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ABSTRACT

Video summarization aims to select key frames or key shots to create summaries for fast retrieval, compression,
and efficient browsing of videos. Graph neural networks efficiently capture information about graph nodes and
their neighbors, but ignore the dynamic dependencies between nodes. To address this challenge, we propose
an innovative Adaptive Graph Convolutional Adjacency Matrix Network (TAMGCN), leveraging the attention
mechanism to dynamically adjust dependencies between graph nodes. Specifically, we first segment shots and
extract features of each frame, then compute the representative features of each shot. Subsequently, we utilize
the attention mechanism to dynamically adjust the adjacency matrix of the graph convolutional network to
better capture the dynamic dependencies between graph nodes. Finally, we fuse temporal features extracted by
Bi-directional Long Short-Term Memory network with structural features extracted by the graph convolutional
network to generate high-quality summaries. Extensive experiments are conducted on two benchmark datasets,
TVSum and SumMe, yielding F1-scores of 60.8% and 53.2%, respectively. Experimental results demonstrate that
our method outperforms most state-of-the-art video summarization techniques.

KEYWORDS

Attention mechanism; deep learning; graph neural network; key-shot; video summarization

1 Introduction

With the booming development of social networks, a large number of user-created videos have
emerged on major online platforms. These videos are of various forms and lengths, mainly narrative
short films and life records. This not only enriches people’s lives, but also allows users to record their
lives by making videos. However, most users prefer to browse specific scenes or events in the videos
rather than the complete videos content [1]. The massive amount of video data poses a huge challenge
for retrieval, storage and browsing [2]. Therefore, video summarization techniques have become a
popular research topic.

Video summarization techniques aim to generate summaries by extracting key frames or key shots
in a video to present the video in a condensed form while ensuring that the most informative segment
are retained [3]. Based on the type of summaries generated, video summarization can be categorized
into two main types: static video summarization and dynamic video summarization [4]. Static video
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summarization form a collection of summaries by selecting the most representative key frames from
the video. The summaries are presented in the form of images, similar to a slide presentation,
which may not fully capture the main content of video. In contrast, dynamic video summarization
involves selecting key shots comprising images, audio and text data, enabling a more comprehensive
portrayal of the video content. For instance, consider Fig. 1, depicting a crime surveillance video
from UCF_Crimes capturing a criminal in the act of theft. In such scenarios, the objective of video
summarization is to identify the segments with high relevance scores, as illustrated in the figure, and
generate summaries without necessitating a complete viewing of the entire video.
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Figure 1: Video summarization overview

1.1 Motivation and Overview

In recent years, deep learning techniques have seen widespread applization in video processing
tasks [5—8], notably advancing the field of video summarization [9]. Video summarization methods
are categorized primarily based on their use of labels into three main groups: supervised video
summarization, unsupervised video summarization and weakly supervised video summarization [2].
Supervised video summarization methods rely on extensive labeled video data with detailed score
annotations. Although these supervised methods are capable of generating high-quality summaries
using detailed labelling information, their annotations are costly. In contrast, unsupervised video
summarization methods do not rely on labeled data during training, instead employing adversarial
training or reconstruction techniques. Compared to supervised video summarization methods, the
generated summaries may not be as accurate as supervised methods due to the lack of direct super-
visory information. Weakly supervised video summarization methods, situated between supervised
and unsupervised approaches, typically utilize only video-level labels, such as video title or categories,
without detailed frame or timing labels. While the quality of summaries produced by weakly supervised
methods may not match that of supervised approaches, they still benefit from some level of supervisory
signals compared to unsupervised methods. In this paper, we adopt a supervised video summarization
approach. Zhao et al. [10] and Hu et al. [1 1] employed recurrent neural networks (RNNs) to capture
the temporal dependencies within video frame sequences, generating concise and representative video
summaries. Lin et al. [12] integrated the attention mechanism with a bidirectional long short-term
memory (BiLSTM) network, enabling the model to prioritize important segments while disregarding
irrelevant information during sequence processing. Despite the prone to issues like gradient vanishing
and explosion inherent to RNNSs, the above methods still suffer from the problems of gradient
vanishing and gradient explosion due to the inherent defects of RNNs. The introduction of Graph
Neural Networks (GNN) allows the model to better simulate global dependencies. Within a graph-
based framework, video features are treated as nodes of the graph, with inter-node similarities serving
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as edge weights. Initially, Wu et al. [13] utilised Graph Convolutional Networks (GCNs) for multi-
video summarization, effectively capturing global dependencies across multiple videos. Li et al. [14]
and Zhong et al. [15] introduced Graph Attention Networks (GATs) to mitigate redundancy among
key frames in video summarization. However, prior GNN models featured fixed graph structures,
where node features are updated to higher-level representations with each convolution operation.
However, these methods have a limitation: the adjacency matrix remains static and fails to reflect new
changes in graph structure and attributes. To adress this, we propose a novel approach that leverages
attention to dynamically adjust adjacency matrix weights. Initially, we segment shots and extract frame
features, then compute representative features for each shot. Treating shot features as graph nodes,
we construct a graph using shot features similarity as edges weights. Subsequently, we introduce an
attention mechanism to dynamically assign adjacency matrix weights, better capturing dynamic node
dependencies. To enhance summarization quality, we fuse the temporal features extracted by BILSTM
with the structural features extracted by graph convolutional networks through feature fusion. We
conduct extensive experiments on two benchmark datasets, TVSum and SumMe, achieving F1-score
of 60.8% and 53.2%, respectively. Results demonstrate our method’s superiority over current state-
of-the-art video summarization techniques, validating its effectiveness in capturing dynamic node
dependencies.

1.2 Contribution
The contribution of the method proposed in this paper is as follows:

1) In this paper, we present an adaptive graph convolutional adjacency matrix network for video
summarization, addressing the issue of fixed neighbor aggregation in graph neural network-
based methods.

2) Leveraging BiLSTM for temporal feature extraction and TAMGCN for dynamic structural
feature capture, our proposed TAMGCN effectively mitigates interference arising from shot
distances.

3) To achieve a comprehensive feature representation, we integrate temporal features from
BiLSTM with structural features from graph convolutional networks.

4) Extensive experiments on TVSum and SumMe datasets demonstrate the superiority of our
approach over current state-of-the-art video summarization methods.

1.3 Organization

The rest of this article is organized as follows. Related work is reviewed in Section 1. The details
of the proposed method are described in Section 2. Experimental results and analysis are presented in
Section 3. The conclusion is drawn in Section 4.

2 Related works
2.1 Video Summarization

Presently, researchers primarily employ deep learning methods for video summarization tech-
niques [4,8]. Video summarization approaches are typically categorized as supervised, unsupervised
and weakly supervised methods [1] based on the use of labels. Supervised methods rely on manu-
ally labeled importance scores to guide summaries generation. To address long-term dependencies,
Zhao et al. [10] introduced the Tensor Trained Hierarchical Recurrent Neural Network (TTH-
RNN), which mitigates the issue of large features mapping to hidden matrix through tensor training
of the embedding layer. They also designed a hierarchical RNN structure to explore long term
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dependencies between video frames. Liu et al. [16] proposed the Hierarchical Multi-Headed Attention
Network (H-MAN), leveraging the multi-head attention mechanism to enhance model performance.
Liang et al. [17] proposed an approach employing self-attention mechanism and fully convolutional
sequential network to capture both global and local temporal dependencies among video frames.
They further designed a convolutional attention-generating adversarial network for implementing
unsupervised video summarization. Hu et al. [1 8] introduced a video summarization method based on
generative adversarial network (GANs), where discriminator not only assesses the the video’s integrity,
but also evaluates the importance of candidate key frames, thus significantly impacting the final
summarization outcome. Regarding weakly-supervised video summarization methods, researchers
commonly utilize relatively weak labels such as video titles or outlines for training the summaries
process. Panda et al. [19] approached video summarization as a weakly-supervised learning task,
proposing a flexible and deep 3DCNN architecture that leverages video-level annotations to learn key
frames without relying on manually generated training data. Furthermore, Ho et al. [20] introduced
a novel deep neural network architecture aimed at describing and distinguishing important spatio-
temporal information in videos with different viewpoints. Implemented in a semi-supervised setting,
the model combines fully labeled third-person videos, unlabeled first-person videos, and a small
amount of labeled first-person videos for training.

2.2 Graph Neural Network

In recent years, graph neural networks have gained widespread adoption in computer vision.
Among these, graph convolutional networks (GCNs) are utilized to acquire high-level feature repre-
sentations of nodes by aggregating features from each graph node and its neighbors. Typically, GCNs
comprise multiple layers. Despite significant progress in various domains, the static nature of the
neighborhood matrix used in GCNs somewhat constrains the model’s effectiveness. To address this
constraint, Graph Attention Networks (GATs) employ attention mechanism to automatically learn
and optimise connectivity relationships between nodes. Zhao et al. [21] designed a sequence graph
architecture that hierarchically captures intra-shot temporal dependencies and inter-shot pairwise
dependencies through LSTM and GCN, effectively mitigating interference arising from shot positions.
Zhonget al. [1 5] proposed a graph-based Attention Network (GAT) model for bidirectional long-term
and short-term memory (Bi-LSTM), employing a Contextual Feature Based Transformation (CFT)
mechanism to convert visual features of an image to higher level features. Zhu et al. [22] leveraged
object-level and relational-level information to capture spatio-temporal dependencies. Their approach
involves constructing a spatial graph of the target object post target detection, followed by constructing
a temporal map using an aggregated representation of the spatial map.

3 Attention Adaptive Adjacency Matrix GCN

In this paper, we introduce an innovative adaptive graph convolutional adjacency matrix network
aimed at addressing the issue of aggregating neighbors with fixed weights once the adjacency matrix is
determined in graph convolutional neural networks. Fig. 2 shows a brief framework of our proposed
model, comprising three crucial components: The initial stage involves segmenting the input video
into shots and extracting image features from each video frame using a convolutional neural network.
Subsequently, in the second part, representative frames are selected, shot data is condensed, and the
adjacency matrix is constructed. In the third part, TAMGCN is employed to compute structural
features. Finally, feature fusion is utilized to calculate the score for each shot. Additionally, we
have designed a sparsity rule to train the network, promoting the selection of diverse abstracts. The
following sections provide more details on our proposed method.
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Figure 2: The overall framework of model (TAMGCN)

The sequence of input video frames is defined as X = {xn}nNz,, X, where N represents the number of
video frames contained in each video, w, h, 3 represents the width, height, and the number of channels
of each picture frame, and x, represents the n video frame. The kernel temporal segmentation (KTS)
algorithm [23] obtains shot sequence S = {s,}  ,s, € R¥"*™m ywhere M means that a video is
divided into M shots, and s,, means there are T,, frames in the m shots and N = fo:l T,..

Pre-training model GoogleNet [21] was used to extract image feature S.,e = {S:n}r]\::l , s;n € RF*Tm,

sin means that the m shot has T,, frames, and F is the feature dimension of each frame. Local feature
S« Of €ach video is obtained by the bidirectional encoding of LSTM from S, ..:

Sdata = BILSTM (Sfeature) = [LSTM (Sfeature) | |LSTM (Sfeature)] (1)

where BILSTM (.) represents a bidirectional LSTM, which is composed of two LSTM splices in
different directions. The output of BILSTM (+) is the last hidden layer h, € R¥™*™ because the previous
h, frame encodes the timing information of forwarding and backwards in the current shot. Here, the
final frame € RF of each shot output h, is taken and stacked as the local feature S, € R™™ of the
whole video.
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3.2 Construction of Adjacency Matrix

To utilize graph neural networks for video summarization, the video must initially be represented
as a graph structure, comprising vertices and edges. In the video summarization task, the shot features
of a video are designated as nodes of a graph. According to the thesis, the similarity between shots
features is defined as the weights of the top edges of the graph. The shots features are defined as
follows:

Spot = [representative,,.||SVDume] @

feature

In our approach, the node feature Spot,,,.. € R*>*™ is spliced from representative features and
singular value features. Inspired by representative rewards in reinforcement learning, we introduce the
representative feature representative,, . € R™M. Specifically, there is a large amount of redundancy
due to the fact that frames in a shot are usually similar. In order to extract the most representative
frames, we determine the most representative frames in each shot through representativeness compu-
tation and use their features as shot features. To select the most representative frames, we calculated
the 2-parameter number between frames and other frames in each shot and selected the frame with
the lowest average parameter number as the representative frame for that shot. This process helps to
reduce redundant information, allowing the shot features to effectively reflect the video content.

The weights of edges on a graph are usually computed from the similarity between nodes. Edges on
the graph do not only indicate the connectivity between nodes, but may also contain some additional
information about the degree of similarity or association between nodes. In order to more accurately
reflect the relationship between nodes, we can measure the weights of edges by similarity calculation.
This approach helps to capture the interrelationships between nodes more comprehensively in the
graph structure and improves the performance of the video summarization model.

. . 1 & .
representative,,, . = representative (Siaue) = €XP (—T— z rf/nn [1X; — X2 3)
m T

Compared with QR decomposition, which can only decompose matrix in a square matrix, singular
value (SVD) decomposition algorithm as shown in Fig. 3 is a matrix decomposition algorithm that can
decompose matrix at any scale, where U is the left singular matrix, which compresses the number of
rows, VT is the right singular matrix, which compresses the number of columns, >’ (-) is the singular
value, And the first n singular values in singular value > (-) occupy most of the sum of singular values.

Singular Value Decomposition

Left singular vector of A Right singular vector of A

N l K K | N
> Vi
K K
I
A == Uk

singular value

M M

Figure 3: SVD decomposition diagram

Usually, the first n column of left singular matrix U is taken as the main feature of the matrix, but
this method is not friendly to the shots with the variable frame number. For different shots, different
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frames result in different numbers of data in the first n columns of the left singular matrix, and data
of indefinite length cannot be learned in the neural network. Therefore, the first n rows of the right
singular matrix are taken as SVDy,,,. of each shot in this paper:

A=u) V' 4)
o 0 - 0
0 , - 0

2= U O ®
0 0 -0

Video summarization does not inherently provide an explicit adjacency matrix, necessitating its
generation. Once node features are acquired, the similarity between paired nodes is computed to
establish the corresponding edges, thus determining the values of the adjacency matrix. Building
upon the work of Zhao et al. [21], we explored four functions for edge weight calculation, and their
expressions are as follows:

1) Dot Product [14,21]

e =Tf (xi, %) = —¢ (x)" ¢ (x)) (6)
2) Gaussian [21]

e =f (xi,x;) = exp{—¢ x) ¢ (x)} 7
3) Concatenation [21]

e; = (x,%) = W! [¢ x)lle (x)] 8)

4) Cosine similarity [23]

T
X X

xill2 - 1111

e = I (x.,x) ©)

X is the feature of each node Spot,, ., and [-||-] is the connection operation. ¢ (-), ¢ (-) are linear
transformations based on W,,W,,W,,W ,W, are all learnable parameters. The adjacency matrix A, €
RM*M is constructed by the above method.

3.3 Attention Adaptive Adjacency Matrix
3.3.1 Graph Attention

As shown in Fig. 4, to overcome the effect of a fixed adjacency matrix on each layer of GCN, the
attention mechanism is used in TAMGCN to ensure that the effect of the adjacency matrix on each
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layer is different. Inspired by GAT, the attention of each layer is calculated according to the input S,
of the current layer. The attention of the current node is calculated as follows:

e; = Leakey Re LU (a’ [UST | |U§7J]) (10)

|
[
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Figure 4: The model of attention adjust adjacency matrix GCN

Ses1 € [1, M] represents the current node, Sdmj, j € [1,M — 1] represents the neighbour node,
U e R™ is the weight matrix that can be learned, [-||-] means the join operatio, Leaky Re LU (-) is
quoted here as the activation function, and o € R s the attention distribution matrix that can be
learned.

a; = N,; (e;) (11)

a; 1s attention weight, N () = exp (-) / > exp (-) is the normalization operator. The final output
of graph attention for the entire layer is att,,, € R™™.

3.3.2 Attention Adaptive Adjacency Matrix

TAMGCN model f (Sdm,Aadj,attmap) learns the relationship between video shots, where S,
represents the node features of the input video, att,, is the attention matrix calculated according to
the input of S,,., the current layer, and A, 1s the adjacency matrix. Inspired by Kipf [23], TAMGCN
of each layer is modelled based on GCN:

H* = o (A HOW") (12)

Here H® € RM™¥ represents the output1 =0,1,...,L — 1, and H® = S, of layer I, and o (-) is
the activation function, e.g., ReLU (-) = max (0, -). W' € R"*fi41 is the trainable weight matrix in each
layer, and A,,; € R™ is the adjacency matrix after attention adjustment:

Aadj = Aadj @ attmap + Aadj (13)

where att,,,, is the attention matrix generated according to H® of each layer, in this way, the influence
of neighbour nodes on the current node can be dynamically adjusted according to different input
data. TAMGCN output is graph,, ., = H*"” € R™¥Fi-1 and H*" represent the graph output of
the last layer, where F, _; denotes the dimension of TAMGCN output of the last layer. To facilitate the
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migration of the model, we set dimension F, _, to be the same as dimension F. In this design, additional
parameter adjustments will not be made because the graph part is added to the model.

The algorithmic flow of the collective is as in Algorithm 1.

Algorithm 1: Attention mechanism to adjust the weights of the adjacency matrix
Require:

Shot feature, Spot,_,.; Current Node feature, Sy,

Ensure:

Characterization of graph nodes after adjusting attention weights, graph
fori«<1,2,...,L —1do

XX
Aa' =f X;, Xi) = I—J’
o =0 0o%) = 150 11112
— ——
e; = Leaky Re LU ( o [USdami | |U@>J]) ;
attmap - N] (eij) N
Aadj = Aadj @ a'ttmap + Aadj;
H = o (A HOWO);
End;
Updated graph node feature, graph

feature >

feature

Traditional GAT is to adjust the weights of the initial adjacency matrix. And as the node features
change, the weights of the original adjacency matrix are no longer adapted to the new node features,
our Attention Adaptive Adjacency Matrix updates the adjacency matrix at each layer. The correlation
between the adjacency matrix and the node features is improved in order to obtain a more accurate
summaries.

3.3.3 Fusion Mechanism

To make graph, . have timing feature Global,.. of the video sequence, we use the fusion
mechanism [24] to fuse feature graph,,,. € R" with timing feature Global;.,... Here, local feature
Seaw 18 sent to network BiLSTM (-), and the last layer of the hidden layer is taken as timing feature
Global;,,. € R"”M output:

Globale = BILSTM (Syss) = | LSTM (Sua) IESTM (S| (14)

These two features are first defined as R = [graph,,,..||Globalg,..] € R**™ through connection
operation, and then the whole fusion mechanism includes linear layer and activation layer:

R’ = Re LU (WyR) € RFM (15)
Q = sigmoid (W,R) € R (16)

where Wy € R*™F and W, € R**F are two learnable weight matrices, local feature S,,, € R"™
and feature R’ are fused to maintain the original shot’s semantic information. Finally, the final shot
fraction spot___ is obtained through multiple fully connected layers FC (-):

score

SpOtscore =0 (FC (R/ © Q + Sdata O] (1 - Q))) (17)
FC (-) = BN (Linear (-)) (18)
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o () is the activation function of sigmoid (), and Spot_ . € R™ represents the non-negative score
of each shot. The higher the score is, the more chance it has to be selected into the video summarization.
After obtaining the shot score of each video, key shots were chosen according to the 0—1 knapsack
algorithm to generate a video summarization.

3.4 Optimization of Model

The loss function is a function to measure the difference between the predicted value and the real
value of the model. The smaller the loss function is, the more consistent the model and parameters
are with the training samples. In this paper, the mean square error is used to calculate the loss of the
model as follows. The obtained error represents the Euclidean distance between the predicted value
and the actual value, where y,., represents the real score and y,.,. = spot,. . represents the predicted
score.

score

| ,
L (Yreal: YScore) = H ; (Yreal - YScore) (19)

In addition, considering that the goal of video summarization is to use a small number of shots
to express the semantics of the whole video as much as possible, we tend to calculate that att,,,, in this
model should be sparse, so we design a sparsity loss Loss,, to restrict the sparsity of att,,,,, which is
defined as follows:

M

M
Lossu = |lattu [ = D > llall; (20)
]

i

Our proposed model, TAMGCN, was performed on PyTorch. Specifically, with 300 training
rounds, the dimensions of the hidden state are 512 and 1024 for both LSTM and graph aspects. To
reduce the learning burden of the model and fix the adjacency matrix, feature extraction uses a pre-
trained but not updated Google Net. Adam optimizer was used to optimize the whole architecture,
and the initial learning rate was 0.01. The learning rate attenuated once every 30 rounds, and the decay
rate gamma was 0.9.

4 Experimental Result and Analysis
4.1 Datasets and Evaluation Indicators

We conducted extensive experiments on two standard datasets, the SumMe dataset and the
TVSum dataset. The SumMe dataset consists of 25 user-edited videos that range in length from about
1-6 min. Each of these videos is manually rated by multiple individuals. The TVSum dataset consists
of 50 videos covering topics such as cooking, traveling, and sports. The length of the videos is longer
than those in the SumMe dataset, about 2—-10 min In order to compare with other state-of-the-art
methods, this paper adopts the Fl-score as an evaluation metric to measure the goodness of video
summarization. The F1-score is a metric used to evaluate the performance of a binary classification
model that combines the precision and recall of the model. When a category imbalance exists, the
Fl-score may tend to perform well on categories with more samples and poorly on categories with
fewer samples. The F1-score only considers positive and negative examples in the model’s predictions,
ignoring information beyond the true and true negative examples. In some cases, this may make the
assessment of model performance less comprehensive. In this paper, we define the model-generated
summarization as S and the manually annotated summarization as G. The correctness and recall rates
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are calculated as follows:
overlaped duration of Sand G

2

precision = .
duration of S

overlaped duration of Sand G

recall = (22)

duration of G

From the above formula, Fl-score can be calculated to evaluate the generation of video sum-
maries.

precision x recall

F1 — score = 2 x x 100% (23)

precision + recall

4.2 Experimental Results and Discussion

In this paper, during the experiment, all data is divided into training and test sets, with 80%
of the total data allocated to the training set and 20% to the test set. To avoid the influence of
different videos on the experimental results, we implement a five-fold cross-validation [21]. Specifically,
the video data is first randomly disrupted and divided into five parts using Python’s random library.
The to the five results by five-fold cross-validation. In addition, according to the literature [25], for the
SumMe dataset, the maximum of the 5 results is taken as the final result of the experiment. For the
TVSum dataset, the final result of the experiment is taken as the average of the 5 results. In addition,
according to the literature [25], for the SumMe dataset, the maximum of the 5 results is taken as the
final result of the experiment. For the TVSum dataset, the final result of the experiment is taken as the
average of the 5 results.

To validate the effectiveness of our proposed method, we conducted comparisons with current
state-of-the-art video summarization techniques on two benchmark datasets, TVSum and SumMe.
Among these, TTH-RNN [10] contains a tensor training embedding layer and a hierarchical LSTM.
The tensor training embedding layer avoids the large number of features mapped to the hidden matrix
due to high-dimensional video features, thus reducing training complexity by minimizing parameters.
A-AVS and M-AVS [26] are an encoder-decoder video summarization model that introduces an
attention mechanism. In the encoding stage, BILSTM is utilized, while the decoding stage employs
BILSTM enhanced with attention mechanisms. A-AVS employs an additive attention mechanism
for scoring, whereas M-AVS employs a punitive attention mechanism. PRLVS [25] is a progressive
reinforcement learning video summarization network with unsupervised rewards, which emulates a ‘T’
type human thinking paradigm by removing most of the training parameters. ‘T’ type human thinking
paradigm designed a horizontal strategy and a vertical strategy to alternately reason about the selection
of key frames for choosing a selection action. These two strategies are hierarchically constructed to
offer more comprehensive information than the planar strategy to ensure the completeness of the
generated summaries. DSNet [27] is a Detection-Summarisation Network (DSNet) framework for
supervised video summarization, comprising anchor-based and anchor-free methods. Anchor-based
methods generate temporal interest proposals to identify and locate representative content in video
sequence, while anchor-free methods eliminate predefined temporal proposals and directly predict
importance scores. H-MAN [16] consists of a shot-level reconstruction model and a multiple-attention
model, employing a two-stage hierarchical structure to generate diverse attention maps. SUM-GDA
[14] is an efficient convolutional neural network architecture based on global change attention, which
considers temporal relationships among video frames through a global view attention mechanism.
RCLsup [28] is a framework that combines reinforcement and contrast learning for unsupervised
video summarization, aiming to enhance feature representations and the model’s contextual modelling



1958 CMC, 2024, vol.80, no.2

capabilities. Where contrast learning is used to facilitate discriminative row and informative shot-level
feature learning. However, the proposed methos not only uses dynamic extraction of the structural
features of the video, but also employs LSTM to capture the temporal features in the video. Besides,
through experiments, we have set up the optimal feature fusion method to effectively integrate the
timing features and the structural features.

The comparison results are presented in detail in Table 1. Our method exhibits significant
improvements in F1-score on both datasets compared to TTH-RNN, A-AVS, and M-AVS methods.
This may be attributed to the fact that the these methods fail to adequately capture the global structural
features of the video, despite effectively leveraging the temporal information of the LSTM and the
attention mechanism. In comparison to PRLVS, our proposed method achieves a 6.9% higher F1-score
on the SumMe dataset, while on the TVSum dataset, it shows a slight inferiority to PRLVS, with a
2.2% decrease. This is because PRLVS is more suitable for modelling long videos, whereas our method
excels with shorter ones. Against DSNet, our method holds a slight advantage on the SumMe dataset,
whereas DSNet slightly outperforms our method on the TVSum dataset. This outcome partially
confirms the effectiveness of our method. Compared to H-MAN, our method achieves a 3% higher F1-
score on the SumMe dataset but trails slightly behind H-MAN on the TVSum dataset by 1.3%. This
variance could be attributed to H-MAN’s hierarchical self-attention model, which is more adept at
modelling longer videos, whereas layering short videos may have reduced the quality of the summaries.
Compared to SUM-GDA, our method demonstrates strong performance across both datasets, as it not
only incorporates temporal features but also comprehensively addresses structural features in videos.
In comparison to RCLsup, our method exhibits a slight decrease of 0.8% on the SumMe dataset,
and a larger discrepancy of 1.8% on the TVSum dataset. This variance may stem from RCLsup’s
optimization of feature representation through comparative learning, focusing on encoding each shot
sequence with BiILSTM for local contextual features and capturing global structural features via
graph convolution. In contrast, our approach emphasizes the fusion of global temporal and structural
features, computing local context features based on representative features. Unlike their method, ours
does not solely rely on local contextual information, but rather considers the entirety of temporal
features. Our method achieves a comparable F1-score to RCLsup, lending credence to the efficacy of
our proposed approach.

Table 1: Experimental results of supervised video summarization algorithm are presented on two
datasets

SumMe TVSum
Algorithm F1-score F1-score
TTH-RNN [10] 44.3 60.2
A-AVS [20] 43.9 59.4
M-AVS [26] 44.4 61.0
PRLVS [25] 46.3 63.0
DSNet(Based) [27] 50.2 62.1
DSNet(Free) [27] 51.2 61.9
H-MAN [16] 50.2 62.1
SUM-GDA [14] 52.8 58.9

(Continued)
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Table 1 (continued)

SumMe TVSum
RCLsup [28] 54.0 62.6
TAMGCN 53.2 60.8

Table 2 compares the depth map-based video summarization method published in 2021. RSGN
[21] firstly extracted the shot features and constructed the adjacency matrix, extracted the features
through GCN, reconstructed the original video by constructing inverse GCN, and optimized the
model through reinforcement learning. GCANsup [14] consists of two branches. One branch uses
different scales to construct node features and adjacency matrix for video frames and uses GCN to
extract structural features. The other branch uses dilated temporal convolution and temporal self-
attention to extract video sequence features and finally uses the feature fusion mechanism. GAT [15]
used LSTM to extract temporal features of videos by traditional methods. It then used VGG and
spatial attention model to extract image features, construct graph attention network and generate
weight factors. Results show that the algorithm in this paper achieves 60.8% on TVSum and 53.2%
on SumMe.

Table 2: Video summarization algorithm based on graph

SumMe TVSum
Algorithm F1-score F1-score
RSGN [21] 45.0 60.1
GCANGsup [14] 53.0 60.7
GAT [15] 51.7 59.6
TAMGCN 53.2 60.8

Table 3 shows the adjacency matrix construction by different algorithms. It can be seen from the
table that different comparable results are obtained by constructing different adjacency matrices. It can
be seen that the model proposed by us is robust to the function of constructing an adjacency matrix,
and the adjacency matrix is constructed by using the most effective method. The adjacency matrix
constructed by cosine similarity is better than the other three. In this case, it is used for the following
comparison.

We conducted an additional experiment to investigate the validity of the loss function. When we
trained our model method under supervision, the results reached 51.8% on the SumMe dataset and
60.2% on the TVSum dataset using the MSE loss optimization model. To verify the effectiveness of
sparsity loss Loss,,, we used optimization model MSE + Loss,, and compared their results. As shown
in Table 4, we found that using sparsity loss Loss,, could improve Fl-score by 0.6% on the TVSum
dataset and improve 1.4% on the SunMe dataset.
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Table 3: Adjacency matrix is constructed by different algorithms

SumMe TVSum

F1-score F1-score
Graph (Dot product) [21] 41.9 56.4
Graph (Gaussian) [21] 41.3 55.8
Graph (Concatenation) [21] 41.5 56.6
Graph (Cosine similarity) 45.7 58.6

Table 4: Loss function ablation experiment

SumMe TVSum

F1-score F1-score
MSE 51.8 60.2
MSE + LOSSatt 53.2 60.8

Asshown in Figs. 5 and 6, although the predicted score is higher than the real score, on the whole,
there is a strong correlation between the two scores on the whole. The real value is relatively consistent
with the changing trend of the test paper, but the individual prediction is still not accurate.

— real_spot_score
pre_spot_score

(4] 5 10 15 20 25
num of frame

Figure 5: SumMe shot score comparison

As shown in Fig. 7, the adjacency matrix of the shots is displayed in a thermal diagram. Red
represents the highest similarity, and white represents the lowest similarity. According to formula (24),
it can be seen that the diagonal similarity of the adjacency matrix calculated according to the similarity
is the highest, which proves from the side that the cosine distance between itself and itself is 1. From
formula (25), it can be seen that the adjacency matrix is symmetric, so horizontally, the beginning and
end of the video are similar, so the colour is similar in the thermal diagram. Fig. § shows the shots
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selected on the data set SumMe. From the captured images, it can be seen that the generated video
summaries can describe the occurrence of the whole event in a relatively complete way.
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Figure 6: SumMe shot score comparison
hotmap_of_adj
=1 | |
. ; » VET
Vétoquinol S vy
/ CLEANSING -
“‘p?“ of [ o SOLUTION =
www.vetoquinolusa.com = Vefz:_u:i:l:l e
:
A
Tips For Cleaning i Vétoqu inol
Your Dog's Ears A 82 J?u of [Rosion
8 $2
; www.vetogquinolusa.com
2

Figure 7: Example adjacency matrix



1962 CMC, 2024, vol.80, no.2

Selected shots and all the shots in video 9

300 4 = all the shots.
mm selected shots

230 4

= e O e 2

Selected shots and all the shots in video_17

600 mm all the shots
 selected shots

Figure 8: Importance score prediction

5 Conclusion

In this paper, we propose an adaptive graph convolutional adjacency matrix network for video
summarization, with the goal of addressing the issue of fixed neighbor aggregation in graph neural
network-based methods. The network first applies a graph convolutional network to extract the
image features of each video frame. Next, the video is shot-cut, from which representative frames
are selected to represent the entire shot. Then, the neighborhood matrix is constructed using the shot
features as nodes and the similarity between shots as the weights of the edges. Subsequently, structural
features are calculated using TAMGCN. During this process, the adjacency matrix is dynamically
updated, a design that makes the adjacency matrix more reflective of the current graph structure
and thus generates more representative summaries. Finally, the shot score is calculated by feature
fusion. The introduction of feature fusion contributes to the preservation of the original features of
the video frames. In addition, we design a sparse rule to train the network to induce the selection
of different summaries. We conducted extensive experiments on the standard datasets SumMe and
TVsum, and the experimental results proved the effectiveness of the model. However, the model may
suffer from high memory consumption and difficulty in scaling when dealing with large-scale graph
data. In future work, we intend to investigate models that are more adapted to handle large-scale
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graph data. In addition, we will focus on investigating multimodal video summarization models that
use multiple sources of information such as audio, text, etc., to guide the model in generating high
quality summaries. We will also delve into the interpretability of the model to better understand the
decision-making process and outcomes of the model.
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