectively reduce the frequency of use of the CI test. The establishment of local
constraint factors greatly reduces the use of high-order CI test through experimental simulation, the
values of the two parameters proposed by the algorithm are first determined. Under the same network
model, through different datasets compared with other algorithms. The algorithm in this paper has a
higher accuracy rate and uses fewer CI tests and lower-level CI tests. In future work, how to achieve
the accuracy of the algorithm under a small data set can be used as a research content.
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