
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.050975

ARTICLE

Dynamic Offloading and Scheduling Strategy for Telematics Tasks Based on
Latency Minimization

Yu Zhou1, Yun Zhang1, Guowei Li1, Hang Yang1, Wei Zhang1, Ting Lyu2 and Yueqiang Xu2,*

1North China Institute of Computing Technology Beijing, Beijing, 100080, China
2School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, 100083, China

*Corresponding Author: Yueqiang Xu. Email: yueqiang@ustb.edu.cn

Received: 24 February 2024 Accepted: 28 April 2024 Published: 15 August 2024

ABSTRACT

In current research on task offloading and resource scheduling in vehicular networks, vehicles are commonly
assumed to maintain constant speed or relatively stationary states, and the impact of speed variations on task
offloading is often overlooked. It is frequently assumed that vehicles can be accurately modeled during actual
motion processes. However, in vehicular dynamic environments, both the tasks generated by the vehicles and the
vehicles’ surroundings are constantly changing, making it difficult to achieve real-time modeling for actual dynamic
vehicular network scenarios. Taking into account the actual dynamic vehicular scenarios, this paper considers the
real-time non-uniform movement of vehicles and proposes a vehicular task dynamic offloading and scheduling
algorithm for single-task multi-vehicle vehicular network scenarios, attempting to solve the dynamic decision-
making problem in task offloading process. The optimization objective is to minimize the average task completion
time, which is formulated as a multi-constrained non-linear programming problem. Due to the mobility of vehicles,
a constraint model is applied in the decision-making process to dynamically determine whether the communication
range is sufficient for task offloading and transmission. Finally, the proposed vehicular task dynamic offloading and
scheduling algorithm based on muti-agent deep deterministic policy gradient (MADDPG) is applied to solve the
optimal solution of the optimization problem. Simulation results show that the algorithm proposed in this paper
is able to achieve lower latency task computation offloading. Meanwhile, the average task completion time of the
proposed algorithm in this paper can be improved by 7.6% compared to the performance of the MADDPG scheme
and 51.1% compared to the performance of deep deterministic policy gradient (DDPG).

KEYWORDS
Component; vehicular; dynamic; task offloading; resource scheduling

1 Introduction

With the evolution of information and communication technology and the rapid iteration of
technological industrial changes, the integration of emerging technologies such as the Internet of
Vehicles, artificial intelligence, and 5G technology is accelerating towards intelligent and networked
upgrades, giving rise to a large number of intelligent application services such as autonomous driving
and real-time image and video-assisted navigation [1,2]. These emerging technologies require a large

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.050975
https://www.techscience.com/doi/10.32604/cmc.2024.050975
mailto:yueqiang@ustb.edu.cn

1810 CMC, 2024, vol.80, no.2

amount of computing and storage resources to process real-time complex tasks, posing great challenges
to low latency and high rate communication. Currently, due to the limited capabilities of vehicles
themselves and the high latency problem of traditional cloud computing long-distance transmission,
they can no longer meet the huge computing resource requirements in the Internet of Vehicles.

The emerging Internet of Vehicles (IoV) supports several types of communication, including
Vehicle-to-Vehicle (V2V), Vehicle-to-Cloud (V2C), and Vehicle-to-Infrastructure (V2I). V2C utilizes
remote cloud resources to provide significant computational support, but has high transmission
latency [3]. Although V2V reduces the latency caused by distance, it cannot provide strong support for
a large number of real-time tasks due to the limited resources of vehicles. V2I moves remote servers to
the vicinity of Road Side Units (RSUs) to provide the nearest service support for vehicles on the road,
overcoming the limitations of vehicle resources and reducing the response delay of computational
tasks. V2I is essentially the fusion of IoV and edge computing, and is an application scenario of
Vehicular Edge Computing (VEC), which has significant advantages in improving task transmission
efficiency and enhancing real-time interaction experience. The process of offloading latency-sensitive
or computationally intensive tasks from vehicles to edge nodes is called task offloading, while resource
allocation maximizes the utilization of edge servers or nodes to provide high-performance application
services with limited resources. Optimizing task offloading and resource allocation is the core issue of
VEC, but there are several challenges, such as frequent changes in the network topology due to the
vehicles’ motion, heterogeneity of application services for different users in terms of delay tolerance,
and the increasing data volume of vehicle tasks, which burdens the computation of IoV and urgently
needs to consider optimization problems of task offloading and computation [1]. Currently, most
work focuses on offloading tasks to roadside units based on the V2I mode, but as computational
tasks become more complex and data volumes grow, edge servers can become overloaded, resulting
in a significant increase in task queuing delay and a decrease in system performance [2]. With the
continuous iteration of intelligent technology in IoV, the computational and storage capabilities of
vehicles are constantly improving [3]. By using V2V networks as a supplement to V2I task offloading,
the overall computational capacity of the system can be effectively expanded, and the load of RSUs
can be alleviated [4].

With the continuous increase in the scale of vehicles in IoV, using traditional heuristic algorithms
or swarm intelligence-related models lacks active learning ability and cannot adapt well to dynamic
vehicle environments. If traditional optimization algorithms are used to solve the task offloading
and resource allocation problems in IoV, the computational complexity will increase exponentially.
Based on the above challenges, the emerging and rapidly developing technology of reinforcement
learning provides a new approach to solving these problems. By regarding vehicles or edge nodes
as intelligent agents and utilizing the communication cooperation between agents in reinforcement
learning to learn the optimal strategy, the dynamic allocation of resources, power selection, and task
offloading decisions in IoV can be effectively solved.

This article is based on the aforementioned research background and focuses on the difficulties
and challenges faced in the context of the IoV, specifically the problems of task offloading and resource
allocation in dynamic IoV scenarios. The article explores the collaboration between V2I and V2V
communication modes in resource allocation. By introducing a multi-agent reinforcement learning
algorithm in the IoV dynamic model, efficient task offloading and resource allocation can be achieved.

Our main contributions of this paper are summarized as follows:

1. In this paper, we study the problem of task computation offloading for vehicular networking,
where computationally intensive vehicular tasks are offloaded to vehicles with remaining

CMC, 2024, vol.80, no.2 1811

computational resources. In the problem, we take into account the computational capabilities,
communication boundaries and communication delays of the vehicles, aiming to optimize the
task offloading decision so that the average task completion time is minimized.

2. In this paper, we propose a deep reinforcement learning-based dynamic offloading and
scheduling scheme for Internet of Vehicles tasks to achieve dynamic decision-making for task
offloading during non-uniform movement between vehicles. Simulation results show that the
algorithm proposed in this paper can intelligently learn the optimal offloading strategy from
the interaction with the dynamic network environment.

The remainder of this paper is organized as follows. Section 2 presents related works. Section 3
formulates the Internet of Vehicles task offloading problem. In Section 4, we propose a solution
algorithm based on deep reinforcement learning. Numerical results are presented in Section 5.
Section 6 concludes this paper.

2 Related Work

In order to ensure the demand for service quality or experience quality of users and effectively
improve the network capacity of the vehicular ad hoc network (VANET) system, researchers have
proposed various resource scheduling and allocation methods in the VANET communication network.
Meanwhile, mobile edge computing (MEC) is also increasingly integrated into the resource scheduling
of VANET.

Ning et al. [5] modeled the architecture of wireless communication and edge computing in vehicu-
lar networks using deep reinforcement learning and built an intelligent offloading system to maximize
user experience quality. Xin Li’s team [6] studied a dynamic wireless resource allocation strategy in
a multi-layered vehicle edge cloud computing framework to better adapt to vehicle task offloading
scenarios. Wang et al. [7] used DQN network to solve the network time-varying problem caused
by vehicle mobility and designed a task offloading strategy for vehicular edge computing scenarios.
Chen et al. [8] proposed a task offloading scheme that relies only on V2V cooperative communication
by fully exploring the idle resources of aggregated vehicles. They formulated task execution as a Min-
Max problem between a single task and multiple vehicles, and used the particle swarm optimization
algorithm to solve the problem. Additionally, the authors [9] proposed a distributed task offloading
strategy based on DQN for the limited resources of edge servers, aiming to minimize the task execution
time of vehicles. Wang et al. [10] studied the collaboration offloading problem in vehicular networks
and proposed a heuristic algorithm for minimizing the average task completion time by considering
the randomness of vehicle movement speed and channel conditions in vehicular networks.

In order to enhance network performance, an increasing number of researchers are exploring the
integration of V2V and V2I communication, specifically aiming to improve the capacity performance
of V2I links while satisfying the constraints of V2V link latency and reliability.

The research team of Wang et al. [11] studied how to achieve joint unloading of mobile vehicles
and proposed an unloading architecture and efficient joint unloading strategy that supports V2I
communication in a vehicle network that supports joint V2V communication, with the goal of
minimizing total delay. The task allocation ratio of the unloading part was considered to find the
minimum total delay result. In addition, Lei Feng’s team [12] proposed a joint computing and URLLC
resource allocation strategy for co-V2I-assisted V2X networks to adapt to large-scale fading slow-
changing channel conditions while ensuring network stability, where the V2I and V2V links do not
interfere with each other and occupy different frequencies. Yang et al. [13] proposed an efficient

1812 CMC, 2024, vol.80, no.2

ETAC method to improve learning efficiency and convergence speed, while satisfying V2I link QoS,
ensuring low latency requirements for V2V links, and maximizing the overall network capacity through
joint task selection, resource allocation, and power control. In [14], the authors consider the joint
network selection and computational offloading optimization problem in a multi-service vehicular
edge computing environment aiming to minimize the overall latency and energy consumed in an
IoV scenario and propose a cooperative q-learning based offloading algorithm. In [15], the authors
propose a joint task offloading and resource allocation scheme for a docked mobile vehicle-assisted
edge computing scenario based on multi-device, parked and mobile vehicles, which is covered by a
base station equipped with an edge server. The tasks of the devices can be offloaded both to the base
station and further from the base station to the vehicle. In [16], the authors propose a task offloading
scheme for IoV edge computing architecture based on reinforcement learning computing to achieve
fast processing of tasks, taking into account the explosive growth of data streams, the rapid increase in
the number of vehicles, and the increasing scarcity of spectrum resources, which makes it impossible
for the vehicle terminals to perform efficient computations. The relevant research work is summarized
in Table 1.

Table 1: Summary of relevant work

Reference Optimization objective Solution

[5] Quality of experience Two-sided matching and reinforcement
learning

[6] Energy cost Maximum value density based heuristic
allocation

[7] Offloading cost Reinforcement learning
[8] Task execution time Particle swarm optimization algorithm
[9] Remain resources Deep Q-learning
[10] The average completion time of the

application
Reinforcement learning

[11] Total latency Distributed algorithm
[12] The average energy consumption Game theory and lyapunov

optimization
[13] The overall network capacity Reinforcement learning
[14] Task processing delay Generalized benders decomposition

and reinforcement learning
[15] Latency and energy Q-learning
[16] Task execution time Deep deterministic policy gradient

Based on the above literature review, there are still some issues in resource scheduling in the
Internet of Vehicles. Firstly, most of the studies did not consider the dynamic mobility environment
in the resource scheduling process. Although some studies have addressed the unloading problem
of moving vehicles or considered the impact of vehicle speed changes, most of them are based on
two assumptions: vehicles are traveling at a constant speed or are relatively stationary during task
unloading. The unloading decisions made in these scenarios do not take into account the dynamic
decision-making problems in the complex and real-time changing Internet of Vehicles environment,
which is unrealistic. Secondly, most of the current research on using reinforcement learning to solve

CMC, 2024, vol.80, no.2 1813

Internet of Vehicles task unloading problems adopts single-agent reinforcement learning algorithms.
However, in actual Internet of Vehicles scenarios, there are a large number of vehicles, and the real-
time changes and dynamic environment of vehicles will exponentially increase the dimensions of state
and action spaces, which can easily lead to the problem of dimension explosion during actual training
and affect the final unloading results.

3 System Model and Problem Formulation

We construct task offloading model for vehicular networks, which takes into account scenarios
where tasks cannot be split, multiple vehicles are involved with a single base station. As illustrated in
Fig. 1, the constructed model uses V = {Vs, Vt} to represent the vehicles in the considered scenario,
where Vs denotes the service vehicles represented by the set Vs = {

v1
s , v2

s , . . . , vm
s

}
, and m represents the

number of service vehicles; Vt denotes the task vehicles represented by the set Vt = {
v1

t , v2
t , . . . , vn

t

}
,

and n represents the number of task vehicles; E denotes the base station, which also refers to the edge
server. The model is built in the scenario of a busy crossroads where vehicles are on a dual-carriageway,
and the road is all within the coverage range of a base station. Vehicles communicate with each other
through the DESC communication technology, establishing connections with the base station through
designated channels. Some important notations are listed in Table 2.

Figure 1: Task offload model in IoV

1814 CMC, 2024, vol.80, no.2

Table 2: Important notations

Notation Describe

Vs Service vehicles
Vt Task vehicles
R Wireless transmission rate
B The wireless bandwidth of the system
D Task size
Fv The CPU cycle of the vehicle
M The computational intensity of the task
dn (t) The time-varying distance between the task vehicle and the service vehicle
Fn The CPU cycle of the service vehicle
FE The CPU cycle of the MEC server in the base station
tdata The transmission delay
ttran

E The time delay for task execution on the base station
tcomp

v The execution delay on the vehicle

3.1 Communication Model

As the distance that vehicles move during task offloading between vehicles is very limited and the
channel state changes only slightly, and the duration of information exchange and data transmission
between vehicles and the base station is usually at the millisecond level, the vehicular network
topology can be considered as stable and unchanging during the process of resource scheduling
and task offloading. In vehicular communication, the orthogonal frequency-division multiple access
(OFDMA) technology is adopted, and the task vehicles connected to the same service vehicle or the
base station are mutually interference-free. When tasks need to be offloaded to service vehicles or the
base station, the task data or the offloaded task computing instructions need to be transmitted through
the wireless link. The communication models for these two scenarios are considered as follows.

1) Unload to Service Vehicles: Assuming the wireless channel for uploading task data between
the task vehicle and the service vehicle is an additive white Gaussian noise channel, and since the
tasks in the model considered in this paper are indivisible, the formula for calculating the data wireless
transmission rate R is given by:

Rsm
tn

= B log2

(
1 + Ptn

∣∣h̃n

∣∣2
d−α

n (t)

σ 2
n

)
, (1)

where B represents the wireless bandwidth of the system, Ptn represents the transmission power of the
task vehicle, which is the uplink transmission power, σn represents the noise power, h̃n is the channel
fading coefficient between the task vehicle and the service vehicle, d−α

n (t) represents the transmission
path loss, and α is the path loss index. Due to the movement of vehicles, dn (t) represents the time-
varying distance between the task vehicle and the service vehicle during the task offloading and
transmission process. For this model, it is assumed that the speed of the task vehicle tn and the service
vehicle sm are vs and vt, respectively, and the initial distance is d0. The formula for calculating dn (t) is

CMC, 2024, vol.80, no.2 1815

given by:

dn (t) =
√

|d0 + (vs − vt) t|2. (2)

The above formula assumes that d0 is not equal to zero, as two vehicles cannot travel at the same
position. In addition, the tasks studied in this paper are delay-sensitive, with a delay typically in the
order of milliseconds. Vehicles on the road generally travel at high speeds, assuming a speed of 50 ms.
The relative speed between the two vehicles is 50 km/h, resulting in a time-varying distance of 0.695 m.
However, this value can be ignored because at a relative speed of 50 km/h, the minimum safe distance
between vehicles should not be less than 50 m. Therefore, the following formula is obtained:

dn (t) = |d0| , d0 �= 0. (3)

Assuming the amount of data unloaded to the service vehicle is D, the delay in data transmission
can be calculated as follows:

tdata (sm, tn) = D
Rsm

tn

= D

B log2

(
1 + Ptn

∣∣h̃n

∣∣2 |d0|−α

σ 2
n

) . (4)

During the unloading process, there is also the uploading of calculation instructions related to
task unloading. The size of these instructions is usually tens to hundreds of bits, so their delay can be
ignored compared with the delay in data transmission. After receiving the calculation instructions, the
service vehicle will also undergo a transformation of its own state (such as coordinate transformation),
which depends on the data received from the task vehicle. The formula for this process is as follows:

ttran
n = DMtran

Fn

, (5)

where Mtran represents the computational intensity of the state transformation, and Fn represents the
CPU cycle of the service vehicle, which remains relatively stationary during the actual calculation
process of the task. Due to continuous upgrading of vehicle equipment and enhancement of wireless
transmission technology, the uploading of task data and the perception of the service vehicle almost
occur simultaneously. In order to minimize the unloading time, the smaller value between tdata and ttran

is generally taken. Therefore, the transmission time from the task vehicle to the service vehicle can be
represented as:

tupload_v (sm, tn) = min
{
tdata (sm, tn) , ttran

n

}
. (6)

2) Unload to Service Base Station: Assuming that the transmission power of the uplink channel
during the unloading process from the task vehicle to the base station is PE and the noise power is σE,
according to Eq. (1) , the wireless upload rate from the task vehicle sm to the base station E can be
obtained:

RE
tn

= B log2

(
1 + PE

∣∣h̃E

∣∣2
d−α

E (t)

σ 2
E

)
, (7)

where dE represents the time-varying distance between the task vehicle and the base station, which
is related to the unloading time, the initial position and the movement speed of the task vehicle.

1816 CMC, 2024, vol.80, no.2

Therefore, we have:

dE (t) =
√

|d0 − vst|2 + H2
0 , (8)

where d0 represents the initial distance between the task vehicle and the base station, H0 represents
the height of the base station. Similarly, due to the high-speed movement of the vehicle, the effect of
millisecond-level displacement changes on dE (t) is negligible. Therefore, dE (t) becomes:

dE (t) =
√

|d0|2 + H2
0 . (9)

Therefore, as each time slot of the task unloading process, the variation of the time-varying
distance can be regarded as a constant. Thus, Eq. (6) can be rewritten as:

RE
tn

= B log2

(
1 + PE

∣∣h̃E

∣∣2 (|d0|2 + H2
0

)−α/2

σ 2
E

)
. (10)

Similarly, with reference to Eqs. (4) and (5), the data transmission delay tdata (E, tn) and state
transition delay ttran

E of task unloading to the base station can be obtained:

tdata (E, tn) = D
RE

tn

= D

B log2

(
1 + PE

∣∣h̃E

∣∣2 (|d0|2 + H2
0

)−α/2

σ 2
E

) , (11)

ttran
E = DMtran

FE

, (12)

where FE represents the CPU cycle of the MEC server in the base station. Similar to unloading to the
service vehicle, in order to minimize the unloading time, the minimum value of the transmission delay
and the state transition delay is generally taken. Therefore, the unloading delay of the task to the base
station can be represented as:

tupload_E (E, tn) = min
{
tdata (E, tn) , ttran

E

}
. (13)

3.2 Computation Model

Once the computing task is generated on the task vehicle and enters decision-making, it will be
executed locally or unloaded to the surrounding service vehicles or base station for execution based
on the strategy and task size selection.

When a task is executed locally or offloaded to a service vehicle, tcomp
v represents the execution delay

on the vehicle, D represents the task size, Fv represents the CPU cycle of the vehicle, and M represents
the computational intensity of the task (cycles/bit), i.e., the computational resources required per bit of
input data. Since the resource configuration of the task vehicle and the service vehicle is not consistent,
Fv is also different

tcomp
v = DM

Fv

. (14)

When tasks are offloaded to the base station, tcomp
E represents the time delay for task execution

on the base station, where FE represents the CPU cycle of the base station’s MEC server and f comp

represents the proportion of computing resources allocated to the task in this time slot compared
to the total MEC resources. Therefore, the calculation delay of the task on the base station can be

CMC, 2024, vol.80, no.2 1817

expressed as:

tcomp
E = DM

FEf comp
. (15)

Considering the above communication and computation models, the calculation methods for the
time delay of the three task offloading modes considered in this paper can be expressed as follows:⎧⎪⎨⎪⎩

Tlocal = tcomp
v

TV2V = tupload_v (sm, tn) + tcomp
v

TV2I = tupload_E (E, tn) + tcomp
E

. (16)

3.3 Dynamic Constraint Model

As this paper considers the scenario of a two-lane road in the vehicular ad hoc network, vehicles
may unload their tasks onto a service vehicle traveling in the opposite direction. The relative speed
between the two vehicles can reach more than 200 km/h. For a time slot with a large amount of task
data, the delay from unloading to the service vehicle and then back to the result transmission can
be significant. Assuming a delay of 0.5 s, the relative distance between the two vehicles increases by
more than 28 meters. Assuming the maximum distance for effective communication between vehicles
is Distmax

V2V, this distance must be taken into account. If the initial distance between the task vehicle and
the unloading service vehicle approaches the maximum distance, then during the task unloading and
transmission process, the distance between the two vehicles is very likely to exceed Distmax

V2V, resulting
in the inability of the calculation result to be returned normally and the failure of the task unloading
and transmission. This process is referred to as the communication boundary problem in this paper.

In response to the dynamic situation caused by the rapid movement of vehicles, this paper proposes
a dynamic constraint condition, which is expressed as follows:

ds
0 + vs

rTV2V < Distmax
V2V . (17)

Regarding the unloading of tasks from the vehicle to the base station, it is stipulated that the
maximum distance allowed for effective communication between the vehicle and the base station is
Distmax

V2I . Assuming the initial distance between the task vehicle and the base station is dE
0 , and the relative

velocity of the task vehicle with respect to the base station during the time slot is vE
r , the following

equation can be derived:

dE
0 + vE

r TV2I < Distmax
V2I . (18)

Under the dynamic model constraints mentioned above, after the vehicle executes the unloading
strategy and obtains the unloading target, it does not immediately perform the unloading action.
Instead, it evaluates whether the above constraints are satisfied based on the task volume of the time
slot, the location of the vehicle and base station sensed by the environment, and the speed of other
vehicles. If the constraints are satisfied, it immediately performs the current unloading action and
awaits the result. Otherwise, the current target is removed, and the unloading strategy searches for
a suboptimal unloading target until a new target that satisfies the constraints is found. Since this
evaluation is performed locally and has minimal computation, the delay can be ignored.

1818 CMC, 2024, vol.80, no.2

3.4 Problem Formulation

The communication model, computation model, and dynamic constraint model for vehicle-to-
base-station joint offloading in vehicular networks have been presented above. This section focuses
on establishing the task offloading and resource scheduling problem for vehicular networks based on
the described system model. In order to achieve the offloading of computational tasks in a dynamic
scenario, to meet the computational resource demands of vehicular network tasks, a multi-constraint
problem with the objective of minimizing the average completion time T ave of system tasks can be
formulated.

min T ave (Vs, Vt, E) = min
n∈N

1
n

{∑
tlocal + ∑

tV2V + ∑
tV2I

}

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1:
∑
i∈M

rTi ≤ Rtotal

C2 :
∑
j∈m

Cs
ij ≤ Ci

C3: Ti ∈ [60, 200]

C4:
∑
i∈N

f comp
i ≤ 1

C5: f comp
i ∈ [0, 1]

C6: (3 − 17)

C7: (3 − 18)

.
(19)

In Eq. (20) , constraint C1 indicates that the total amount of computing resources in the model
system is greater than or equal to the comprehensive computing resources required for unloading
tasks in each time slot; constraint C2 means that the total amount of computing resources required
for tasks accepted by each service vehicle does not exceed the maximum computing resources owned
by the service vehicle itself; constraint C3 indicates the range of task sizes considered in the model,
with different types of tasks corresponding to different size intervals (in MB); constraints C4 and C5
limit the proportion of computing resources required for tasks unloaded to the base station, and finally
constraints C6 and C7 represent the dynamic constraint model. The optimization problem above is
a non-linear programming problem and has NP-hard characteristics, so the following will use multi-
agent deep reinforcement learning methods to solve this problem.

4 TDO-MADDPG Algorithm
4.1 Markov Decision Process Model

Appropriate decisions are made at the beginning of each period for task offloading of the
vehicle based on the current resources in the system, thus maximizing the long term rewards [17].
At the beginning of the training phase, as the vehicle moves, the task vehicle will make appropriate
actions based on the currently explored environmental situation and receive appropriate environmental
rewards. During the training process, those beneficial strategies will be accumulated until the end of the
training, then the task vehicle in this system will make the best scheduling and task offloading using
the position changes of the service vehicle and the base station. For task offloading of task vehicles in
this scenario, each task vehicle is defined as an agent, and each agent learns one of its own policies that
guides its optimal strategy during task offloading to minimize the average processing delay of the task.
The Markov decision process can be defined as (S, A, R). The definitions of each part are presented
separately below.

CMC, 2024, vol.80, no.2 1819

(1) State

The global state space is made up of the state spaces of multiple task vehicles, and the state space
si of a task vehicle vi

t can be represented as:

S = {s1, . . . , si, sN} , si = {D, loci, Dists, DistE} , (20)

where D and loci denote the task vehicle The size of this unloaded task and the vehicle location, Dists

and DistE represent the set of distances from each service vehicle and the distance from the base station.
Each agent cannot know the complete state space of the environment, the intelligence obtains the state
information of the environment through the observation function, and participates in the training of
the optimal overall rewards based on partial observations.

(2) Action

Since tasks are not split in the model considered in this section and it is guaranteed that the
unloaded tasks can be processed in each time slot, each task vehicle can only unload a single task.
The global action space is composed of the action spaces of multiple task vehicles, and each task
vehicle agent executes its own actions synchronously in each time slot without sequential order, i.e.,
the system executes a joint action. The global action space and the action space of the task vehicles
are defined as:

A = {a1, . . . ai, . . . , aN} , ai = {Vs, E} , Vs = {
v1

s , . . . , vm
s

}
, (21)

where Vs denotes the set of service vehicles offloaded by the task vehicle,
{
v1

s , . . . , vm
s

}
and E denote

whether they are offloaded to the corresponding service vehicle or base station. From the above action
space, it can be seen that as the number of vehicles increases, the dimension of the global action space
also increases dramatically.

(3) Reward

The model is trained in such a way that each task-vehicle agent continuously maximizes its own
long-term reward by interacting with the environment, and makes the global reward converge to the
optimal value of the system. For high-speed moving vehicles in the IoV network, the tasks are latency-
sensitive, and the system goal of minimizing the average processing latency of the tasks is made clear
during the Markov model construction process, which is essentially to minimize the task execution
latency of the system. Here the latency of vehicle task processing in the system is included in the
reward function in each time slot, defining the overall reward of the system as Rt. Because the goal
of this paper is to minimize the objective function, the reward value should be negative. From the
communication model and computation model above, Rt mainly includes the communication delay
rcomm

i and computation delay rcomp
i during the unloading process of the task vehicle. Let the system reward

for each time slot be rt, which represents the weighted sum of the delay of the unloading process of
each task vehicle in that time slot:

rt =
∑
i∈N

ρiti =
∑
i∈N

ρi

(
rcomm

i + rcomp
i

)
,
∑

ρi = 1. (22)

1820 CMC, 2024, vol.80, no.2

where ρi denotes the reward weighting factor of each agent in that time slot, then the overall reward
of the system shall be the sum of the rewards of each time slot, which can be expressed as:

Rt = − (Rcomm + Rcomp)

= −
(∑

i∈l

ri
t

)
= −

(∑
i∈l

∑
j∈N

ρi

(
ri,comm

j + ri,comp
j

))
.

(23)

4.2 Algorithm Design

The framework of the task dynamic offloading and scheduling scheme for vehicular networks
based on MADDPG is shown in Fig. 2. Each task vehicle agent obtains experience through interaction
with the environment, and then uses the feedback experience to guide its own behavior strategy.
Multiple agents jointly explore the vehicular network environment and replay experiences based on
the experience replay pool to break the correlation between samples and update the main network
parameters and target network parameters of each agent until the model system converges to a stable
state. In order to optimize the overall objective function, the agents here have a completely cooperative
relationship and share the same reward mechanism. At the same time, the implementation process of
this scheme is divided into two stages: centralized training and distributed execution. In the training
stage, the agent obtains a reward with the goal of reducing system latency, and then updates its
corresponding Actor network and Critic network to adjust it to the optimal strategy. In the execution
stage, each agent obtains a local observation state based on the observed local environmental state,
and then makes the optimal offloading strategy based on the trained network.

Figure 2: TDO-MADDPG framework

Algorithm 1 shows the training process of the TDO-MADDPG algorithm, which includes the
recovery of experience and the use of experience for network updates. During the experience collection
process, only when the experience recovery pool is full, a set of randomly selected experiences is started
for training, and at the end of the sub-training round, each task vehicle intelligence is softly updated
for its respective target network. For each training round the average delay of the system tasks is
minimized as the optimization objective, and the computational resources of the system are used as

CMC, 2024, vol.80, no.2 1821

the constraints, and it is also assumed that the topology of the whole car network is kept relatively
stable during the offloading process of the tasks, which ensures the reliability and stability of the data
transmission to a certain extent.

Algorithm 1: TDO-MADDPG Algorithm
Input: Number of training episodes; Number of vehicles; Number of episode iterations; Experience
replay buffer size; batch sampling size; discount rate; attenuation factor.
Output: Optimal dynamic resource scheduling policies.
1 Initialize the environment;
2 For ep ∈ (1, . . . , episodes)
3 Initialize the start state;
4 For step ∈ (1, . . . , steps)
5 Calculate action at in state st;
6 Dynamic constraint calibration based on action at and update at again;
7 Perform action at, environmental feedback gets reward rt and next state s′

t;
8 Store

(
st, at, rt, s′

t

)
as an experience in the experience replay buffer

9 If the experience pool is full and after 10 iterations of steps:
10 Randomly select a set of data from the experience replay buffer;
11 For vt ∈ (

v1
t , . . . , vn

t

)
12 Update the Critic network;
13 Update the Actor network;
14 Soft update of target network parameters;
15 End
16 State transfer to the next state s′

t;
17 Calculate the reward for each iteration step;
18 End
19 Record the accumulated reward value for the episode;
20 End

5 Simulation Analysis

This section establishes a real-time dynamic environment for task offloading and resource
allocation in vehicular ad hoc networks and conducts convergence analysis of the TDO-MADDPG
algorithm. The effectiveness of the proposed solution is evaluated through an analysis of the average
task completion time. The algorithm’s performance is trained and analyzed with respect to parameters,
vehicle numbers, and task size. Finally, the algorithm is compared and discussed with DDPG,
MADDPG, ATE (All Tasks for Edge), and ATSV (All Tasks for Server Vehicles) algorithms under
the same scenario, evaluating convergence and average task completion time to demonstrate the
advantages of the optimal strategy.

The simulation in this paper is implemented using Python and Pytorch, running on Ubuntu
18.04.6 operating system with Nvidia GeForce RTX 3080 graphics card. The vehicle movements are
based on the CRAWDAD [18] publicly available autopilot trajectory dataset. The Python version used
is 3.6. The task size interval is [60,200] MB, divided into 15 types of tasks (sizes correspond to 60, 70,

1822 CMC, 2024, vol.80, no.2

..., 200 MB), where different sizes represent different types of vehicle tasks. Some key parameters are
listed in Table 3.

Table 3: Key parameters

Parameter Value

Base station 1
Vehicles 9–21
Computing intensity M 128 cycles/bit
Task vehicle CPU 9 GHz
Service vehicle CPU 10 GHz
MEC server CPU 15 GHz
Task size [60,200] MB
Wireless bandwidth 100 MHz
Base station height 20 m
Noise power 10–13 W
Uplink trans. power 1.5 W
Path loss factor 3.4
Max distance between vehicles 200 m
Max distance between vehicles and base station 5 km
Max distance between vehicles and base station 5 km

5.1 Recycling Pool Training

Training was conducted on the algorithm with regards to the size of the experience pool and
the size of the sampled data clusters, in order to investigate their impact on the convergence of
the algorithm. As shown in Figs. 3 and 4, batch_size represents the size of the randomly sampled
data cluster during the training process, while buffer_size represents the capacity of the experience
replay pool.

Figure 3: Different batch_size

CMC, 2024, vol.80, no.2 1823

Figure 4: Different buffer_size

As shown in Fig. 3, the main training is based on the batch_size of the training data cluster
randomly sampled from the experience pool, while the buffer_size is fixed at 4096. It can be seen
from the figure that the smaller the batch_size, the greater the fluctuation of the reward value in the
early stage. This is because the system randomly samples the experience set of batch_size from the
experience pool for training each time. If the batch_size is too small, the sampled experience may be
relatively poor, and the resulting reward will fluctuate in the opposite direction. According to the trend
of the different curves in the figure, it can be seen that different data cluster sizes do not ultimately
affect the convergence speed of the algorithm, but they will affect the fluctuation of the algorithm’s
reward value in the early stage of training.

5.2 Vehicles Number Training

Fig. 5 shows the impact of different buffer sizes on the convergence performance of the algorithm
in this paper, with a fixed batch size of 256. It can be seen from the graph that the buffer size has
the greatest influence on the convergence value and speed of the algorithm. When the buffer size is
set to 512, the length of the task queue in this scenario is only 100, and the number of task cars is
7, which means that the task queue cannot fully cover the experience of multi-agent training for one
round. It is easy to fall into a local optimal solution, and therefore the reward under this condition
is the smallest. As shown in the graph, as the buffer size becomes larger, the fluctuations during the
algorithm training process become less and less. This is because when the buffer size is large enough,
it can store more optimal experiences during the later stages of training, which is more conducive to
convergence of training.

Fig. 5 shows the convergence performance of the proposed TDO-MADDPG algorithm in the
given scenario with varying numbers of vehicles, while keeping the task size constant. As revealed by
the simulation parameters, an increase in the number of vehicles also leads to an increase in the number
of task vehicles, i.e., an increase in the number of system agents. It can be observed that with an increase
in the number of training iterations, the reward values gradually increase and eventually stabilize at a
convergent value. At the same time, it can also be seen that with a continuous increase in the number
of vehicles, the probability of reward value fluctuation is higher in the initial stages of the algorithm’s
operation. This is because an increase in the number of vehicles adds to the action and state spaces in

1824 CMC, 2024, vol.80, no.2

the model environment, thereby making the environment more unstable. Fig. 6 shows the change of
the average task completion time of the TDO-MADDPG algorithm with different number of vehicles.

Figure 5: Different vehicles number

Figure 6: Different vehicles number

5.3 Task Size Training

Fig. 7 shows the changes in task reward and average completion time under different task volumes
for unloading. The four curves represent different task volumes, with small indicating a task volume
of [60,120], medium indicating a task volume of [80,140], big indicating a task volume of [90,180],
and bigger indicating a task volume of [120,200]. According to the reward convergence Fig. 7a, it can
be seen that as the task volume increases, the convergence speed of the algorithm slows down. When
the data volume is relatively small, the convergence state is reached after 100 rounds of training, and
the average completion time of the task is relatively small, at 0.064 s. This is because when the data
volume is small, the local computing power of the task car is sufficient to process these data, so the

CMC, 2024, vol.80, no.2 1825

intelligent agent tends to choose to process the task locally to reduce the system overhead. As the
task volume continues to increase, most of the task data will exceed the local computing capacity,
and the proportion of tasks unloaded to the service car through V2V or to the base station through
V2I will gradually increase. As shown in Fig. 7b, when the data volume becomes very large, continuous
unloading to the service car will cause the data to time out without being processed, resulting in greater
losses, so task unloading will mainly be to the base station, and the average completion time of the task
will increase to 0.1109 s. From the completion time of processing the bigger level of data in Fig. 7c, it
can be observed that when the data volume far exceeds the vehicle’s own processing limit, the average
completion time of the task remains basically unchanged, because at this time, the task will choose to
unload to the base station for processing.

Figure 7: Different task size (a) convergence (b) task completion time (c) task completion time

5.4 Comparative Analysis

To verify the superiority of the proposed algorithm in this paper, this section compares the
algorithm with MADDPG, DDPG, unloading all tasks to the base station ATE, and unloading all
tasks to the service vehicle ATSV in the same scenario, highlighting the performance advantages of
the proposed algorithm. For the MADDPG approach, the dynamic decision-making process during
vehicle operation is not considered, and the unloading target is generated based on the algorithm’s own
decisions, and the unloading action is directly executed. For the ATE approach, the vehicle unloads
all tasks to the base station during dynamic movement, without considering local computing and
unloading to the service vehicle. In the ATSV approach, the vehicle’s tasks are not considered for the
base station, only local computing and unloading to neighboring service vehicles are considered.

Fig. 8 shows the convergence of reward values and comparison with other algorithms for the
dynamic offloading and scheduling algorithm based on TDO-MADDPG, under the same task and
vehicle conditions. It can be observed that the convergence speed of TDO-MADDPG is comparable
to that of MADDPG, but the convergence reward value of TDO-MADDPG is better. This is because
TDO-MADDPG considers dynamic decision-making, excludes edge cases where the communication
distance may be exceeded during the offloading process, and optimizes the global reward value. It
can be seen from the figure that the reward convergence speed of the offloading strategy based on
DDPG is much faster than that of the multi-agent strategy, reaching convergence at around 200
times. However, the final convergence reward value of the scheduling strategy proposed in this paper
using TDO-MADDPG is much better. The reason is that in the centralized training mode, each
agent has a separate policy, limited by the locally observed environmental state, and trained based

1826 CMC, 2024, vol.80, no.2

on the reward feedback from the environment, which slows down the convergence speed of the overall
system strategy. At the same time, due to the limitation of service vehicle resources, in the early stages
of training, the strategies assigned by agents can usually lead to resource competition, resulting in
a decrease in the convergence performance of the multi-agent. With the increase of training times,
each agent will gradually improve its action decision-making towards maximizing the overall system
reward, and finally reach the state of overall convergence. In contrast, the single-agent algorithm based
on DDPG has no global reward constraints, and the algorithm cannot grasp the global state of the
system. Each agent maximizes its own reward, which may lead to fluctuation of reward convergence
and finding a global suboptimal solution rather than the global optimal solution, resulting in a lower
reward value than that obtained by applying TDO-MADDPG or MADDPG algorithm. Furthermore,
it can be observed that the DDPG algorithm has a large fluctuation, which is caused by the non-
stationarity of the concurrent exploration and learning process of multiple agents, and the changes of
other agents affect the environment for the agent itself, thereby affecting the dynamic change of the
agent’s state space.

Figure 8: Comparison of different schemes

From Fig. 8, it can be seen that different schemes have different convergence reward situations.
Generally speaking, the ATSV scheme has the smallest reward value, as unloading all tasks to the base
station will result in significant latency. This scheme is used as a benchmark for comparative analysis.
The DDPG scheme is second, and as analyzed earlier, the final convergence value of this scheme may
not be the global optimal solution, but a local optimal solution. The ATE scheme is third, with a
relatively small reward value. Due to limited resources of the service vehicles, there may be resource
competition resulting in incomplete task processing. For the MADDPG scheme, as analyzed earlier,
there may be edge cases, so the reward value is not yet optimal. Therefore, based on the comparison
of the convergence situation of different schemes, the TDO-MADDPG algorithm proposed in this
paper has the optimal final convergence reward value and can also quickly iterate to a convergence
state, indicating that this algorithm is more competitive in this scenario. The following will use more
specific data to compare the performance advantages of this algorithm.

As shown in Fig. 9, we present a comparison of the average completion time of tasks using
different schemes for different numbers of vehicles. It can be observed that the average completion

CMC, 2024, vol.80, no.2 1827

time of tasks for AESV and ATE schemes almost remains unchanged, regardless of the number of
vehicles. From the figure, it can be seen that regardless of the variation in the number of vehicles, the
TDO-MADDPG algorithm has the least average completion time for unloading tasks. For instance,
when the number of vehicles is 12, the task average completion time of this algorithm is 7 ms faster
than that of MADDPG, with a performance improvement of 7.6%, and it is significantly higher than
the other three schemes, improving the performance of DDPG, ATSV, and ATE by 51.1%, 28.2%,
and 80.4%, respectively. This demonstrates the superiority and robustness of the TDO-MADDPG
algorithm in terms of latency performance and confirms the excellence of this scheme.

Figure 9: Average completion time of tasks in different schemes

6 Conclusion

This article focuses on the vehicular ad hoc network environment for fast-moving vehicles, and
combines multi-agent reinforcement learning algorithms with the computation resources of service
vehicles and base stations to achieve the optimization goal of minimizing the average task completion
time. The dynamic task offloading and resource scheduling problems are studied. In a simulated
environment, the proposed algorithm is verified and analyzed through dynamic decision-making, task
offloading, and resource scheduling. The feasibility of the algorithm is verified through convergence
verification and training analysis of relevant parameters. In addition, the training results show that
the algorithm can achieve optimal convergence performance and lower average task processing time
for different numbers of vehicles and tasks, demonstrating its stability and good performance. Finally,
the proposed algorithm is compared and analyzed with four different methods, and even with an
increase in the number of vehicles, it still achieves the lowest average task completion time, indicating
its obvious performance advantages. The comprehensive simulation experiment performance verifies
that the proposed algorithm has excellent performance advantages. In our future work, we will
further consider the security and privacy of vehicular computation offloading and design secure task
offloading schemes for Internet of Vehicles.

Acknowledgement: The authors would like to express our sincere gratitude and appreciation to each
other for our combined efforts and contributions throughout the course of this research paper.

1828 CMC, 2024, vol.80, no.2

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design: Yu Zhou, Yun Zhang, Guowei Li, Hang Yang, Wei Zhang, Ting Lyu and Yueqiang Xu;
data collection and analysis: Yu Zhou, Yun Zhang, Guowei Li, Wei Zhang and Yueqiang Xu; draft
manuscript preparation: Yueqiang Xu. All authors reviewed the results and approved the final version
of the manuscript.

Availability of Data and Materials: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] W. Fan et al., “Joint task offloading and resource allocation for vehicular edge computing based on V2I

and V2V modes,” IEEE Trans. Intell. Transport. Syst., vol. 24, no. 4, pp. 4277–4292, Apr. 2023. doi:
10.1109/TITS.2022.3230430.

[2] Q. Wu, S. Wang, H. Ge, P. Fan, Q. Fan and K. B. Letaief, “Delay-sensitive task offload-
ing in vehicular fog computing-assisted platoons,” in IEEE Trans. Netw. Serv. Manag., 2024. doi:
10.1109/TNSM.2023.3322881.

[3] X. Xu, Y. Xue, X. Li, L. Qi, and S. Wan, “A computation offloading method for edge computing with
vehicle-to-everything,” IEEE Access, vol. 7, pp. 131068–131077, 2019.

[4] Q. Wu, W. Wang, P. Fan, Q. Fan, J. Wang and K. B. Letaief, “URLLC-Awared Resource Allo-
cation for Heterogeneous Vehicular Edge Computing,” in IEEE Trans. Veh. Technol., 2024. doi:
10.1109/TVT.2024.3370196.

[5] Z. Ning, P. Dong, X. Wang, J. J. P. C. Rodrigues, and F. Xia, “Deep reinforcement learning for vehicular
edge computing: An intelligent offloading system,” ACM Trans. Intell. Syst. Technol., vol. 10, no. 6, pp.
1–24, 2019. doi: 10.1145/3317572.

[6] X. Li, Y. Dang, M. Aazam, X. Peng, T. Chen and C. Chen, “Energy-efficient computation offloading
in vehicular edge cloud computing,” IEEE Access, vol. 8, pp. 37632–37644, 2020. doi: 10.1109/AC-
CESS.2020.2975310.

[7] K. Wang, X. Wang, X. Liu, and A. Jolfaei, “Task offloading strategy based on reinforcement learning com-
puting in edge computing architecture of internet of vehicles,” IEEE Access, vol. 8, pp. 173779–173789,
2020. doi: 10.1109/ACCESS.2020.3023939.

[8] C. Chen et al., “Delay-optimized V2V-based computation offloading in urban vehicular edge computing
and networks,” IEEE Access, vol. 8, pp. 18863–18873, 2020. doi: 10.1109/ACCESS.2020.2968465.

[9] C. Chen, Y. Zhang, Z. Wang, S. Wan, and Q. Pei, “Distributed computation offloading method
based on deep reinforcement learning in ICV,” Appl. Soft Comput., vol. 103, pp. 107–108, 2021. doi:
10.1016/j.asoc.2021.107108.

[10] Z. Wang, D. Zhao, M. Ni, L. Li, and C. Li, “Collaborative mobile computation offloading to
vehicle-based cloudlets,” IEEE Trans. Vehicular Technol., vol. 70, no. 1, pp. 768–781, 2021. doi:
10.1109/TVT.2020.3043296.

[11] H. Wang, X. Li, H. Ji, and H. Zhang, “Federated offloading scheme to minimize latency in MEC-enabled
vehicular networks,” in 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates,
2018, pp. 1–6.

[12] L. Feng, W. Li, Y. Lin, L. Zhu, S. Guo and Z. Zhen, “Joint computation offloading and URLLC resource
allocation for collaborative MEC assisted cellular-V2X networks,” IEEE Access, vol. 8, pp. 24914–24926,
2020. doi: 10.1109/ACCESS.2020.2970750.

https://doi.org/10.1109/TITS.2022.3230430
https://doi.org/10.1109/TNSM.2023.3322881
https://doi.org/10.1109/TVT.2024.3370196
https://doi.org/10.1145/3317572
https://doi.org/10.1109/ACCESS.2020.2975310
https://doi.org/10.1109/ACCESS.2020.3023939
https://doi.org/10.1109/ACCESS.2020.2968465
https://doi.org/10.1016/j.asoc.2021.107108
https://doi.org/10.1109/TVT.2020.3043296
https://doi.org/10.1109/ACCESS.2020.2970750

CMC, 2024, vol.80, no.2 1829

[13] H. Yang, X. Xie, and M. Kadoch, “Intelligent resource management based on reinforcement learning for
ultra-reliable and low-latency IoV communication networks,” IEEE Trans. Veh. Technol., vol. 68, no. 5, pp.
4157–4169, 2019. doi: 10.1109/TVT.2018.2890686.

[14] S. S. Shinde and D. Tarchi, “Collaborative reinforcement learning for multi-service internet of vehicles,”
IEEE Internet Things J., vol. 10, no. 3, pp. 2589–2602, 2023. doi: 10.1109/JIOT.2022.3213993.

[15] W. Fan, J. Liu, M. Hua, F. Wu, and Y. Liu, “Joint task offloading and resource allocation for multi-access
edge computing assisted by parked and moving vehicles,” IEEE Trans. Vehicular Technol., vol. 71, no. 5,
pp. 5314–5330, May 2022. doi: 10.1109/TVT.2022.3149937.

[16] M. Zhang, “Development of analytical offloading for innovative internet of vehicles based on mobile edge
computing,” J. Grid Comput., vol. 22, no. 1, pp. 1–12, 2024. doi: 10.1007/s10723-023-09719-1.

[17] Q. Wu, S. Shi, Z. Y. Wan, Q. Fan, P. Y. Fan and C. Zhang, “Towards V2I age-aware fairness access: A DQN
based intelligent vehicular node training and test method,” Chin. J. Electron., vol. 32, no. 6, pp. 1230–1244,
Nov. 2023. doi: 10.23919/cje.2022.00.093.

[18] S. Farthofer, M. Herlich, C. Maier, S. Pochaba, J. Lackner and P. Dorfinger, “CRAWDAD dataset,” 2022.
Accessed: 18 Jan. 2022. [Online]. Available: srfg/lte-4g-highway-drive-tests-salzburg[EB]

https://doi.org/10.1109/TVT.2018.2890686
https://doi.org/10.1109/JIOT.2022.3213993
https://doi.org/10.1109/TVT.2022.3149937
https://doi.org/10.1007/s10723-023-09719-1
https://doi.org/10.23919/cje.2022.00.093
http://srfg/lte-4g-highway-drive-tests-salzburg[EB]

	Dynamic Offloading and Scheduling Strategy for Telematics Tasks Based on Latency Minimization
	1 Introduction
	2 Related Work
	3 System Model and Problem Formulation
	4 TDO-MADDPG Algorithm
	5 Simulation Analysis
	6 Conclusion
	References

