
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.050544

ARTICLE

An Improved YOLOv5s-Based Smoke Detection System for Outdoor Parking
Lots

Ruobing Zuo1, Xiaohan Huang1, Xuguo Jiao2,3 and Zhenyong Zhang1,4,5,*

1State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025,
China
2School of Information and Control Engineering, Qingdao University of Technology, Qingdao, 266520, China
3State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University,
Hangzhou, 310027, China
4Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Qilu University of Technology
(Shandong Academy of Sciences), Jinan, 250353, China
5Text Computing & Cognitive Intelligence Engineering Research Center of National Education Ministry, Guizhou University,
Guiyang, 550025, China

*Corresponding Author: Zhenyong Zhang. Email: zyzhangnew@gmail.com

Received: 09 February 2024 Accepted: 08 April 2024 Published: 15 August 2024

ABSTRACT

In the rapidly evolving urban landscape, outdoor parking lots have become an indispensable part of the city’s
transportation system. The growth of parking lots has raised the likelihood of spontaneous vehicle combus-
tion, a significant safety hazard, making smoke detection an essential preventative step. However, the complex
environment of outdoor parking lots presents additional challenges for smoke detection, which necessitates the
development of more advanced and reliable smoke detection technologies. This paper addresses this concern and
presents a novel smoke detection technique designed for the demanding environment of outdoor parking lots. First,
we develop a novel dataset to fill the gap, as there is a lack of publicly available data. This dataset encompasses a wide
range of smoke and fire scenarios, enhanced with data augmentation to ensure robustness against diverse outdoor
conditions. Second, we utilize an optimized YOLOv5s model, integrated with the Squeeze-and-Excitation Network
(SENet) attention mechanism, to significantly improve detection accuracy while maintaining real-time processing
capabilities. Third, this paper implements an outdoor smoke detection system that is capable of accurately localizing
and alerting in real time, enhancing the effectiveness and reliability of emergency response. Experiments show that
the system has a high accuracy in terms of detecting smoke incidents in outdoor scenarios.
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1 Introduction

With the accelerated pace of urbanization, automobiles have become an indispensable mode of
transportation in daily life [1,2]. However, the increase in vehicle usage has led to a corresponding
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rise in incidents of spontaneous vehicle combustion, posing significant threats to public safety and
challenging the security of communities [3]. The consequences of such incidents can be particularly
severe in outdoor parking lots, characterized by their exposed environment and high vehicle density.

Spontaneous vehicle combustion, like other forms of public space fires, are distinguished by their
sudden onset and potential to trigger cascading effects. In the initial stage of a fire, smoke often serves
as one of the most important indicators, making timely detection an urgent issue [4]. Effective smoke
detection not only provides early warnings within the critical “golden minutes” of a fire outbreak
but also secures valuable time for emergency response, thereby minimizing casualties and property
damage.

Conventional smoke detection methods typically rely on physical sensors [5–9]. Smoke sensors
perform well in enclosed or semi-enclosed environments, but may not be effective in outdoor environ-
ments [10]. In outdoor environments like spacious outdoor parking lots, it is easy to be affected by
environmental factors like natural light changes, dust, wind speed, humidity, or other meteorological
conditions, frequently leading to high false alarm rates or failure to send out timely alerts at critical
times.

Compared to sensors, image-based smoke detection is less affected by changes in the outdoor
environment [11]. With the development of computer vision and image processing technology, image-
based smoke detection methods began to gain traction.

Most of the early image-based smoke detection methods use conventional image processing
techniques to manually extract smoke features, such as optical flow method [12], wavelet transform
[13], segmentation methods like frame differential method [14,15] and Gaussian mixture model
[16]. These methods rely on handcrafted feature extraction and then use support vector machines
(SVM) [17], Ada Boost [18] or neural networks [19] for classification. However, these early methods
have their limitations. Smoke features such as texture, color and motion are easily affected by
environmental changes, which leads to low robustness of these methods in smoke detection under
different environments, and high false positive rate and false negative rate may exist in some scenarios.

In recent years, the rapid development of deep learning has made deep learning algorithms
powerful tool to address these challenges [20–22]. Deep learning has a great capacity in feature learning
[23], which has been fully applied in the field of object detection. Compared to methods rely on
handcrafted feature extraction, deep learning methods like Convolutional Neural Networks (CNNs)
[24] can adapt more flexibly to the complexities and variabilities of outdoor environments, thereby
significantly enhancing the accuracy and reliability of detection [25]. Furthermore, these technologies
enable real-time monitoring and dynamic tracking of smoke, greatly improving response times to initial
fire outbreaks.

Despite the immense potential of deep learning-based methods in outdoor smoke detection,
several challenges must be overcome for successful real-world application, such as enhancing model
robustness under varying lighting and weather conditions, and optimizing algorithms to reduce the
computational complexity. Most deep learning methods require extensive and high-quality datasets,
and network architectures need to be designed appropriately for different tasks. However, there is
currently a lack of public data sets on images of smoke and fire in parking lots.

To tackle these issues, this paper proposes an improved outdoor parking lot smoke detection
system based on YOLOv5s. Our work focuses not only on enhancing the accuracy and efficiency of
detection technology but also on adapting the system to the change of outdoor environments, thus
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providing more reliable technological support for public safety. The main contributions of this paper
can be summarized as follows:

1. We create a dataset of fire incidence in outdoor parking lots. A diverse collection of smoke
and fire data is gathered through various means and subsequently expanded using data aug-
mentation techniques. Using this approach, the robustness and generality of smoke detection
model are greatly improved, allowing for more effective detection performance in a variety of
outdoor conditions.

2. We employ the lightweight YOLOv5s as the principal detection model, innovatively integrated
with the Squeeze-and-Excitation Network (SENet) [26] for optimization. This approach not
only improves the model’s accuracy in recognizing smoke but also ensures high efficiency in
real-time detection.

3. We implement a smoke detection and early warning system for outdoor parking lots. This
system is capable of real-time detection and precise localization of smoke and fires within
parking areas, alerting users in a timely manner.

The remainder of this paper is organized as follows: It summarizes related work in Section 2.
The details of the improved YOLOv5s and the underlying methods are described in Section 3. In
Section 4, the new dataset is introduced. Section 5 analyzes the experimental environment and results.
In Section 6, we describe the implementation of the system. Finally, conclusions are drawn in Section 7.

2 Related Work

In the realm of image-based smoke detection research, main methods can be classified as: (1)
traditional image-based methods, which rely on handcrafted feature extraction, (2) deep learning-
based methods, which using deep learning algorithm to automatically extract features.

2.1 Traditional Image-Based Smoke Detection

Traditional image-based smoke detection methods rely on image processing technologies to
manually extract smoke features such as color, texture, motion. Chen et al. [27] used a RGB model
and disorder measurement to extract smoke pixels. Qin et al. [14] used color moments, LBP and HOG
to represent smoke features, and use SVM as a classifier. Islam et al. [16] used the Gaussian’s Mixture
Model (GMM) and HSV (hue-saturation-value) color segmentation to perform smoke segmentation
in the pretreatment stage, and dynamic smoke growth analysis was performed. Ajith et al. [28]
made use of motion information from fire video frames. Gubbi et al. [13] proposed a method for
smoke characterization by using wavelets and SVM. Dimitropoulos et al. [29] proposed a high-order
decomposition method of multidimensional image data to analyze the dynamic texture of smoke for
smoke detection.

While these methods have achieved certain success, they still face challenges in accurately
recognizing smoke and resisting interference in complex and variable outdoor environments.

2.2 Deep Learning-Based Smoke Detection

Deep learning-based object detection can be divided into two-stage algorithms represented by
RCNN [30] and one-stage algorithms represented by YOLO [31]. Compared to two-stage algorithms,
one-stage algorithms have better real-time performance and are more suitable for real-time smoke
detection. Luo et al. [32] proposed a smoke detection algorithm based on the convolutional neural
networks (CNN). Mahmoud et al. [33] used CNN and transfer learning developed a time-efficient
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fire detection system. Yin et al. [34] proposed a deep normalization and deep convolutional neural
networks (DCNN) for smoke detection. Saponara et al. [4] presented a smoke detection method
which use YOLOv2 CNN in real-time surveillance systems. Lin et al. [35] developed a smoke detection
framework based on a combination of 3D CNN and RCNN. Zeng et al. [36] used Faster R-CNN, SSD,
R-FCN to detect smoke. Zhang et al. [37] used Faster R-CNN to detect wildland forest fire smoke.

While existing deep learning-based methods theoretically offer better adaptability and accuracy,
they still confront practical challenges in outdoor applications, particularly under varying lighting and
weather conditions in outdoor parking lots. Given these limitations of existing methods, this paper
aims to propose a more accurate, responsive, and low false alarm rate solution for outdoor parking
lot smoke detection, offering a new perspective and technical pathway to address this public safety
challenge.

3 Methodology

In this section, we describe the methodology employed to smoke and fire detection in outdoor
parking lots. The structure of YOLOv5s model is explained in Section 3.1. Section 3.2 then goes into
detail about how the model is optimized by incorporating SE attention mechanisms.

3.1 YOLOv5s Network Structure

YOLOv5 is the fifth iteration of YOLO algorithm. It is a one-stage algorithm based on regression
and has been widely used in the domain of object detection. Structured with a network of convolutional
layers, pooling layers, and fully connected layers, it deeply extracts image features to predict the loca-
tion and classification of targets with precision. To realize smoke detection in outdoor parking lots, the
real-time performance is highly required. Compared to two-stage algorithms such as R-CNN and Fast
R-CNN which first detect the target region and then classify the object, YOLOv5 achieve end-to-end
detection and use a single network to complete the target region detection and classification, providing
faster inference speed and better adaptability to real-time requirements. This makes it particularly
suitable for implementing real-time smoke detection in the outdoor parking lot environments. The
YOLOv5 framework introduces multiple model variants, namely YOLOv5s, YOLOv5m, YOLOv5l,
YOLOv5n, and YOLOv5x. The YOLOv5m, YOLOv5l and YOLOv5x models deepen the network
based on YOLOv5s, which improves accuracy but also incurs increasing computational overhead.
Conversely, the YOLOv5n model achieves relatively lower accuracy. In comparation to the other
models, the compact and computationally efficient model YOLOv5s demonstrates faster detection
speed while maintaining satisfactory accuracy levels.

Considering specific constraints of the algorithm’s application environment, this paper primarily
utilizes the lightweight YOLOv5s model for model training and further implementations. Fig. 1
presents the network architecture of YOLOv5s, systematically segmented into four components: The
input end, Backbone, Neck, and the prediction module.

Input End The input end of YOLOv5s employs several techniques for processing data images, such
as Mosaic data augmentation for enhanced diversity, adaptive image scaling for consistent sizing, and
auto-learning bounding box anchors to adapt to image features, thereby improving detection accuracy.
Moreover, we use data augmentation techniques to enrich the original dataset used for training to
improve training effectiveness.
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Figure 1: Network architecture of YOLOv5s

Backbone The Backbone of YOLOv5s is a streamlined convolutional neural network that extracts
image features. It consists of convolutional layers for varied feature extraction, pooling layers for
reducing spatial dimensions, and activation layers for adding non-linearity.

Neck The Neck connects the Backbone and prediction module. It downsizes feature maps
for easier processing, employing convolutional layers, pooling layers, and residual connections to
efficiently transition from feature extraction to prediction.

Prediction Module The prediction module of YOLOv5s, using convolutional layers, transforms
the feature maps into object detection outputs. It predicts object categories, locations, and bounding
boxes, while simultaneously adjusting feature map sizes to match the original image.

3.2 Integrate into SE Attention Mechanism

To enhance the capability of model in recognition and classification tasks, we introduce SENet
[26] for model optimization. SENet, drawing inspiration from human attention mechanisms, allows the
model to focus more intently on significant information within the input feature map, thus boosting
performance.

The network utilizes a Squeeze-and-Excitation block (SE block) that first globally averages pools
each channel of the feature map, compressing spatial information into a scalar. Subsequently, using
the excitation step, feature responses are intensified. A fully connected layer coupled with a sigmoid
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function maps this scalar into the [0,1] interval, after which the calculated weights are applied back
to the original feature map, achieving dynamic feature recalibration. The structure of the SE block is
depicted in Fig. 2.

Figure 2: The Squeeze-and-Excitation block

As shown in Fig. 2, the transformation function Ftr reshapes the input feature map X ∈ �H′×W ′×C′

into feature maps U ∈ �H×W×C, where each feature map U is represented by a set of channels U =
[u1, u2, . . . , uC], with uc ∈ �H×W and H × W representing its spatial dimensions.

Then the SE block operates through a sequence of operations, starting with the squeeze operation,
as shown in Eq. (1). This global average pooling function, denoted as Fsq, shrinks the spatial
dimensions of the feature map to produce a channel descriptor zc for each channel.

zc = Fsq(uc) = 1
H × W

∑H

i=1

∑W

j=1
[uc]i,j. (1)

Building upon this, the excitation operation, detailed in Eq. (2), employs a simple gating mech-
anism with a sigmoid activation function δ, which generates weights for each channel. This gating
mechanism applies a set of learned parameters W1 and W2 to the squeezed channel descriptor z to
yield the scalar s, encapsulating the excitation output.

s = Fex(z, W) = σ(W2 · δ(W1 · z)). (2)

Finally, the output of the SE block is manifested in Eq. (3), where the output feature map x̃c is
obtained by scaling the original feature map uc with the learned activations sc. This scaling function,
represented by Fscale, serves as a dynamic recalibration, thereby tailoring the network’s focus to salient
features while processing the input through subsequent transformations.

x̃c = Fscale(uc, sc) = scuc. (3)

In summary, the primary advantage of SENet lies in its robust representational capacity, which
significantly improves outcomes across various image processing tasks. Furthermore, the SE block can
be seamlessly integrated into other network structures, enhancing the model’s ability to recognize key
features. In this paper, we integrate the SE block into the convolutional neural network’s backbone,
inserting SE blocks into each CSP structure within the backbone of YOLOv5, to precisely adjust the
feature responses of each channel. This integration elevates the model’s sensitivity to essential features
and overall performance. Its structure is shown in Fig. 3.
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Figure 3: The structure of YOLOv5s and YOLOv5s_SE backbone modules

4 Dataset Preparation

In this section, we present the foundation of our research—the dataset. Section 4.1 details the
building of a unique dataset, which was necessary because there were no publicly available datasets
specifically designed for smoke detection in outdoor parking lots. Section 4.2 discusses the augmen-
tation strategies implemented to enrich this dataset, enhancing the robustness and generalizability of
the detection models.

4.1 Data Collection

Smoke detection in outdoor parking lots is particularly challenging due to the variability intro-
duced by diverse backgrounds and meteorological conditions, such as fog, clouds, rain, and extraneous
elements like vehicles, pedestrians, and lighting conditions. Considering the lack of publicly available
datasets for parking fire incidents, we aggregated a dataset comprising 4,722 images of smoke and
flame across a spectrum of backgrounds from public repositories and internet resources, as shown in
Table 1.

Table 1: Primary sources of the original dataset

Source Category Link

University of Science and
Technology of China

Smoke images http://smoke.ustc.edu.cn/datasets.htm

Keimyung University Smoke videos http://cvpr.kmu.ac.kr/

(Continued)

http://smoke.ustc.edu.cn/datasets.htm
http://cvpr.kmu.ac.kr/


3340 CMC, 2024, vol.80, no.2

Table 1 (continued)

Source Category Link

Network video Spontaneous
vehicle
combustion
videos

https://www.bilibili.com/video/BV17k4y1y7Ut/?
spm_id_from=333.999.0.0&vd_source=65f0271
ddc2feccbf8b4642f35ac83c3

Network video Spontaneous
vehicle
combustion
videos

https://www.bilibili.com/video/BV1pt4y117mr/?
spm_id_from=333.788.recommend_more_
video.-1&vd_source=65f0271ddc2feccbf8b4642
f35ac83c3

Network video Spontaneous
vehicle
combustion
videos

https://www.bilibili.com/video/BV1CW411f7pi/?
spm_id_from=333.788.recommend_more_
video.4&vd_source=65f0271ddc2feccbf8b4642
f35ac83c3

Moreover, to refine detection performance for the specialized scenario of vehicular fire incidents
in parking lots, we collected 29 videos depicting the spontaneous combustion of vehicles from the
network platform.

Subsequent to frame extraction, filtering, dimensional normalization, and targeted cropping, we
augment the dataset with an additional 5,963 images, rendering it more representative of outdoor
parking contexts. The resultant dataset, encompassing 10,685 distinct smoke and fire image features,
constitutes the foundational dataset for this study, as shown in Table 2.

Table 2: Final composition of the original dataset

Category Quantity Description

Smoke and fire in complex
backgrounds

4,722 Different levels of lighting, weather,
occasions, and background complexity.

Frames from spontaneous
vehicle combustion videos

5,963 The specific scenario of vehicle
spontaneous combustion.

Total 10,685 –

4.2 Data Augmentation

To enhance the precision of image recognition and the generalization capability of the model, we
utilized data augmentation techniques to expand the original dataset of fires and smoke. Given the
limited scale of public datasets for fire and smoke detection, we initially processed frames from vehicle
combustion videos, including extraction, selection, size normalization, and appropriate cropping to
enrich the data samples. We also employed fundamental image processing methods such as adjusting
the brightness, contrast, saturation of images, and adding Gaussian noise to some images. Smoke
detection in outdoor parking lots is susceptible to factors such as lighting and weather conditions. By
adjusting the brightness, contrast and saturation of the image, we simulated the change of ambient light

https://www.bilibili.com/video/BV17k4y1y7Ut/?spm_id_from=333.999.0.0&vd_source=65f0271ddc2feccbf8b4642f35ac83c3
https://www.bilibili.com/video/BV17k4y1y7Ut/?spm_id_from=333.999.0.0&vd_source=65f0271ddc2feccbf8b4642f35ac83c3
https://www.bilibili.com/video/BV17k4y1y7Ut/?spm_id_from=333.999.0.0&vd_source=65f0271ddc2feccbf8b4642f35ac83c3
https://www.bilibili.com/video/BV1pt4y117mr/?spm_id_from=333.788.recommend_more_video.-1&vd_source=65f0271ddc2feccbf8b4642f35ac83c3
https://www.bilibili.com/video/BV1pt4y117mr/?spm_id_from=333.788.recommend_more_video.-1&vd_source=65f0271ddc2feccbf8b4642f35ac83c3
https://www.bilibili.com/video/BV1pt4y117mr/?spm_id_from=333.788.recommend_more_video.-1&vd_source=65f0271ddc2feccbf8b4642f35ac83c3
https://www.bilibili.com/video/BV1pt4y117mr/?spm_id_from=333.788.recommend_more_video.-1&vd_source=65f0271ddc2feccbf8b4642f35ac83c3
https://www.bilibili.com/video/BV1CW411f7pi/?spm_id_from=333.788.recommend_more_video.4&vd_source=65f0271ddc2feccbf8b4642f35ac83c3
https://www.bilibili.com/video/BV1CW411f7pi/?spm_id_from=333.788.recommend_more_video.4&vd_source=65f0271ddc2feccbf8b4642f35ac83c3
https://www.bilibili.com/video/BV1CW411f7pi/?spm_id_from=333.788.recommend_more_video.4&vd_source=65f0271ddc2feccbf8b4642f35ac83c3
https://www.bilibili.com/video/BV1CW411f7pi/?spm_id_from=333.788.recommend_more_video.4&vd_source=65f0271ddc2feccbf8b4642f35ac83c3
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conditions. By adding Gaussian noise to the image, we simulated the inference of weather conditions
such as rain and fog, as well as vehicles and pedestrians on smoke detection. These steps were employed
to generate additional image data by simulating a greater variety of environmental and interference
conditions, effectively enlarged the dataset size, which resulted in a more diverse and enriched dataset,
thereby improving the model’s adaptability to diverse scenarios. The effect of data augmentation is
shown in Fig. 4.

Figure 4: Data augmentation effect

Moreover, to ensure the quality of the dataset, we conducted precise manual annotations on the
augmented smoke and fire images with bounding boxes, using LabelImg to aid in and guarantee
the accuracy of the annotation process. These annotated datasets were further divided into training,
validation, and test sets in an approximate ratio of 8:1:1, supporting the needs for model training and
evaluation. The partition of the augmented datasets is detailed in Table 3.

Table 3: Partition of the augmented dataset

Dataset Total Training set Validation set Test set

Once-augmented dataset 21763 17129 2139 2495
Twice-augmented dataset 38071 30663 3708 3700

After two rounds of data augmentation, the dataset expanded from 10,685 to 38,071 images,
enhancing the robustness of the model and providing ample training samples for fire and smoke
detection.

5 Experiments

In this section, we describe the experiments we conducted to validate the effectiveness of our
proposed model. Section 5.1 details the experimental settings and performance metrics. Section 5.2
presents and analyzes the results of the outcomes of our experiments.

5.1 Experimental Settings

In this experiment, we configured the training parameters carefully to ensure an optimal balance
between efficiency and performance. The learning rate was set at 0.01, with a weight decay of 0.0005,
and momentum adjusted to 0.937. The batch size was established at 96, and the model underwent
training over 800 epochs. Training platform parameters are detailed in Table 4.
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Table 4: Hardware and software platforms

Device Version

CPU Intel Core Processor (Broadwell, IBRS)
GPU Tesla V100
Operating system Ubuntu 18.04
Deep learning framework PyTorch 1.11.0

To verify the performance of the model, a comprehensive set of metrics including Precision (P),
Recall (R), Average Precision (AP), and the mean Average Precision (mAP). Precision and Recall are
calculated using Eqs. (4) and (5), as follows:

Precision = TP
TP + FP

(4)

Recall = TP
TP + FN

(5)

In the formula, we mark the result as: TP if the model detects objects in positive videos; FP if the
model detects smoke objects in negative videos; TN if the model does not detect objects in negative
videos; FN if the model does not detect objects in positive videos [4].

As shown in Eq. (6), mean average precision (mAP) is then calculated by summing the average
precision of all categories and then dividing by the total number of categories. Regarding average
precision (AP), a key metric for target detection accuracy, is defined as the area under the curve formed
by precision and recall rates at various class confidence levels.

mAP = 1
N

∑N

i=1
APi (6)

5.2 Experimental Results and Analysis

To evaluate the effectiveness of the data augmentation, we conduct with the same algorithm
experiments on two validation datasets, respectively, namely once-augmented dataset and twice-
augmented dataset. The results of training the model on the once-augmented dataset and the twice-
augmented dataset are presented as follows: Fig. 5 illustrates the comparative curves of the average
mAP, precision, recall, and classification loss for the two datasets; Fig. 6 presents the comparison of
Precision-Recall (PR) curves obtained from training on both datasets.

As shown in Fig. 5, with an increasing number of training epochs, the models trained on both
the once-augmented and twice-augmented datasets exhibit an increase in mAP, precision, and recall,
gradually stabilizing at precision values exceeding 0.8 and recall values exceeding 0.7. The classification
loss decreases gradually and stabilizes at relatively low values. After 300 epochs, the model trained on
the twice-augmented dataset outperforms the once-augmented dataset in terms of mAP, precision,
and recall. These results confirm the high stability and predictive accuracy of the model, and indicate
that data augmentation has improved the model’s predictive precision. Moreover, it can be observed
that the once-augmented dataset has fully converged around 400 epochs. Therefore, we set the training
epochs for the dataset before the second round of data augmentation to 400 for training.
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Figure 5: The results on once-augmented and twice-augmented dataset

Figure 6: The P-R curves of once-augmented and twice-augmented dataset
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In Fig. 6, Once-All represents the average precision-recall curve of smoke and fire detection after
the first round of data augmentation, while Twice-All indicates the average precision-recall curve of
smoke and fire detection after the second round of data augmentation. As shown in Fig. 6, the smoke
and fire detection accuracy improved on twice-augmented dataset compared to once-augmented
dataset, and it can be observed that the data augmentation process has consistently enhanced the
average precision of smoke and fire detection. This enhancement reaffirms the effectiveness of data
augmentation techniques in improving the training results of the model.

Based on the training results from the validation set, we fine-tuned the model and ultimately
tested it on the testing set. The test set comprised 2,495 unique vehicle combustion images that
were not pre-labeled with actual bounding boxes, including 495 images that did not contain smoke
or fire and served as distractors. The model, enhanced with data augmentation and the attention
mechanism, demonstrated a relatively high accuracy in detecting smoke and fire targets within images.
As illustrated in Fig. 7, the detection results of smoke and fire are depicted in various scenarios.
The model demonstrates good detection performance across various environments, showing minimal
susceptibility to environmental factors such as complex backgrounds, weather conditions, and changes
in lighting, demonstrating strong robustness.

Figure 7: The detection results of smoke and fire

The results from the testing dataset indicate that the rates of missed and false detections for smoke
and fire targets are at a low level. To compare the training performance of different algorithms, the
datasets before and after data augmentation were used. Training was conducted under the condition
of video resolution of 1920 × 1080 with different algorithms, and the results are presented accordingly.

As shown in Table 5, compared to original dataset, the models trained on datasets augmented
after each iteration exhibited significant improvements in average mAP for smoke and fire detection.
When utilizing the YOLOv5s algorithm, the first round of data augmentation improved the mean
average precision of smoke and fire detection by 0.09. Building upon the once-augmented dataset, the
second round of data augmentation further increased the average precision of smoke and fire by 0.069.
The integration of YOLOv5 with the SE attention mechanism also effectively enhanced the average
precision of smoke and fire detection. To illustrate, in the twice-augmented dataset, compared to solely
using the YOLOv5s method, incorporating SENet increases the smoke detection mAP from 0.814 to
0.828 and the fire detection mAP from 0.830 to 0.859.

At the same time, it can be observed that with the addition of the SE module, the model experiences
an increase in computation load, leading to a slight decrease in the detection FPS. Nonetheless,
it still meets the real-time requirements. Consequently, the algorithm’s performance aligns with the
application scenario, enabling timely detection of smoke in parking areas and thus reducing the risk
of property loss to the public.
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Table 5: The performance of the proposed models

Dataset Method AP mAP@ 0.5 FPS

Smoke Fire

Original dataset YOLOv5s 0.550 0.776 0.663 90.92
YOLOv5s + nSE 0.574 0.808 0.691 76.56

Once-augmented
dataset

YOLOv5s 0.646 0.859 0.753 89.95
YOLOv5s + nSE 0.654 0.872 0.763 76.31

Twice-augmented
dataset

YOLOv5s 0.814 0.830 0.822 90.47
YOLOv5s + nSE 0.828 0.859 0.843 76.50

6 System Implementation

We leverage the enhanced YOLOv5 algorithm and OpenCV computer vision technology to
implement a smoke detection system. This system is developed using the Visual Studio 2019 integrated
development environment and programmed in C/C++. Additionally, we develop the system interface
with Qt5, and the user interface (UI) is enhanced with Qt Designer, resulting in an advanced
smoke detection and early warning system for outdoor parking spaces. To further reduce the rate
of undetected spontaneous vehicle combustion and to refine system functionality, our system is also
equipped with fire detection capabilities. An overview of the algorithm and structure of our system is
described in Fig. 8.
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As shown in Fig. 8, the Data Collection module illustrates the process of initial data collection and
processing, and the Module Training process demonstrates how we generate the parking lot smoke and
fire detection model leveraging the improved YOLOv5 network structure. It is worth noting that the
smoke and fire detection model obtained here uses the YOLOv5-nSE network structure mentioned
above, demonstrating strong performance in detecting smoke and fire targets. Some of the functional
APIs available to users of the system are presented in the User APIs module. And finally, the Smoke
and Fire Detection module describes how the system works and generates fire warnings.

Specifically, the process of smoke and fire detection algorithm is as follows:

Step 1: The system acquires video data either directly from surveillance cameras or by importing
from local storage.

Step 2: The video data is preprocessed to ensure it aligns with the input specifications of our
detection model, and is then displayed on a user interface for monitoring.

Step 3: The implemented algorithm analyzes video frames to identify the presence of smoke or
fire targets.

Step 4: The system triggers an alert and marks the detection on the interface when identifying a
target with a confidence level. These frames are also saved for later review and evidence preservation.

Step 5: The system proceeds to process and analyze subsequent video frames to maintain
continuous surveillance if smoke or fire target is not detected.

Moreover, the interface of the system is shown in Fig. 9.

Figure 9: System interface

The functions that users can achieve through the user interface are described as follows:

Main Interface It controls the playback of locally imported or camera-fed videos, handling start,
pause, and progress bar operations. Upon smoke or fire detection, it displays bounding boxes on the
screen and emits an alert signal.

System Settings It includes basic settings for importing local video paths and user settings for
direct camera connection by entering camera addresses and names, facilitating real-time monitoring
of multiple areas.
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Record Viewing For ease of investigating the cause and timing of fire incidents, the system provides
a detection record viewing function, allowing examination of the time and visuals from when a fire
event occurred.

Debugging Help This module provides instructions for using the system, enabling users to quickly
become proficient.

User Exit This module ensures a user can conveniently exit the system.

7 Conclusion

In this paper, we develop an advanced smoke detection system for outdoor parking lots by
integrating an improved YOLOv5s model with the SE attention mechanism. Our approach addresses
the challenges posed by complex outdoor environments, utilizing a newly constructed and enriched
dataset for training and validation. While the system exhibits impressive precision and swift detection
responses, it still encounters challenges with very small smoke instances. This is attributed to the feature
extraction layers of convolutional neural networks may lose critical information during downsampling
operations. Additionally, real-world factors also pose significant challenges, such as inadequate
camera resolution and extreme weather. In the future, we aim to refine our methodologies, potentially
by incorporating more sophisticated attention mechanisms, to enhance robustness of the system and
decrease the likelihood of false positives. Future work will also focus on optimizing the model for even
faster deployment and greater reliability, ensuring that the system can effectively contribute to public
safety by providing timely alerts in the crucial early stages of vehicle combustion incidents.
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