
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.052114

ARTICLE

A Shared Natural Neighbors Based-Hierarchical Clustering Algorithm for
Discovering Arbitrary-Shaped Clusters

Zhongshang Chen, Ji Feng*, Fapeng Cai and Degang Yang

College of Computer and Information Science, Chongqing Normal University, Chongqing, 400030, China

*Corresponding Author: Ji Feng. Email: jifeng@cqnu.edu.cn

Received: 23 March 2024 Accepted: 14 June 2024 Published: 15 August 2024

ABSTRACT

In clustering algorithms, the selection of neighbors significantly affects the quality of the final clustering results.
While various neighbor relationships exist, such as K-nearest neighbors, natural neighbors, and shared neighbors,
most neighbor relationships can only handle single structural relationships, and the identification accuracy is low
for datasets with multiple structures. In life, people’s first instinct for complex things is to divide them into multiple
parts to complete. Partitioning the dataset into more sub-graphs is a good idea approach to identifying complex
structures. Taking inspiration from this, we propose a novel neighbor method: Shared Natural Neighbors (SNaN).
To demonstrate the superiority of this neighbor method, we propose a shared natural neighbors-based hierarchical
clustering algorithm for discovering arbitrary-shaped clusters (HC-SNaN). Our algorithm excels in identifying
both spherical clusters and manifold clusters. Tested on synthetic datasets and real-world datasets, HC-SNaN
demonstrates significant advantages over existing clustering algorithms, particularly when dealing with datasets
containing arbitrary shapes.

KEYWORDS
Cluster analysis; shared natural neighbor; hierarchical clustering

1 Introduction

Clustering is one of the most important methods of data mining [1]. Intuitively, it groups a set
of data in a way that maximizes the similarity within a cluster and minimizes the similarity between
different clusters [2]. In recent years, cluster analysis has been widely used in many aspects, such as
image segmentation [3], business decision-making [4], data integration and other fields. Clustering
methods are typically categorized based on their distinct characteristics, including partition-based
clustering [5], density-based clustering [6], and hierarchical clustering [7], among others.

Partitioned clustering algorithms are a kind of high-efficiency clustering algorithms. It uses an
iteratively updating strategy to optimize the data until reaches the optimal result. Among the repre-
sentative ones is the K-means algorithm [8]. However, K-means is highly sensitive in the initial choice of
cluster centers, and it has limitations in identifying non-spherical clusters. Therefore, researchers have
proposed numerous improvement algorithms. For example, Tzortzis et al. proposed the MinMax K-
means clustering algorithm [9], which uses the variance weights to weigh initial points, and enhances

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.052114
https://www.techscience.com/doi/10.32604/cmc.2024.052114
mailto:jifeng@cqnu.edu.cn

2032 CMC, 2024, vol.80, no.2

the quality of initial centers. To improve the performance of K-means in detecting arbitrary shape
datasets, Cheng et al. proposed the K-means clustering with Natural Density Peaks algorithm (NDP-
Kmeans) [10]. It uses the natural neighbor [11] to compute the density points ρ, and chooses the
ρ of largest known as the natural representative. Iterative updates of these natural representatives
find multiple natural density peaks (NDPs) as initial sub-clusters. In these NDPs, introduced the
Graph Distance to iteratively update these NDPs, until favorable results. It improves two methods that
center point selection and allocation strategy of K-means, and has superior performance in discovering
arbitrary-shaped clusters.

To effectively discover arbitrary-shaped clusters, density-based clustering algorithms are proposed
[12]. DBSCAN [13] is one of the typical representative algorithms among them. It identifies dense
regions as clusters and filters objects in the sparse region. It defines the density of points by setting the
radius ε and the minimum number of points minpts. Dcore [14] assumes that each cluster is composed
of some loosely connected cores that roughly retain the shape of clusters. Daszykowski et al. [15] used
minpts for estimating ε, and thus it sets only one parameter for DBSCAN. RECOME [16] defines the
density as the relative K-nearest neighbor kernel density (RNKD), and then obtains the final result
by merging the highest RNKD clusters. Rodriguez et al. [17] proposed a clustering algorithm based
on based on density and distance (DPC). It selects points with larger densities of ρ and δ distances
as clustering centers, known as density peaks. And then determines the clustering labels for each
remaining points by the nearest point with higher densities. However, the DPC algorithm is unable
to effectively identify the variable-density dataset, and the allocation strategy is sensitive and the fault
tolerance is poor. Cheng et al. [18] introduced the concept of a Granular Ball [19–21] in unsupervised
learning, improving the allocation strategy of DPC. Liu et al. proposed the SNNDPC algorithm [22],
used the shared neighbors to redefine the ρ and δ, and used the two-step allocation method to enhance
its performance in discovering arbitrary-shaped clusters.

Hierarchical clustering seeks to build a hierarchy of clusters [23]. Among them, Chameleon [24] is
a representative algorithm in hierarchical clustering algorithms. It uses the K-nearest neighbor graph
to express the distribution of datasets. Then, it partitions the nearest neighbor graph according to the
hMetis algorithm [25]. Finally, based on the connectivity and compactness of sub-clusters, integrates
clusters in a bottom-to-top manner. Although the Chameleon algorithm has good performance, the
use environment of the hMetis algorithm is not easy to build, and it does not achieve ideal performance
when processing arbitrary-shaped datasets. To improve the Chameleon algorithm’s performance in
processing datasets with arbitrary structures, Zhang et al. [26] used the new natural neighbor graph
to replace the K-nearest neighbor graphs. Liang et al. [27] employed the DPC algorithm framework
to replace both the K-nearest neighbor graphs and the hMetis algorithm. Zhang et al. [28] used the
mutual K-nearest neighbors to directly generate sub-clusters, which omits the process of partitioning
the graph.

Datasets with complex structures generally refer to those that contain clusters with diverse
shapes (including spherical, non-spherical, and manifold), sizes, and densities. Traditional clustering
algorithms (e.g., DBSCAN, K-means) are not particularly effective when dealing with such datasets
[29]. Natural neighbor is a parameter-free algorithm that adaptively constructs neighbor relationships.
This neighbor relationship is very good for the recognition of manifold clusters, but it is not sensitive
to datasets with complex structures. The shared neighbor method [30] takes into consideration the
association between sample points rather than solely relying on simple distance metrics. This similarity
metric better reflects the relationships between data points, particularly when handling non-spherical
or variable density data. However, it is relatively sensitive to the choice of the K parameter.

CMC, 2024, vol.80, no.2 2033

To show that the proposed neighbor method can effectively identify datasets of any structure, we
propose the HC-SNaN algorithm. Inspired by natural neighbors and shared neighbors, we propose a
new neighbor method-shared natural neighbor method. This method skillfully utilizes the advantages
of natural neighbors and shared neighbors, and more effectively reflects the true distribution of data
points in complex structures. The algorithm first constructs a shared natural neighbor graph by using
shared natural neighbors and then cuts sub-clusters into multiple cut sub-graphs. Next, we merge the
fuzzy points with the cut sub-graphs to form initial sub-clusters. Among them, fuzzy points are points
not connected in the sub-graph while cutting the sub-graphs. Finally, based on our proposed new
merging strategy, the initial clusters are merged. To show the process of our algorithm more clearly,
the flow chart of our proposed HC-SNaN algorithm is shown in Fig. 1.

Figure 1: Flow chart of the proposed hierarchical clustering method HC-SNaN

The experimental results on synthetic datasets and real-world datasets show that our algorithm
is more effective and efficient than existing methods when processing datasets with arbitrary shapes.
Overall, the major contributions of this paper are:

1. We propose a new neighbor method. This method combines the characteristics of natural
neighbors and shared neighbors, it shows excellent performance when dealing with variable-
density and noise datasets.

2. We propose a new method to generate sub-clusters on shared natural neighbors. This method
first uses the shared natural neighbor graph to divide the dataset into multiple sub-clusters.
Then uses a new merging strategy to merge into pairs of sub-clusters. Thus, satisfactory
clustering results can be obtained on multiple datasets.

3. Experimental results on synthetic and real-world datasets show that the HC-SNaN has more
advantages in detecting arbitrary-shaped clusters than other excellent algorithms.

In Section 2, we review research related to natural neighbors and shared neighbors. Section 3
introduces the main principles and ideas of shared natural neighbors and describes the algorithm
proposed in this paper in detail. Section 4 demonstrates the analysis of the synthetic experimental
result datasets and the real-world datasets while evaluating the algorithm’s performance. Finally, in
the concluding section, we summarize the main points of this paper and highlight possible future
challenges.

2034 CMC, 2024, vol.80, no.2

2 Related Works
2.1 Natural Neighbor

In contrast, the natural neighbor method automatically adapts to the dataset is distribution,
eliminating the need for manual K parameter selection. The effectiveness of natural neighbors has been
demonstrated in various applications, including cluster analysis, instance approximation, and outlier
detection [31–33]. The core idea of natural neighbors is primarily manifested in three key aspects:
neighborhood, search algorithm, and the number of neighbors.

Definition 1 (Stable searching state). A stable search state can be reached if and only if the natural
neighbor processes satisfy the following conditions:

(∀xi)
(∃xj

) ∧ (
xi �= xj

) → (
xi ∈ KNNλ

(
xj

)) ∧ (
xj ∈ KNNλ (xi)

)
(1)

The parameter λ represents the natural eigenvalue obtained through the natural neighbor algo-
rithm. Assuming this condition is satisfied for the first time in the initial λ (where 1 ≤ λ ≤ N) rounds
of search, the stable search state for any object is characterized by the existence of one or more objects
that are each other’s λ-nearest neighbors. The KNNλ (xi) represents the λ-nearest neighbor of xi.

Definition 2 (Natural neighbor). In a naturally stable search algorithm, data points in the
immediate neighborhood are considered natural neighbors of each other. Assuming that the search
state stabilizes after the λth round of search. For any data points xi and xj, if they are each other’s
neighbors, they share the following relationship:

xj ∈ NNλ (xi) ⇔ ((
xi ∈ KNNλ

(
xj

)) ∧ ((
xj ∈ KNNλ

(
xi

))
(2)

The NNλ (xi) denotes the set of natural neighbors of point xi, and NNλ

(
xj

)
represents the set of

natural neighbors of point xj. The natural neighbor is characterized by both invariance and stability.
Invariance implies that if xi is in the natural neighbor set of xj during the algorithm’s search, then
when the algorithm reaches the steady state, it remains correct that xi is still the natural neighbor of
xj. Stability signifies that, for the same datasets, the set of natural neighbors obtained by the natural
neighbor search algorithm for each point remains constant regardless of how many times the algorithm
is repeated.

2.2 Shared Neighbor

A sample and its neighboring data points usually belong to the same cluster category, allowing
for a more accurate assessment of the sample’s local density based on its neighboring information.
Specifically, the shared region encompassing a sample and its neighbors provides rich local informa-
tion, aiding in a more precise depiction of the sample’s distribution.

Incorrectly determining similarity can result in misclassifications. The shared region among
samples plays a pivotal role in determining sample similarity and local density. Therefore, establishing
sample similarity and local density based on the relationships between a sample and its neighbors is
crucial for improving clustering accuracy.

Definition 3 (Shared neighbor). For any points xi and xj in the dataset X, KNN (xi) represents the
K-nearest neighbor of xi and KNN

(
xj

)
represents the K-nearest neighbor of xi. The shared neighbors

of xi and xj, denoted as:

SNN
(
xi, xj

) = KNN (xi) ∩ KNN
(
xj

)
(3)

CMC, 2024, vol.80, no.2 2035

Eq. (4) defines the shared neighbor similarity between xi and xj.⎧⎪⎪⎨
⎪⎪⎩

|SNN
(
xi, xj

) |2

∑
xp∈SNN(xi ,xj)

(
d(xi ,xp) + d(xj ,xp)

) , if xi, xj ∈ SNN
(
xi, xj

)

0, otherwise

(4)

For a sample xi, its shared neighbor local density is defined as:

ρxi =
∑

j∈L(xi)

Sim
(
xi, xj

)
(5)

where L (xi) is the set of K points with the highest similarity to xi.

3 Proposed Algorithm

Identifying any dataset requires excellent recognition ability for complex datasets. In order to
identify datasets with complex structures, it is a good way to divide complex structures into multiple
simple structures. HC-SNaN algorithm inspired by this has three steps: the first step is to construct
a neighborhood graph representing the structure of a dataset, and then partition the neighborhood
graph into several sub-graphs and fuzzy points. The second step is to assign fuzzy points to sub-graphs
according to rules. The third step is to merge sub-graphs and obtain the final clustering result. In this
section, we will detail the details of the algorithm.

3.1 Shared Natural Neighbor SNaN and Shared Natural Neighbor Graph GSNaN

Shared natural neighbors have better adaptability for identifying complex datasets. In comparison
to the K-nearest neighbor method, the natural neighbor method is more flexible and exhibits stronger
robustness. This flexibility arises from the natural neighbor method’s ability to dynamically acquire
neighbors based on the distribution pattern of the environment where the data points are situated.
Consequently, it can more effectively adapt to datasets with varying densities and distributions,
particularly suited for streaming datasets.

The shared neighbor method establishes similarity between data points based on their shared K
-nearest neighbors. To ensure the validity of the similarity measure, shared neighbors require that
the data points themselves share a common neighbor. This property allows shared neighbors to
avoid combining a small number of relatively isolated points with high density, making it particularly
sensitive to datasets with variable density.

Inspired by the advantages of the above two neighbor methods, we propose a new neighbor
method-shared natural neighbor. This method is not influenced by neighbor parameters and effec-
tively prevents over-aggregation among high-density points. It demonstrates flexibility in adapting to
datasets with different density distributions, making it valuable for discovering clusters with arbitrary
structures. Its specific implementation is shown in Eq. (6).

Definition 4 (Shared natural neighbor). For any two natural neighbor points ni and nj, NNλ (ni)

denotes the set of natural neighbors of ni, and NNλ

(
nj

)
denotes the set of natural neighbors of nj.

Therefore, the shared natural neighbors of ni and nj are denoted as:

SNaN
(
ni, nj

) = NNλ (ni) ∩ NNλ (ni) (6)

2036 CMC, 2024, vol.80, no.2

The quantity of shared natural neighbor for the pair ni and nj is denoted by
∣∣SNaN

(
ni, nj

)∣∣.
Fig. 2 illustrates the neighbor graphs of four types of neighbors on the variable-density dataset.

After conducting ten experiments, we identified optimal results for both the K-nearest neighbor and
shared neighbor graphs. As shown in Fig. 2a, regardless of the chosen K value, the K-nearest neighbor
graph failed to express the dataset’s distribution. While the shared neighbor graph in Fig. 2b could
discern the variable-density characteristics, it resulted in numerous sub-graphs that may affect the
final clustering. In the variable-density dataset, the performance limit of natural neighbor so, it fails
to identify the distribution characteristics of accurately of the dataset in Fig. 2c. In contrast, the
shared natural neighbor graph in Fig. 2d precisely divided the dataset into two sub-graphs, effectively
representing the dataset’s distribution, and without generating excess sub-graphs to affect the sequel
clustering process.

Figure 2: Neighbor graphs of the variable-density dataset. (a) K-nearest neighbor (K = 3) (b) shared
neighbor (K = 12) (c) natural neighbor (d) shared natural neighbor. Gray points are fuzzy points

CMC, 2024, vol.80, no.2 2037

3.2 Hierarchical Clustering Algorithm Based on Shared Natural Neighbor

The GSNaN partitions the dataset into multiple sub-clusters and fuzzy points, effectively illustrat-
ing the distribution relationship within the dataset. The subsequent steps involve assigning fuzzy
points and ultimately merging sub-clusters to derive the final clustering result. In this section, we
provide a detailed introduction to our proposed HC-SNaN algorithm, including a novel merging
strategy for allocating fuzzy points and merging sub-clusters. A process diagram of our algorithm is
presented in Fig. 3.

Figure 3: Assignment steps of HC-SNaN algorithm (a) Cutting the neighbor graph (b) merge the fuzzy
points (c) merge the sub-clusters (d) after allocating local outliers, the final clustering results

Definition 5 (Shared natural neighbor similarity). For any two natural neighbor points ni and nj,
NNλ (ni) represents the λ natural neighbors of ni, and the same for nj. The shared natural neighbor
similarity of ni and nj, denoted as:

SIM
(
ni, nj

)
(SNaN)

=

⎧⎪⎪⎨
⎪⎪⎩

|SNaN
(
ni, nj

) |2∑
p∈SNaN(ni ,nj)

(
dnip + dnjp

) , if ni, nj ∈ SNaN
(
ni, nj

)

0, otherwise

(7)

2038 CMC, 2024, vol.80, no.2

Definition 6 (Sub-cluster core point). For natural neighbors ni within sub-cluster Ci, the local
density is obtained by summing the similarities of all shared natural neighbors of ni. The point with
the highest local density in the sub-cluster is then selected as the core point of the sub-cluster:

Cop (Ci) = argmax
ni∈Ci

∑
nj∈Ci

SIM
(
ni, nj

)
sort

(SNaN)

(8)

Definition 7 (Local density of natural neighbor). The local density of the natural neighbor is
represented denoted as:

NaD (ni) = Num (ni)

max
p∈NNλ(ni)

d (ni, p)
(9)

where Num (ni) is the natural neighbor’s number of ni.

Definition 8 (Cluster crossover degree). For Ci and Cj, their sub-cluster crossover degree based on
local density of natural neighbor is calculated, denoted as:

CCD
(
Ci, Cj

) =
√

NaDCop(Ci) · NaDCop(Cj)

NaDCop(Ci) + NaDCop(Cj)
(10)

Definition 9 (Shortest distance between sub-clusters). All distances between points in sub-clusters
Ci and Cj are sorted in ascending order at first. Then the shortest distance is calculated by the mean
value of the first cn(ni ,nj) distance, denoted as:

Dmin

(
Ci, Cj

) = 1
cn(ni ,nj)

cn
(ni ,nj)∑

1

∑
(ni∈ci ,nj∈cj)

(
d(ni ,nj)

)
sort

(11)

where cn(ni ,nj) is all points of Ci and Cj. To reduce the impact of outliers, we use the minimum 10% of
the shortest distances in Ci and Cj to calculate the cn(ni ,nj).

Definition 10 (Natural neighbors shared between sub-clusters). The natural neighbors shared
between sub-clusters are represented as:

NNS
(
Ci, Cj

) =
(

∪
ni∈Ci

NNλ (ni)

)
∩

(
∪

nj∈Cj
NNλ

(
nj

))
(12)

where ∪
ni∈Ci

NNλ (ni) is a union of all NNλ (ni) of in Ci, the ∪
nj∈Cj

NNλ

(
nj

)
is a union of all NNλ

(
nj

)
of in

Cj. When the intersection of natural neighbors between two clusters is not empty, it indicates a certain
degree of connectivity.

In the segmentation stage of HC-SNaN, we first constructed the shared natural neighbor graph
GSNaN. Subsequently, temporarily remove these points whose number of shared natural neighbors is
lower than the cut threshold CGThr in the GSNaN. The removed points are defined as fuzzy points. This
step makes the boundary between clusters clearer, it can help to discover arbitrary-shaped clusters.
Among them, the CGThr is the user-specified number of shared natural neighbors. The GSNaN combines
the characteristics of natural neighbors and shared neighbors. It is more suitable for expressing the
distribution structure of the datasets. Detailed steps are described in Algorithm 1.

CMC, 2024, vol.80, no.2 2039

Algorithm 1: Cut sub-graphs
Input: X (the dataset), CGThr(the cutting graph thresholds)
Output: Ccut(cut sub-clusters), fp (fuzzy point)
Search for the λ-nearest neighbors for each data point;
Find a stable state based on the concept of natural neighbors;
Calculate SNaN

(
ni, nj

)
according to Eq. (6);

For each pair of SNaN
(
ni, nj

)
do

If
∣∣SNaN

(
ni, nj

)∣∣ > CGThr then
Connect this pair of SNaN

(
ni, nj

)
;

else
This pair of points is fp;

End
The sub-graphs connected by edges are termed as Ccut;

End

Moving to the merging phase, we calculate the distance of fuzzy points from the sub-cluster core
point, as well as the average distance. Next, we determine the clusters to which the natural neighbors
of the fuzzy point are subordinate. Finally, the fuzzy point is assigned to the cluster closest to the core
point of the sub-cluster, provided it is smaller than the average distance to the core points of other sub-
clusters. Fuzzy points that cannot be assigned are designated as local outlier points. Detailed steps are
described in Algorithm 2.

Algorithm 2: Generate the initial sub-clusters
Input: X (the dataset)
Output: Cinitial(the initial sub-clusters), lo(the local outlier points)
Generate cut sub-clusters Ccut and fuzzy point fp according to Algorithm 1;
For Ccut (Ci, . . . , Cn) do

Calculate Cop (Ccut (Ci)) based on Eq. (8);
End
For each point xi in fp do

Calculate the distance dx between xi and Cop (Ci, . . . , Cn);
Calculate the average distance dx between xi and Cop (Ci, . . . , Cn);
Calculate the Ccut to which the natural neighbor of the xi belongs;
If dx > dx then

Merge xi to Ccut where their nearest natural neighbors belong;
else

xi is defined as local outlier points lo;
End

End

Upon completing the assignment of fuzzy points, an initial cluster is formed. Subsequently, we
calculate the cluster crossover degree, the shortest distance between sub-clusters, and the natural
neighbors shared between sub-clusters. The merging process continues until the desired number of
clusters is achieved. Finally, we assign the lo to obtain the final clustering result. Detailed steps are
described in Algorithm 3.

2040 CMC, 2024, vol.80, no.2

Algorithm 3: HC-SNaN
Input: X (the dataset), CGThr (the cutting graph thresholds), nc (the number of clusters)
Output: Clustering results
Generate cut sub-clusters Ccut and fuzzy point fp according to Algorithm 1;
Generate sub-clusters and local outlier points lo according to Algorithm 2;
Calculate the local density of natural neighbor NaD (ni) according to Eq. (9);
While length(sub-clusters) > nc do

Calculate CCD
(
Ci, Cj

)
, Dmin

(
Ci, Cj

)
and NNS

(
Ci, Cj

)
using Eqs. (10)–(12);

Calculate the distance Dx between Cop (Ci) and Cop
(
Cj

)
;

Calculate the average distance Dx between Cop (Ci) and Cop (Ci, . . . , Cn);
Sort CCD

(
Ci, Cj

)
in decreasing order;

For highest CCD
(
Ci, Cj

)
do

If |NNS
(
Ci, Cj

) | > 0 and Dmin

(
Ci, Cj

)
< aveDmin

(
Ci, Cj

)
then

Merge
(
Ci, Cj

)
;

End
End
For highest CCD

(
Ci, Cj

)
do

If |Dmin

(
Ci, Cj

)
< aveDmin

(
Ci, Cj

)
and Dx < Dx then

Merge
(
Ci, Cj

)
;

End
End

End
For each point xi in lo do

Calculate the natural density difference
∑

xj∈KNNλ(xi)

NaD (xi)

NaD
(
xj

) ;

Assign xi to the cluster whose λ-nearest neighbor has a natural density difference value close to 1;
End

The main improvement of the HC-SNaN algorithm: it constructs sparse graphs based on
the shared natural neighbor construction, which not only sparse the data but also improves the
rarefaction of the algorithm to different datasets. In the merging phase, the algorithm considers the
interconnection and compactness within the data. This operation can better capture the features inside
the cluster, which is highly effective for processing datasets with different shape densities.

3.3 Complexity Analysis

HC-SNaN mainly includes three steps: The first step is to divide the sub-graph. First, we search
the natural neighbor O (nlogn), construct the GSNaN, and divide this graph O (nlogn). The complexity
of the first step is O (nlogn). The second step is to assign fuzzy points. It is necessary to calculate the
shared natural neighbor similarity O

(
n2

)
, the sub-cluster core point O (nlogn), the distance between

the core points of the sub-clusters, and the average distance O
(
n2

)
. The complexity of the second step

is O
(
nlogn + 2n2

)
. The third step is to merge sub-clusters and assign local outliers. It is necessary to

calculate the degree of intersection of sub-clusters O
(
n2

)
, the shortest distance of sub-clusters O

(
n2

)
and the shared natural neighbor between sub-clusters O

(
n2

)
, and assign local outliers O

(
n2

)
. The

CMC, 2024, vol.80, no.2 2041

complexity of the third step is O
(
4n2

)
. Assuming that n is a large number, the time complexity of

HC-SNaN can be regarded as O
(
n2

)
.

4 Experimental Analysis

To illustrate the effectiveness of the HC-SNaN algorithm, we conducted experiments on synthetic
datasets and real datasets. These datasets have different scales, different dimensions, and different flow
structures. The information of these datasets is shown in Table 1.

Table 1: Details of datasets

Dataset Samples Attribute Clusters Dataset Sample Attribute Clusters

Pathbased 299 2 3 Wine 178 13 3
Jain 372 2 2 Haberman 306 3 2
Compound 403 2 3 Ecoli 336 7 8
Dadom 499 2 6 Dermatology 358 34 6
Aggregation 787 2 7 BCW 683 10 2
T2-4T 4197 2 6 Mnist 810 500 7
Atom 499 3 2 Contraceptive 1473 9 3
Chainlink 499 3 2 Page-blocks 5473 10 5

4.1 Experimental Methods

To further assess the superiority of our proposed HC-SNaN algorithm, this section will present
a comparison of our algorithm with seven others. These include recent algorithms: GB-DP algorithm
[18], SNNDPC algorithm [22], NDP-Kmeans algorithm [10], and HC-LCCV algorithm [34]. Classical
algorithms: DBSCAN algorithm [13], K-means algorithm [8], and DPC algorithm [17]. In Tables 2
and 3, the use of boldface indicates the optimal results obtained in the algorithm experiments. The
corresponding parameter for achieving the optimal result on the dataset is denoted as Arg.

Table 2: Clustering results on synthetic datasets

Algorithm AMI ARI FMI Arg. AMI ARI FMI Arg.

Pathbased Jain
DPC 0.5035 0.4196 0.6487 3.8 0.6365 0.6965 0.8739 0.9
GB-DP 0.4934 0.4338 0.6597 3 0.2193 0.0591 0.5947 2
NDP-Kmeans 0.5173 0.3092 0.3759 3/0 1 1 1 2/0
HC-LCCV 0.4699 0.2685 0.3730 ∼ 0.5061 0.3595 0.4698 ∼
K-means 0.5452 0.4642 0.6629 3 0.3677 0.3241 0.7005 2
DBSCAN 0.6652 0.4573 0.7279 1.81/17 0.9713 0.9887 0.9956 2.6/16
SNNDPC 0.9005 0.9292 0.9528 9/3 0.4354 0.4060 0.7397 12/2
HC-SNaN 0.9657 0.9798 0.9865 1/3 1 1 1 0/2

(Continued)

2042 CMC, 2024, vol.80, no.2

Table 2 (continued)

Algorithm AMI ARI FMI Arg. AMI ARI FMI Arg.

Compound Dadom
DPC 0.8383 0.6450 0.7288 9/6 0.6287 0.3710 0.5208 2.62/6
GB-DP 0.8003 0.7489 0.8222 6 0.7081 0.5704 0.6623 6
NDP-Kmeans 0.8211 0.4903 0.3464 0.7/6 0.7766 0.4290 0.6906 0.1/6
HC-LCCV 0.9145 0.7470 0.4422 ∼ 0.9057 0.7498 0.8677 ∼
K-means 0.7381 0.5864 0.6798 6 0.7320 0.6305 0.7021 6
DBSCAN 0.9039 0.8220 0.9268 1.5/13 0.5729 0.5380 0.8017 0.21/2
SNNDPC 0.8471 0.8372 0.8764 16/6 0.8477 0.7354 0.7854 2/6
HC-SNaN 0.9925 0.9973 0.9979 1/6 1 1 1 0/6

Aggregation T2-4T
DPC 0.9341 0.9199 0.9380 0.9 0.6933 0.4690 0.5945 3.59
GB-DP 0.6557 0.5362 0.6359 7 0.4470 0.2876 0.4473 6
NDP-Kmeans 0.9245 0.7778 0.8950 7/0.3 0.8982 0.7589 0.8965 0.1/6
HC-LCCV 0.8894 0.6792 0.4026 ∼ 0.0398 0.0060 0.4936 ∼
K-means 0.8391 0.7112 0.7722 7 0.6547 0.4835 0.5952 6
DBSCAN 0.8166 0.6052 0.8062 0.951/4 0.8450 0.6613 0.8608 0.07/5
SNNDPC 0.9548 0.9593 0.9681 15/7 0.7064 0.5073 0.6244 16/6
HC-SNaN 0.9794 0.9855 0.9886 2/7 0.9823 0.9784 0.9798 8/6

Atom Chainlink
DPC 0.1325 0.0318 0.6581 1.8/2 0.3114 0.2068 0.6593 2.29/2
GB-DP 0.2655 0.1495 0.6492 2 0.1254 0.1310 0.5979 2
NDP-Kmeans 0.0186 0.0002 0.6995 2/0.1 1 1 1 2/0.1
HC-LCCV 1 1 1 ∼ 1 1 1 ∼
K-means 0.2964 0.1880 0.6559 2 0.0950 0.1269 0.5645 2
DBSCAN 0.9913 0.9653 0.9362 3.5/9 0 0 0.7064 0.51/1
SNNDPC 1 1 1 4/2 0.2891 0.1777 0.6531 3/2
HC-SNaN 1 1 1 0/2 1 1 1 0/2

Table 3: Clustering results on real-world datasets

Algorithm AMI ARI FMI Arg. AMI ARI FMI Arg.

Wine Haberman
DPC 0.3965 0.2926 0.6192 0.6 0.0082 0.0115 0.7805 1.3
GB-DP 0.3318 0.2235 0.5832 3 −0.0039 0.0072 0.7769 2
NDP-Kmeans 0.4080 0.1671 0.3458 0.1/3 0.0034 −0.0021 0.7771 0/2
HC-LCCV 0.3925 0.2030 0.2942 ∼ 0.0130 0.0315 0.7390 ∼
K-means 0.4288 0.2795 0.3392 3 −0.0018 −0.0039 0.5508 2
DBSCAN 0.0000 0.0000 0.5813 0.5/2 0.0000 0.0000 0.0000 1.97/15
SNNDPC 0.8763 0.8983 0.9324 18/3 0.0012 −0.0114 0.5596 7/2
HC-SNaN 0.9465 0.9651 0.9769 0/3 0.0257 0.0415 0.7787 4/2

(Continued)

CMC, 2024, vol.80, no.2 2043

Table 3 (continued)

Algorithm AMI ARI FMI Arg. AMI ARI FMI Arg.

Ecoli Dermatology
DPC 0.4477 0.3750 0.6483 0.4 0.5947 0.3591 0.5665 0.4
GB-DP 0.5482 0.3661 0.5523 8 0.0165 0.0039 0.1991 6
NDP-Kmeans 0.0300 0.0024 0.5783 0.1/8 0.3798 0.0882 0.1845 0.1/6
HC-LCCV 0.4546 0.2430 0.3389 ∼ 0.2574 0.0472 0.2080 ∼
K-means 0.5889 0.3006 0.2760 8 0.1846 0.0465 0.1104 6
DBSCAN 0.0761 0.0458 0.4140 0.8/4 0.5965 0.4147 0.5380 0.99/3
SNNDPC 0.5536 0.5653 0.7066 7/8 0.8711 0.7332 0.7876 9/6
HC-SNaN 0.6060 0.5544 0.7290 7/8 0.8420 0.7822 0.8295 6/6

BCW Mnist
DPC 0.6971 0.8029 0.9118 0.2 0.8969 0.8636 0.9092 3.59
GB-DP 0.0009 0.0027 0.7346 2 0.0407 −0.0253 0.2874 6
NDP-Kmeans 0.0047 0.0170 0.4325 0.2/2 0.0184 −0.0006 0.5878 0.1/6
HC-LCCV 0.0168 0.0059 0.3032 ∼ 0 0 0 ∼
K-means 0.0047 0.0170 0.4325 2 0.8722 0.8965 0.8965 6
DBSCAN 0.7630 0.8523 0.9318 0.6/8 −0.0743 0.0025 0.4043 0.07/5
SNNDPC 0.7910 0.8579 0.9340 10/2 0.9233 0.8755 0.9167 16/6
HC-SNaN 0.8092 0.8909 0.9500 9/2 0.9295 0.8766 0.9175 8/6

Contraceptive Page-blocks
DPC 0.0103 0.0026 0.4336 0.3 0.0308 0.0273 0.9015 2.29/2
GB-DP 0.2451 0.1497 0.4780 3 0.0015 0.0076 0.8951 2
NDP-Kmeans 0.0150 0.0016 0.5847 0.2/3 0.0102 0.0044 0.8104 2/0.1
HC-LCCV 0.0293 0.0055 0.2979 ∼ 0.0336 0.047 0.7867 ∼
K-means 0.0293 0.0170 0.3644 3 0.0487 −0.0105 0.6505 2
DBSCAN −0.0017 0.0006 0.5908 1.3/4 0.0582 0.0304 0.8126 0.51/1
SNNDPC 0.0093 0.0012 0.4414 21/3 0.1272 0.053 0.6348 3/2
HC-SNaN −0.0010 0.0003 0.5930 2/3 0.1283 0.2048 0.9002 0/2

For parameter settings, K-means and GB-DP algorithms only require specifying the number of
clusters. However, due to K-means is instability, we conducted five experiments on each dataset to
obtain optimal results. The SNNDPC algorithm requires setting the parameters K and the number
of clusters. The NDP-Kmeans algorithm needs to set the proportion of noise points alpha and
the number of clusters. HC-LCCV does not require any parameters. DBSCAN requires setting two
parameters: ε and minpts.

In the experiment, we used AMI [35], ARI [36], and FMI [37] to evaluate the performance
of clustering algorithms. The experiments were conducted on a desktop computer with a Core i5
3.40 GHz processor, windows 11 operating system, and 16 GB RAM, running on PyCharm 2022.

4.2 Clustering on Synthetic Datasets

Firstly, we conducted experiments on eight synthetic datasets, including two three-dimensional
datasets and one noise dataset. The first five datasets are common and complex. The detailed

2044 CMC, 2024, vol.80, no.2

information on these datasets is listed in Table 1. Fig. 4 shows the clustering results of the HC-SNaN
algorithm.

(e) Aggregation (f) T2 -T4 (g) Atom (h) Chainlink

(a) Pathbased (b) Jain (c) Compound (d) Dadom

Figure 4: Clustering results of HC-SNaN on synthetic datasets (a–h)

For instance, as shown in Fig. 4a Pathbased dataset, three clusters are closely connected, yet HC-
SNaN misallocated only one data point. However, in this dataset, besides the SNNDPC, the metrics
of the other six algorithms indicate their failure to recognize even basic shapes. In the Jain dataset
depicted in Fig. 4b, HC-SNaN perfectly identifies the dataset. Jain consists of two intertwined clusters
shaped like new moons, representing a typical flow dataset with uneven densities. However, according
to Table 1, the indicators of NDP-Kmeans are also 1, and SNNDPC’s metrics are all above ninety-
seven. Nevertheless, the other five algorithms fail to recognize this dataset. In the Dadom dataset
shown in Fig. 4d, HC-SNaN metrics are all 1. Dadom comprises complex manifold clusters. As shown
in Table 1, except for HC-SNaN, the other seven algorithms cannot effectively recognize this dataset.
In the Aggregation dataset depicted in Fig. 4e, HC-SNaN ranks first in all metrics, while SNNDPC,
DPC, and NDP-Kmeans also achieve metrics exceeding ninety. The Chainlink dataset in Fig. 4h is a
three-dimension dataset. Although the structure of this dataset seems simple, but significantly different
densities between two clusters. HC-SNaN, HC-LCCV, and NDP-Kmeans all yield the best results,
while the remaining five algorithms fail to successfully cluster the data.

NDP-Kmeans and GB-DP are algorithms introduced in 2023, whereas SNNDPC and HC-LCCV
are relatively new algorithms released within the past five years. Therefore, in this section of results
analysis, we selected these four algorithms and presented the clustering outcome graphs for some
datasets.

Fig. 5 illustrates the clustering results of GB-DP, HC-LCCV, SNNDPC, and NDP-Kmeans on
Compound, T2-4T and Atom datasets. The first line’s Compound dataset consists of six closely
connected clusters merged at varying densities. Most algorithms are difficult to identify this dataset. As
shown in Fig. 4c, HC-SNaN only misallocated one data point. However, none of these four algorithms
could correctly identify this dataset. The second line’s T2-4T is a noise dataset. Ordinary algorithms
struggle to recognize noise datasets without appropriate processing, especially when the dataset’s top
features two ellipses and a stick-like cluster that are closely linked, easily mistaken for a single cluster.

CMC, 2024, vol.80, no.2 2045

The second line of Fig. 5 reveals that these four algorithms all fail to recognize this noise dataset. The
HC-SNaN algorithm obtains sub-graphs and fuzzy points by dividing the shared neighbor graph. In
general, the number of natural neighbors shared between fuzzy points is small. In the noise dataset,
noise points have fewer neighbors, so they are easily detected as fuzzy points. In Fig. 4f, our algorithm
exhibits excellent performance on noise datasets. The third column of Fig. 5 features a three-dimension
dataset Atom, which appears simple with just two clusters, but them blends at different densities. While
SNNDPC and HC-LCCV both accurately identified this dataset, GB-DP and NDP-Kmeans showed
poorer clustering performance.

Figure 5: Results on the synthesized datasets. The first column is the GB-DP result, the second column
is the SNNDPC result, the third column is the NDP-Kmeans result, and the last column is the HC-
LCCV result

4.3 Clustering on Real-World Datasets

To assess the viability of the HC-SNaN algorithm for high-dimensional data, we conducted
comparative experiments with seven other clustering algorithms on eight real-world datasets sourced
from the UCI Machine Learning Repository. These real-world datasets vary in scale and dimensions.
The clustering results, presented in Table 3 showcase the comparative results of HC-SNaN alongside
the other algorithms.

The HC-SNaN consistently outperforms the other algorithms on the Wine, haberman, BCW,
and mnist datasets, where metrics like AMI, ARI, and FMI rank first, with some metrics significantly
surpassing other algorithms. In the Ecoli datasets, HC-SNaN achieves optimal levels of AMI and
FMI metrics, with ARI ranking second. For the Dermatology dataset, HC-SNaN attains the highest
ARI and FMI metrics, surpassing the other six algorithms. In the Contraceptive dataset, HC-SNaN
exhibits the best FMI performance. The Page-blocks dataset shows the metrics rank first with the AMI
and ARI, but the FMI compared to the DPC algorithm witch slightly inferior.

2046 CMC, 2024, vol.80, no.2

Overall, experimental verification confirms that HC-SNaN outperforms the other seven algo-
rithms on most real-world datasets. The results underscore the algorithm’s high clustering performance
in discovering various shapes of clustering structures, particularly excelling in handling clustering tasks
in dense regions.

5 Conclusion

In this paper, we introduce a novel neighbor method called shared natural neighbors (SNaN).
The SNaN is derived by combining natural neighbors and shared neighbors, and then a graph GSNaN is
constructed based on SNaN. This graph accurately identifies the distribution of datasets with arbitrary
shapes, providing valuable assistance for subsequent merging clustering. To showcase the superiority of
our SNaN method, we propose the hierarchical clustering algorithm HC-SNaN. Experimental results
on both synthetic and real-world datasets demonstrate that HC-SNaN has satisfactory clustering
results across diverse datasets with different shapes and densities.

However, it is important to note that our algorithm for processing large-scale high-dimensional
data may incur substantial time costs, which is an inherent limitation of hierarchical clustering.
Therefore, further research is needed to explore the application of this algorithm to massive high-
dimensional datasets.

Acknowledgement: The authors would like to thank the editors and reviewers for their professional
guidance, as well as the team members for their unwavering support.

Funding Statement: This work was supported by Science and Technology Research Program of
Chongqing Municipal Education Commission (KJZD-M202300502, KJQN201800539).

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design: Zhongshang Chen and Ji Feng; Manuscript: Zhongshang Chen; Analysis of results:
Degang Yang and Fapeng Cai. All authors reviewed the results and approved the final version of
the manuscript.

Availability of Data and Materials: The data that support the findings of this study are available from
the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] S. Zheng and J. Zhao, “A new unsupervised data mining method based on the stacked autoencoder for

chemical process fault diagnosis,” Comput. Chem. Eng., vol. 135, pp. 106755, Oct. 2020. doi: 10.1016/j.
compchemeng.2020.106755.

[2] C. Fahy, S. Yang, and M. Gongora, “Ant colony stream clustering: A fast density clustering algo-
rithm for dynamic data streams,” IEEE Trans. Cybern., vol. 49, no. 6, pp. 2215–2228, 2019. doi:
10.1109/TCYB.2018.2822552.

[3] B. Szalontai, M. Debreczeny, K. Fintor, and C. Bagyinka, “SVD-clustering, a general image-analyzing
method explained and demonstrated on model and Raman micro-spectroscopic maps,” Sci. Rep., vol. 10,
no. 1, pp. 4238, 2020. doi: 10.1038/s41598-020-61206-9.

[4] S. Cai and J. Zhang, “Exploration of credit risk of P2P platform based on data mining technology,” J.
Comput. Appl. Math., vol. 372, no. 1, pp. 112718, 2020. doi: 10.1016/j.cam.2020.112718.

10.1016/j.compchemeng.2020.106755
10.1016/j.compchemeng.2020.106755
https://doi.org/10.1109/TCYB.2018.2822552
https://doi.org/10.1038/s41598-020-61206-9
https://doi.org/10.1016/j.cam.2020.112718

CMC, 2024, vol.80, no.2 2047

[5] P. Tavallali, P. Tavallali, and M. Singhal, “K-means tree: An optimal clustering tree for unsupervised
learning,” J. Supercomput., vol. 77, no. 5, pp. 5239–5266, 2021. doi: 10.1007/s11227-020-03436-2.

[6] B. Bataineh and A. A. Alzahrani, “Fully automated density-based clustering method,” Comput. Mater.
Contin., vol. 76, no. 2, pp. 1833–1851, 2023. doi: 10.32604/cmc.2023.039923.

[7] H. Xie, S. Lu, and X. Tang, “TSI-based hierarchical clustering method and regular-hypersphere
model for product quality detection,” Comput. Ind. Eng., vol. 177, no. 2, pp. 109094, 2023. doi:
10.1016/j.cie.2023.109094.

[8] J. MacQueen, “Some methods for classification and analysis of multivariate observations,” Proc. Fifth
Berkeley Symp. Math. Stat. Probab., vol. 1, pp. 281–297, 1967.

[9] G. Tzortzis and A. Likas, “The MinMax k-means clustering algorithm,” Pattern Recognit., vol. 47, no. 7,
pp. 2505–2516, 2014. doi: 10.1016/j.patcog.2014.01.015.

[10] D. Cheng, J. Huang, S. Zhang, S. Xia, G. Wang and J. Xie, “K-means clustering with natural density peaks
for discovering arbitrary-shaped clusters,” IEEE Trans. Neural Netw. Learn. Syst., pp. 1–14, 2023. doi:
10.1109/TNNLS.2023.3248064.

[11] Q. Zhu, J. Feng, and J. Huang, “Natural neighbor: A self-adaptive neighborhood method without
parameter K,” Pattern Recognit. Lett., vol. 80, no. 1, pp. 30–36, 2016. doi: 10.1016/j.patrec.2016.05.007.

[12] A. Fahim, “Adaptive density-based spatial clustering of applications with noise (ADBSCAN) for
clusters of different densities,” Comput. Mater. Contin., vol. 75, no. 2, pp. 3695–3712, 2023. doi:
10.32604/cmc.2023.036820.

[13] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters in large
spatial databases with noise,” in Proc. Second Int. Conf. Knowl. Discov. Data Min., Portland, OR, USA,
1996, vol. 96, pp. 226–231.

[14] Y. Chen et al., “Decentralized clustering by finding loose and distributed density cores,” Inf. Sci., vol. 433,
no. 1, pp. 510–526, 2018. doi: 10.1016/j.ins.2016.08.009.

[15] M. Daszykowski, B. Walczak, and D. L. Massart, “Looking for natural patterns in data: Part
1. Density-based approach,” Chemometr. Intell. Lab. Syst., vol. 56, no. 2, pp. 83–92, 2018. doi:
10.1016/S0169-7439(01)00111-3.

[16] Y. A. Geng, Q. Li, R. Zheng, F. Zhuang, R. He and N. Xiong, “RECOME: A new density-based
clustering algorithm using relative KNN kernel density,” Inf. Sci., vol. 436, no. 4, pp. 13–30, 2018. doi:
10.1016/j.ins.2018.01.013.

[17] A. Rodriguez and A. Laio, “Clustering by fast search and find of density peaks,” Science, vol. 344, no.
6191, pp. 1492–1496, 2014. doi: 10.1126/science.1242072.

[18] D. Cheng, Y. Li, S. Xia, G. Wang, J. Huang and S. Zhang, “A fast granular-ball-based density peaks
clustering algorithm for large-scale data,” IEEE Trans. Neural Netw. Learn. Syst., pp. 1–14, 2023. doi:
10.1109/TNNLS.2023.3300916.

[19] S. Xia, Y. Liu, X. Ding, G. Wang, H. Yu and Y. Luo, “Granular ball computing classifiers for efficient,
scalable and robust learning,” Inf. Sci., vol. 483, no. 5, pp. 136–152, 2019. doi: 10.1016/j.ins.2019.01.010.

[20] S. Xia, S. Zheng, G. Wang, X. Gao, and B. Wang, “Granular ball sampling for noisy label classification or
imbalanced classification,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 4, pp. 2144–2155, 2023. doi:
10.1109/TNNLS.2021.3105984.

[21] S. Xia, X. Dai, G. Wang, X. Gao, and E. Giem, “An efficient and adaptive granular-ball generation method
in classification problem,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 4, pp. 5319–5331, 2024. doi:
10.1109/TNNLS.2022.3203381.

[22] R. Liu, H. Wang, and X. Yu, “Shared-nearest-neighbor-based clustering by fast search and find of density
peaks,” Inf. Sci., vol. 450, no. 1, pp. 200–226, Oct. 2018. doi: 10.1016/j.ins.2018.03.031.

[23] Z. Chu et al., “An operation health status monitoring algorithm of special transformers based on BIRCH
and Gaussian cloud methods,” Energy Rep., vol. 7, pp. 253–260, 2021. doi: 10.1016/j.egyr.2021.01.07.

[24] G. Karypis, E. H. Han, and V. Kumar, “Chameleon: Hierarchical clustering using dynamic modeling,”
Computer, vol. 32, no. 8, pp. 68–75, 1999. doi: 10.1109/2.781637.

https://doi.org/10.1007/s11227-020-03436-2
https://doi.org/10.32604/cmc.2023.039923
https://doi.org/10.1016/j.cie.2023.109094
https://doi.org/10.1016/j.patcog.2014.01.015
https://doi.org/10.1109/TNNLS.2023.3248064
https://doi.org/10.1016/j.patrec.2016.05.007
https://doi.org/10.32604/cmc.2023.036820
https://doi.org/10.1016/j.ins.2016.08.009
https://doi.org/10.1016/S0169-7439(01)00111-3
https://doi.org/10.1016/j.ins.2018.01.013
https://doi.org/10.1126/science.1242072
https://doi.org/10.1109/TNNLS.2023.3300916
https://doi.org/10.1016/j.ins.2019.01.010
https://doi.org/10.1109/TNNLS.2021.3105984
https://doi.org/10.1109/TNNLS.2022.3203381
https://doi.org/10.1016/j.ins.2018.03.031
https://doi.org/10.1016/j.egyr.2021.01.07
https://doi.org/10.1109/2.781637

2048 CMC, 2024, vol.80, no.2

[25] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hypergraph partitioning: Application in
VLSI domain,” in Proc. 34th Annu. Design Autom. Conf., Anaheim, CA, USA, 1997, no. 4, pp. 526–529.
doi: 10.1145/266021.266273.

[26] Y. Zhang, S. Ding, Y. Wang, and H. Hou, “Chameleon algorithm based on improved natural
neighbor graph generating sub-clusters,” Appl. Intell., vol. 51, no. 11, pp. 8399–8415, 2021. doi:
10.1007/s10489-021-02389-0.

[27] Z. Liang and P. Chen, “An automatic clustering algorithm based on the density-peak frame-
work and chameleon method,” Pattern Recognit. Lett., vol. 150, no. 1, pp. 40–48, 2021. doi:
10.1016/j.patrec.2021.06.017.

[28] Y. Zhang, S. Ding, L. Wang, Y. Wang, and L. Ding, “Chameleon algorithm based on mutual k-nearest
neighbors,” Appl. Intell., vol. 51, no. 4, pp. 2031–2044, 2021. doi: 10.1007/s10489-020-01926-7.

[29] E. H. Walters, “Publication of complex dataset,” Thorax, vol. 58, no. 4, pp. 368, 2003. doi: 10.1136/tho-
rax.58.4.368-a.

[30] J. R. A. Jarvis and E. A. Patrick, “Clustering using a similarity measure based on shared near neighbors,”
IEEE Trans. Comput., vol. C-22, no. 11, pp. 1025–1034, 1973. doi: 10.1109/T-C.1973.223640.

[31] D. Cheng, Q. Zhu, J. Huang, L. Yang, and Q. Wu, “Natural neighbor-based clustering algo-
rithm with local representatives,” Knowl. Based Syst., vol. 123, no. 317, pp. 238–253, 2017. doi:
10.1016/j.knosys.2017.02.027.

[32] L. Yang, Q. Zhu, J. Huang, and D. Cheng, “Adaptive edited natural neighbor algorithm,” Neurocomputing,
vol. 230, no. 1, pp. 427–433, Oct. 2017. doi: 10.1016/j.neucom.2016.12.040.

[33] J. Huang, Q. Zhu, L. Yang, D. Cheng, and Q. Wu, “A non-parameter outlier detection algorithm based on
natural neighbor,” Knowl. Based Syst., vol. 92, no. 3–4, pp. 71–77, 2016. doi: 10.1016/j.knosys.2015.10.014.

[34] D. Cheng, Q. Zhu, J. Huang, Q. Wu, and L. Yang, “A novel cluster validity index based on
local cores,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 4, pp. 985–999, 2019. doi:
10.1109/TNNLS.2018.2853710.

[35] N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic measures for clustering’s comparison: Is a
correction for chance necessary,” in Proc. 26th Annu. Int. Conf. Machine Learning, Montreal, Qc, Canada,
2009, pp. 1073–1080. doi: 10.1145/1553374.1553511.

[36] S. Zhang, H. S. Wong, and Y. Shen, “Generalized adjusted rand indices for cluster ensembles,” Pattern
Recognit., vol. 45, no. 9, pp. 2214–2226, 2012. doi: 10.1016/j.patcog.2011.11.017.

[37] M. Meila, “Comparing clusterings—an information based distance,” J. Multivar. Anal., vol. 98, no. 5, pp.
873–895, 2007. doi: 10.1016/j.jmva.2006.11.013.

https://doi.org/10.1145/266021.266273
https://doi.org/10.1007/s10489-021-02389-0
https://doi.org/10.1016/j.patrec.2021.06.017
https://doi.org/10.1007/s10489-020-01926-7
https://doi.org/10.1136/thorax.58.4.368-a
https://doi.org/10.1109/T-C.1973.223640
https://doi.org/10.1016/j.knosys.2017.02.027
https://doi.org/10.1016/j.neucom.2016.12.040
https://doi.org/10.1016/j.knosys.2015.10.014
https://doi.org/10.1109/TNNLS.2018.2853710
https://doi.org/10.1145/1553374.1553511
https://doi.org/10.1016/j.patcog.2011.11.017
https://doi.org/10.1016/j.jmva.2006.11.013

	A Shared Natural Neighbors Based-Hierarchical Clustering Algorithm for Discovering Arbitrary-Shaped Clusters
	1 Introduction
	2 Related Works
	3 Proposed Algorithm
	4 Experimental Analysis
	5 Conclusion
	References

