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ABSTRACT

Social media has become increasingly significant in modern society, but it has also turned into a breeding ground
for the propagation of misleading information, potentially causing a detrimental impact on public opinion and
daily life. Compared to pure text content, multmodal content significantly increases the visibility and share ability
of posts. This has made the search for efficient modality representations and cross-modal information interaction
methods a key focus in the field of multimodal fake news detection. To effectively address the critical challenge of
accurately detecting fake news on social media, this paper proposes a fake news detection model based on cross-
modal message aggregation and a gated fusion network (MAGF). MAGF first uses BERT to extract cumulative
textual feature representations and word-level features, applies Faster Region-based Convolutional Neural Network
(Faster R-CNN) to obtain image objects, and leverages ResNet-50 and Visual Geometry Group-19 (VGG-19)
to obtain image region features and global features. The image region features and word-level text features are
then projected into a low-dimensional space to calculate a text-image affinity matrix for cross-modal message
aggregation. The gated fusion network combines text and image region features to obtain adaptively aggregated
features. The interaction matrix is derived through an attention mechanism and further integrated with global
image features using a co-attention mechanism to produce multimodal representations. Finally, these fused features
are fed into a classifier for news categorization. Experiments were conducted on two public datasets, Twitter and
Weibo. Results show that the proposed model achieves accuracy rates of 91.8% and 88.7% on the two datasets,
respectively, significantly outperforming traditional unimodal and existing multimodal models.
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1 Introduction

The proliferation of fake news has become a grave concern in light of the Internet and social
media’s rapid advancement. The number of internet users continues to grow, and the number of
online news consumers is also on the rise. However, because people often share information without
thoroughly checking its authenticity, and because social media, unlike traditional media, allows for
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faster and broader dissemination, the resulting negative impacts can be significant, with even greater
harm to society. This problem became particularly acute during the COVID-19 pandemic when the
internet was flooded with fabricated fake news, such as claims that tea, vinegar, and saltwater could
effectively treat COVID-19 [1]. The spread of such misinformation poses a tremendous risk to public
health and safety. Thus, effectively detecting and stopping the fake news spreading on social media has
become an urgent social issue. Addressing this problem is crucial for purifying the online environment,
maintaining social stability, and ensuring national information security.

Early methods for fake news detection primarily relied on manual fact-checking and expert
judgment, which were time-consuming, labor-intensive, and inefficient. Traditional machine learning
approaches employed algorithms such as Naive Bayes [2], decision trees [3], or support vector machines
[4] to classify extracted text features. However, feature selection directly influenced the performance
of these classifiers, and they struggled to accommodate the diversity of news content.

Social media platforms like Weibo have rapidly evolved from hosting purely text-based content
to featuring multimedia forms, including text and images. While initial endeavors to detect fake news
primarily concentrated on analyzing textual content, cross-modal content analysis can provide supple-
mentary benefits and aid in fake news detection. With the development of deep learning, researchers
have begun using deep neural networks to learn higher-level feature representations from news, such
as employing pre-trained convolutional neural networks (CNN) and variational auto-encoders (VAE)
[5] to extract multimodal features. These features are then combined with different multimodal feature
fusion methods to construct end-to-end multimodal detection frameworks. Despite the effectiveness
of these existing fake news detection approaches, they still have some limitations: First, traditional
machine learning and deep learning models may lose some critical information during the feature
extraction process, potentially limiting the model’s performance and detection accuracy. Second,
existing multimodal feature fusion methods might lead to the accumulation of irrelevant information
across different modalities, generating excessive redundant data can diminish the efficiency of the
model.

Current research on multimodal fake news detection, both domestically and internationally,
primarily focuses on simple fusion analysis of news text and images without fully exploring the
similarity and degree of association between different modalities. The interaction between text and
image information is often shallow, failing to take full advantage of multimodal semantic features.
For example, in Fig. 1, the news text describes a death story, while the accompanying image shows a
smiling person, indicating a high level of cross-modal ambiguity between the text and image. For this
situation, cross-modal information association and the aggregation and transmission of local messages
can capture the gaps between cross-modal information, helping to improve the accuracy of news
classification. By effectively integrating cross-modal data, not only can the fine-grained associations
between text and images be revealed, but the complementary information from both modalities can
also be utilized to enhance the ability to detect fake news.

In order to address the limitations and issues mentioned above, this study introduces a novel
approach for detecting fake news using a multimodal framework that incorporates cross-modal
message aggregation and gated fusion. The approach consists of five modules: (1) a multimodal feature
extractor; (2) cross-modal adaptive message passing based on association matrices; (3) a gated fusion
network; (4) multimodal feature fusion; and (5) a fake news detector. Most previous methods only
focus on global or local features of text and images. However, we comprehensively consider both
local and global features during feature extraction. When people read news with images and text,
they usually alternate their attention between the sentences in the news text and the related image
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regions, considering the interaction between these two modalities. Inspired by this, we introduced a
Cross-Modal Message Aggregation module into our model. This module focuses on salient regions
in images and keywords in news text, exploring the subtle associations between text and images, and
extracting fine-grained clues. This enables effective integration of information interaction between text
and images, thereby enhancing the comprehensive judgment of news authenticity. Cross-modal data
leverage the complementary dependencies between modalities to select information that is beneficial
for identifying fake news. Thus, our approach takes into account detailed cross-modal interactions and
introduces a gated fusion network. This network uses an adaptive gating mechanism to appropriately
handle task-irrelevant information. In fake news detection, finding and integrating fine-grained cross-
modal clues is crucial, and task-irrelevant information should be suppressed during information
transfer. Hence, we employ a soft gated fusion mechanism to adaptively control the degree to which
messages from one modality are fused with the original features of the other modality.

Figure 1: Example of fake news

The primary contributions of this paper are summarized as follows:

(1) This paper considers the local features of both text and images, using cross-modal message
aggregation to account for bidirectional information passing between word domains. This
enables the model to investigate detailed interactions between different modalities, thereby
effectively identifying fake news.

(2) For text, the model employs a gated fusion network to optimize feature fusion. Through a soft
gating mechanism, it can adaptively control the intensity of information fusion, facilitating
more profound and exhaustive interactions between news images and text. This adaptive gating
helps manage the effects of negation pairs and irrelevant background information, as a result,
this enhances the precision and effectiveness of fake news detection.

(3) The performance of the proposed model is assessed using two extensive real-world datasets.
Results indicate that compared to traditional detection models, the proposed model demon-
strates superior performance across various evaluation metrics, leading to a substantial
enhancement in the accuracy and overall performance of fake news detection.

2 Related Work

Fake news can be defined as deliberately written information that can be proven to be false [6].
Given the significant harm that fake news can cause, fake news detection has been a widely discussed
research area. Fake news detection methods currently in use can be classified into two main types:
unimodal and multimodal approaches.
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2.1 Unimodal-Based Fake News Detection

The efficacy of fake news detection largely depends on the analysis of text content. As one of
the primary mediums for spreading fake news, textual features such as vocabulary, grammar, and
semantics [7–9] can offer import clues for discerning the credibility of news articles. Consequently,
many early researchers focused on developing and applying techniques like machine learning and
deep learning to extract text features. Statistical-based methods [10,11] rely on statistical information
within the text, such as term frequency, inverse document frequency, and term frequency-inverse
document frequency, to extract significant text features for classification and analysis. These statistical
features can reveal patterns, trends, or key information within the text, aiding in distinguishing fake
news. For example, Liu proposed extracting text feature vectors through the term frequency-inverse
document frequency (TF-IDF) algorithm and using a support vector machine (SVM) to determine
the authenticity of news stories [12].

In recent years, researchers have begun using pre-trained language models to enhance the
performance of fake news detection, which can enable better handling of various natural language
tasks. These methods have significantly impacted fake news detection. For example, the Bidirectional
Encoder Representations from Transformers (BERT) [13] model has been applied to fake news detec-
tion, yielding better performance compared to traditional machine learning models. Neural networks
have also been used in fake news detection tasks. Chen et al. [14] proposed a deep attention model based
on Recurrent Neural Networks (RNN) to identify fake news. This model deeply studies the repeated
use of soft attention to simultaneously focus on distinct features with specific foci and produce hidden
representations to capture contextual variations in news content over time. Ma et al. [15] employed
Generative Adversarial Networks (GAN) to introduce stronger text representation learning.

With the rise of multimodal news content, researchers are increasingly focusing on leveraging
visual features to detect fake news. Mahmood et al. [16] combined Stationary Wavelet Transform with
Discrete Cosine Transform (DCT) to detect and locate copy-move operations in images. Qi et al. [17]
proposed the MVNN (Multi-domain Visual Neural Network) framework for detecting fake news
images. This framework extracts physical-level features from images and processes and analyzes images
spatially to extract their pixel-domain features. The features are then dynamically fused through a
fusion sub-network, resulting in a model that outperforms traditional models. Although visual features
can provide rich visual information, the current comprehension of the significance of visual features
in fake news detection still has certain limitations [18].

2.2 Multimodal-BasedFake News Detection

In recent years, with the increasing diversification of fake news articles, traditional unimodal
feature approaches have become inadequate for fully leveraging multimodal feature information to
distinguish between real and fake news. To better detect the authenticity of news, there is a need to
deeply integrate text and image features to enhance fake news detection performance. A common
approach is to use different feature extractors to process text and images, then concatenate the
extracted features from various modalities, and classify them using different classifiers. Jin et al. [19]
proposed a modal that integrates multimodal features using an attention mechanism. Wang et al. [20]
introduced the Event Adversarial Neural Network (EANN) for effectively detecting fake news and
accurately discriminating events. The framework includes an event discriminator to eliminate event-
specific features. Singhal et al. [21] proposed a framework called SpotFake. The model captures textual
features from news articles using the BERT, while visual features are extracted from VGG-19 model on
the ImageNet dataset, improving the performance of fake news detection. Qian et al. [22] proposed a
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Hierarchical Multimodal Context Attention Network (HMCAN), which inputs multimodal features
into a multimodal context attention network for joint modeling to integrate inter- and intra-modal
relationships. Wu et al. [23] proposed a Multimodal Co-Attention Network (MCAN), where CNN and
VGG-19 are used to capture visual representations at the physical and semantic levels, while BERT
is used to capture text representations. Multiple stacked co-attention blocks are used to fuse these
modalities, allowing MCAN to capture the dependencies between modalities. Shan et al. [24] proposed
employing similarity reasoning and adversarial networks, using similarity learning and reasoning to
create similarity representations between textual and visual features, and using adversarial networks
to explore the relationship between fake news and events.

Multimodal fake news detection seeks to improve detection performance through deep integration
of text and image features. However, challenges persist, such as insufficient correlation between data
features from different modalities and inadequate modality interaction. To tackle these challenges,
we propose a method for fake news detection based on cross-modal message aggregation and gated
fusion.

3 Method
3.1 Modal Overview

This paper proposes MAGF, a method that addresses multimodal fake news detection through
cross-modal message aggregation and gated fusion. As shown in Fig. 2, MAGF consists of the
following components: 1) Multimodal Feature Extractor, which extracts text features using BERT,
employs a pre-trained Faster R-CNN [25] to obtain image region features, and uses VGG-19 to obtain
image features from the entire image; 2) Cross-Modal Message Aggregation, which calculates a text-
image association matrix using text features and image region features, subsequently performs message
passing to acquire aggregated features for each modality; 3) Gated Fusion Network, which computes
gating values for each region feature based on the image region features and the aggregated text
features from cross-modal message aggregation, allowing control over how much information should
be transmitted during cross-modal fusion. This same gating process is applied to the original text
features; 4) Multimodal Feature Fusion, which utilizes a simple attention mechanism to integrate the
gated features into an interaction matrix and then combines it with global image features to acquire
the ultimate feature representation; 5) Fake News Detector, which uses the multimodal representation
to make the final prediction for the news article.
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Figure 2: Framework of MAGF
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3.2 Multimodal Feature Extractor

3.2.1 Textual Feature Extractor

This paper uses the BERT model as the text feature extractor, as BERT is designed to better
understand the semantic relationships between words and the context. Given a text sentence C
from the news article, a simple processing step creates an ordered list of words, and then context
information is extracted from the input text to obtain both global and word-level features. Specifically,
we utilizes the [CLS] token and token-level output embeddings. In this process, the [CLS] token
represents the semantic information of the entire sentence, serving as the “global representation” of
the sentence, while the token-level output embeddings represent the specific semantic information of
each token within its context. By combining these two types of representations, it is possible to acquire
a cumulative feature representation for the entire text, as well as feature representations at the word
level. The text feature T is represented as shown in Eq. (1).

T = {t0, t1, t2, . . . tr}, ti = BERT (C, wi), ∀wi ∈ {w1, w2, . . . , wr} (1)

where ti is a 256-dimensional feature vector, and t0 is the sentence-level representation.

3.2.2 Visual Feature Extractor

For news images, it is necessary to extract both image region features and global features. Image
region features capture information from each local region of the image, providing finer-grained visual
details, including local objects, textures, colors, and more. The combination of the two allows for a
more effective use of semantic information and fine-grained features from the image.

(1) Image region features

Faster R-CNN is used to extract candidate regions from an image, potentially containing objects
(known as bounding boxes). It employs a sliding window mechanism on the feature map to extract
fixed-size anchor boxes and predicts two values for each anchor: adjustments to the bounding box
coordinates and the confidence score for the target object. These predictions are then used to filter and
rank the candidate bounding boxes, selecting those with high confidence scores as the final candidate
regions. By using these bounding boxes to crop out local areas that contain objects, the regions of
interest can be isolated from the entire image. This helps improve the efficiency and accuracy of
subsequent feature extraction.Specifically, we use Faster R-CNN model to obtain the bounding boxes
G = {gg1, gg2, . . . , ggn} from a news image, where gg1 represents the i-th object detected by the model.
The bounding boxes are then used to crop the image to obtain region-specific objects, which are fed
into the pre-trained ResNet-50 [26] model to obtain image region features I , it can be represented as
shown in Eq. (2).

I = {v1, v2, . . . vn}, vi = ResNet (ggi), ∀ggi ∈ {gg1, gg2, . . . ggn} (2)

(2) Image global features

VGG-19 is utilized to extract the global features, as its deep architecture allows the network
to gradually extract hierarchical features from the image. Furthermore, VGG-19 has achieved good
performance in the ImageNet image classification competition, demonstrating its wide applicability in
various domains. Therefore, using VGG-19 to extract global features can better understand the entire
content of the image. The obtained image global features are represented by Eq. (3).

V = VGG − 19 (img) (3)
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3.3 Cross-Modal Message Aggreation

Many existing methods often fail to avoid generating a large amount of redundant data when
processing multimodal information, while easily overlooking the critical information that needs to
be transmitted between different modalities. This insufficiency in information processing may result
in a decrease in the modal’s accuracy of detection. Therefore, in the model designed in this paper, a
cross-modal message aggregation module is specifically introduced. This module aims to extract key
information from each modality and effectively aggregate information between regions and words,
thus gaining a deeper understanding of the intrinsic relationship between text and images. At the
same time, it reinforces crucial information exchange across diverse modalities, thereby enhancing
the model’s efficacy.

(1) Region-Word Affinity Matrix

To aggregate messages between text and vision, the first step is to calculate the region-word affinity
matrix, which provides a tool for the model to quantify the correlation between different modalities.
First, the extracted word-level text features T and the regional features of the image I are mapped into a
unified low-dimensional feature space. In this space, the similarity between each regional feature vector
and each word feature vector is measured, and then the region-word affinity matrix is constructed.
The rows of the matrix correspond to different regions in the image, while the columns correspond to
individual words in the text. The matrix can be represented by Eq. (4).

S = (WvI)
T
(WtT) (4)

where Wv and Wt are projection matrices, S ∈ RR×N is the region-word affinity matrix, where Sij

represents the affinity between the i-th region and the j-th word. This transformation effectively
quantifies the degree of association between image regions and textual words.

(2) Attention Guidance

Our goal is to effectively aggregate and propagate key information between different information
regions and textual words. Therefore, we utilize a cross-modal attention mechanism that leverages
information from two modalities (such as text and images) as cues to guide the model to focus
more precisely on critical information within the same modality. Specifically, at the word level, we
utilize the features of image regions as guidance to assign attention weights to each word in the text.
Through this approach, the model can filter out word information that is closely related to the image
content, achieving effective alignment between text and images at the word level. Simultaneously, at
the regional level, we also utilize the features of textual words as cues to assign attention weights to
various regions in the image. This helps the model capture image information that matches the textual
content, achieving precise correspondence between images and texts at the regional level.

The attention for each word on different regions is obtained by normalizing the affinity matrix
across image regions, resulting in a word-specific region attention matrix, which can be represented by
Eq. (5).

SI = soft max
(

ST

√
dh

)
(5)

where the i-th row represents the degree of attention on all regions regarding the i-th word. Then,
based on the word-specific regional attention matrix SI , the regional features RI for each word can be
obtained, which can be represented by Eq. (6).

RI = SIIT (6)
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The i-th row of RI ∈ RN×d represents the image region that accompany the i-th word.

Correspondingly, by normalizing the affinity matrix S at the word level, the attention weights of
each word relative to each image region can be precisely calculated, resulting in a word attention matrix
ST . Then the text local features are aggregated to get the text features Tt that each region focuses on.
This can be represented by Eq. (7).

ST = soft max
(

S√
dh

)
, Tt = StTT (7)

In summary, RI and Tt refer to the aggregated messages that are intended to be exchanged between
visual local features and textual features. This approach allows for a deeper understanding of the
correlation between text and images and better realization of cross-modal interactions.

3.4 Gated Fusion Network

While the aforementioned modules integrate the most significant cross-modal messages from
word or region features, thereby facilitating the exchange of information between the text and visual
modalities, the final step in fake news detection requires multi-modal fusion of these features. To
achieve this, we need an efficient fusion process that strengthens the fusion of matching text and
visual features while suppressing the fusion of non-matching pairs, ensuring accurate information
transfer and in-depth interaction. For this purpose, a cross-modal gated fusion network was designed,
as depicted in Fig. 3. This mechanism introduces a gating unit to control the degree of fusion between
text and image features, enabling precise matching of feature fusion while avoiding interference from
non-matching information.
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Figure 3: Gated fusion network

First, calculate the gating values using the messages transmitted from visual region features and
text features separately. Then, fuse the original region features I with the aggregated message Tt using
gating units. To filter out non-matching information during fusion, adaptive control of the information
fusion is applied at the region-word level. Specifically, the gating value (i.e., the matching degree)
corresponding to the i-th region feature vi and the corresponding sentence feature mi

t(∈Tt) that the
i-th region is focusing on can be represented by Eq. (8).

xi = σ
(
vi � mi

t
)
, i ∈ {1, . . . , n} mi

t (∈ Tt) (8)

where � denotes element-wise multiplication, σ (·) is the sigmoid function, and xi represents the
gate that fuses vi and mi

t. With this gating function, If a region demonstrates a good match with a
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sentence, it will be assigned a high gating value, thereby promoting the fusion operation. Conversely,
if a region does not exhibit a good match or alignment with a sentence, it will be assigned a low gating
value, leading to the suppression of the fusion operation. All the region-level gating values are then
represented as Xv = [x1, ..., xn], which will be used to control cross-modal fusion. To prevent the loss
of important information from the original samples, we integrate the information processed through
gating units with the original features, which can be represented by Eq. (9).

R′
I = Fv (Xv � (I ⊕ Tt)) + I (9)

where Fv is a transformation operation adjustable through learning. � represents hadamard product,
⊕ denotes fusion (component-wise addition), while RI

′ represents the fused region features. Regions
that match well with sentences are assigned higher gating values to encourage deeper fusion, while
for negative pairs with lower gating values, the gating mechanism suppresses the fusion, thereby
encouraging RI

’ to retain its original features, V . Similarly, the original text features, T , and the
aggregated message, RI , transmitted from region features to text features are fused to obtain the fused
text features, Tt

′. This is computed according to Eqs. (10)–(12), where mi
v ∈ RI .

zi = σ
(
(mi

v)
T � ti

)
, i ∈ {1, . . . , r} (10)

Zt = [zi, . . . , zr] (11)

T ′
t = Ft

(
Zt �

(
T ⊕ RI

T
)) + T (12)

3.5 Multimodal Feature Fusion

Based on the gated fusion network, after obtaining RI
′ and Tt

′ , we integrate them using a simple
attention mechanism. Specifically, through linear projection and softmax normalization, we compute
the attention weight matrix and then aggregate the given RI

′ and Tt
′ with the attention weights to get

RI
∗ and Tt

∗, as represented by equations Eqs. (13), (14).

α = soft max
(

WIR′
I√

d

)T

, RI
∗ = RIα (13)

β = soft max
(

WTTt′
√

d

)
, Tt

∗ = Ttβ (14)

Here, W I and W T are the parameters for linear projections, while α and β are the attention weights
for the fusion of n regions and r words, respectively. The above formulas combine image region features
with text features. The image region features can capture local details and key information within
images. These region features help the model understand the relationship between specific parts of
the image and the text content. However, solely using image region features for news detection might
lead to partial interpretations. Therefore, it’s also necessary to incorporate image global features, which
provide an overview of the entire image,offering a higher degree of generalization.We first construct the
interaction matrix F by computing the outer product between the aggregated RI

∗ and Tt
∗, represented

by Eq. (15).

F = RI
∗ ⊗ Tt

∗ (15)

The model uses a co-attention block [27] to fuse the global image features with RF . Its structure
is shown in Fig. 4. In the co-attention block, one modality’s features are used as queries, while the
other modality’s features serve as keys and values. This setup can enhance the expressiveness of each
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modality’s features, allowing for information exchange and interaction between different modalities,
thereby improving the overall quality and richness of feature representation. The final multimodal
feature representation, RH , is obtained by Eqs. (16)–(20).

Att (Q, K, V) = hW e, h = h1 ⊕ h2 ⊕ . . . ⊕ hm (16)

hi = A (Qi, Ki, Vi) = soft max
(

QiKi
T

√
dh

)
Vi

LRF (u) = max (0, uW1) W2 (17)

RHF←V
= F + Att (F , V , V), RH′

F←V
= RHF←V

+ LRF
(
RHF←V

)
(18)

RHV←F
= V + Att (V , F , F), RH′

V←F
= RHV←F

+ LRF
(
RHV←F

)
(19)

RH =
(

RH′
F←V

⊕ RH′
V←F

)
WH (20)

In Eq. (18), RH′
F←V

is the attention-pooled feature based on the interaction matrix with the global

image features. While RH′
V←F

is the attention-pooled feature based on the global image features from
the interaction matrix. W H represents the learnable parameters.

Add & Norm

Feed Forward

Multi-Head 
Attention

Add & Norm

Q K V

Figure 4: The structure of co-attention block

3.6 Fake News Detection

For this module, the obtained feature representation RH needs to be input to the fully connected
layer, and the output of the fully connected layer is passed through softmax to generate the distribution
of classification labels The value of each dimension represents the probability of the input sample
belonging to the corresponding class. Therefore, by comparing these probability values, one can
determine the most likely class that the input news belongs to, i.e., real news or fake news. The fake
news detector can be represented by Eq. (21).

ŷ = soft max
(
max

(
0, RHWRH

)
Ws

)
(21)
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where ŷ represents the probability distribution of the current news, RH is the fused multimodal feature,
The model’s loss function utilizes minimizing the cross-entropy loss function, represented by Eq. (22).

L (�) = −y log
(
ŷ
) − (1 − y) log

(
1 − ŷ

)
(22)

The true label of the news is represented by y, where a value of 1 indicates fake news and a value
of 0 indicates real news, the � encompasses all the trainable parameters within the model.

4 Experiment
4.1 Dataset

Experiments were conducted on the Twitter and Weibo datasets. The Twitter dataset was released
by MediaEval for multimedia usage tasks [28], while the Weibo dataset was collected by Jin et al. [19].

Twitter Dataset: The dataset is partitioned into two segments: a development set and a test set.
The development set is utilized for training purposes, while the test set is used for evaluation during the
experiments. The model in this article detects fake news by combining textual and image information.
Therefore, we removed tweets without any text or images during data preprocessing.

Weibo Dataset: The genuine news in this dataset was verified by the authoritative Chinese news
agency Xinhua, while the fake news was verified by Weibo’s official rumor-debunking system. This
means that the dataset contains not only real news but also verified fake news. Therefore, this dataset
provides reliable and effective data support for fake news detection. Similarly, we removed news items
with videos and those without text or images during data preprocessing to ensure the quality of the
dataset.

The statistical data of the two datasets are shown in Table 1.

Table 1: Statistics of two datasets

Method Twitter Weibo

#Of fake news 7898 4211
#Of real news 6026 3639
#Of images 512 7850

4.2 Expreimental Setup

On the Weibo dataset, we set the maximum length of text to 160. For the Twitter dataset, we used
the pre-trained “bert-base-uncased” model from HuggingFace 5, while we used the pre-trained “bert-
base-chinese” model on Weibo. During the training phase, the parameters of the pre-trained VGG-19
and BERT networks are frozen to avoid overfitting. The text feature dimension obtained from the
BERT model is 768. In the visual encoder, the input image size is 224 × 224, For computational
convenience, an additional fully connected layer is added in the proposed model to ensure that the
dimensions of image and text features match in the multimodal feature fusion module. Specifically,
the dimension of the common embedding space where the final text and image features are projected
is set to 256. During the feature fusion process, the number of attention heads in the multi-head
self-attention mechanism is set to 4, which helps reduce computational costs and training time. Our
proposed model adopts an early stopping strategy during training. For the Twitter and Weibo datasets,
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we used Adam [29] and AdaBelief [30] optimizers respectively to optimize the model parameters. The
other parameter configurations set in the model can be found in Table 2.

Table 2: The other parameter configurations of the model

Parameters Value

Dropout 0.5
Batch size 32
Learning rate 0.001
Epoch 50
Early stopping patience 10

The article leverages multiple pre-trained submodels, such as BERT and VGG-19, to address the
computational complexity and resource requirements. They demonstrate robust performance across
various tasks and possess rich feature extraction capabilities. Training a full-depth model like VGG-
19 from scratch demands significant GPU (graphics processing unit) resources and ample memory.
Utilizing pre-trained models mitigates the need for training from scratch, thereby significantly
reducing the demands on computational resources and time.

In the process of multimodal feature fusion, the model employs a co-attention mechanism.
Compared to fully connected networks or large convolutional neural networks, attention mechanisms
reduce the number of features to be processed by attending to relevant information, thereby reducing
model parameters. This not only lowers memory requirements but also decreases computational
complexity. The experimental setup for this study is outlined in Table 3.

Table 3: Experiment environment configuration

Experiment environment Configuration

CPU Intel(R) Core(TM) i9-12900K
GPU NVIDIA RTX A5000
RAM (random access memory) 64
Programming language Python 3.8
Pytorch version 1.8.2
CUDA toolkit 11.6

4.3 Evaluation Metrics

This paper utilizes F1 score, accuracy, precision and recall as evaluation metrics to quantify the
performance of fake news detection. The following provides explanations for these metrics:
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Accuracy = TP + TN
TP + TF + FP + FN

(23)

Pr ecision = TP
TP + FP

(24)

Recall = TP
TP + FN

(25)

F1 = 2 ∗ Pr ecision ∗ Recall
Pr ecision + Recall

(26)

where True positive (TP): Fake news forecasted as fake; True negative (TN): Real news forecasted
as real; False positive (FP): Real news forecasted as fake; False negative (FN): Fake news forecasted
as real.

4.4 Baseline

4.4.1 Unimodal Models

In this model, either textual or visual information is used alone to detect fake news. Therefore,
this paper proposes the following two baselines:

• Textual. This model only uses the textual information in the news for classification. It first
obtains textual features through the BERT model, and then uses another fully connected layer with a
softmax function to detect fake news.

• Visual. This model utilizes only the visual information in the news to classify the posts. It first
extracts image features using a pre-trained VGG-19 model and a fully connected layer, and then inputs
them into another fully connected layer for fake news detection.

4.4.2 Multimodal Models

• EANN (Event adversarial neural network) [20]. This model introduces an adversarial neural
network for the auxiliary task of removing event-specific features. In the original datasets, the event
labels are not included. To ensure a fair comparison, we remove the event labels from the datasets.

• MVAE (Multimodal variational autoencoder) [5]. This model combines a bimodal VAE with
a binary classifier to detect fake news by learning shared representations of textual and visual
information.

• MPFN (Multimodal progressive fusion network) [31]. This model proposes a progressive fusion
network based on semantic information to detect fake news. It first captures representative information
from different modalities at different levels and achieves modality fusion within and across levels
through a mixer, thus establishing strong connections between modalities.

• BDANN (BERT-based domain adaptation neural network) [32]. The model utilizes a pre-trained
BERT model to extract textual features, pre-trained VGG-19 model to extract visual features, and
incorporates a domain classifier to mitigate dependency on specific events.

• Roberta+CNN [33]. This framework integrates specialized convolutional neural network models
for image analysis and sentence transformers for text analysis. By embedding features extracted from
visual and textual inputs into dense layers, it ultimately enables accurate prediction of deceptive
imagery.
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• FSRU (Frequency spectrum representation and fusion network) [34]. An architecturally simple and
computationally efficient multimodal spectrum rumor detector is proposed, incorporating modules
such as Fourier Transform and Spectrum Consistency, which enhances multimodal learning by
introducing dual contrastive learning, combining text and image embedding, multimodal frequency
spectrum representation and fusion module, and generating a cohesive multimodal representation
based on feature distribution similarity.

4.5 Performance Comparison

We employ accuracy, precision, recall, and F1 score to evaluate the performance of the models.
The experimental comparison results between the proposed model and different baselines are shown
in Table 4 and Fig. 5.

Table 4: The comparison of experimental results

Dataset Method Accuracy Fake news Real news

Precision Recall F1 Precision Recall F1

Twitter Textual 0.644 0.670 0.609 0.638 0.621 0.681 0.649
Visual 0.599 0.608 0.621 0.614 0.588 0.575 0.581
EANN 0.648 0.810 0.498 0.617 0.584 0.759 0.660
MVAE 0.745 0.801 0.719 0.758 0.689 0.777 0.730
MPFN 0.833 0.846 0.921 0.880 0.809 0.721 0.740
BDANN 0.830 0.810 0.630 0.710 0.830 0.930 0.880
Robert+CNN 0.853 0.821 0.943 0.877 0.913 0.745 0.820
FSRU 0.952 0.983 0.938 0.960 0.901 0.984 0.940
MAGF 0.918 0.922 0.972 0.946 0.904 0.863 0.883

Weibo Textual 0.724 0.720 0.759 0.739 0.728 0.686 0.707
Visual 0.608 0.580 0.863 0.694 0.698 0.737 0.654
EANN 0.782 0.827 0.697 0.756 0.752 0.863 0.804
MVAE 0.824 0.854 0.769 0.809 0.802 0.875 0.837
MPFN 0.838 0.857 0.894 0.889 0.873 0.863 0.876
BDANN 0.842 0.830 0.870 0.850 0.850 0.820 0.830
Robert+CNN 0.812 0.851 0.784 0.816 0.744 0.826 0.782
FSRU 0.901 0.922 0.892 0.906 0.879 0.913 0.895
MAGF 0.887 0.859 0.935 0.895 0.924 0.837 0.878
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Figure 5: Comparison of results from different methods on two datasets
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In the detection of fake news in a single modality, the text modality is significantly better than the
image modality. This is because text can more accurately express the core content of the event, and the
semantic information within it directly helps to identify fake news. In contrast, the visual information
provided by images is relatively limited and cannot provide as rich semantics as text. Therefore, text
has more advantages in fake news detection. Although single-modal models show some effectiveness
in fake news detection, they still have certain deficiencies compared with multi-modal models. Multi-
modal fake news detection methods utilize various information sources such as text and images to
obtain more comprehensive and rich feature representations.

In the realm of multi-modal methods, MVAE achieves a higher accuracy than EANN, as it intro-
duces encoders and decoders to learn shared representations of text and image, and better understand
the complexity of the data. MPFN exhibits even higher performance, indicating that the attention
mechanism can help improve the model’s performance by considering the image parts relevant to
the text. BDANN incorporates a domain classifier, exhibiting strong performance in learning and
leveraging shared aspects between events, thus demonstrating robust capabilities in fake news detection
tasks. Robert+CNN employs a novel method to image analysis and uses sentence transformers on text.
However, both BDANN and Robert+CNN overlook the deep semantic relationships and interactions
between features, leading to limitations in their detection accuracy. FRSU, by extracting rumor
evidence from both unimodal and cross-modalperspectives hidden within frequency components,
captures distinctive unimodal features and integrates cross-modal evidence of rumor accuracy in the
frequency domain, demonstrating exceptional performance.

The proposed MAGF achieves significant advantages after introducing vocabulary and inter-
region message passing and cross-modal gated fusion networks. The accuracy on two datasets is
improved to 91% and 89%, respectively, validating the effectiveness of the proposed approach. On the
Twitter dataset, the recall for fake news detection surpasses the latest research progress by 3.4%. On
the Weibo dataset, the recall and precision for fake news detection exceed the latest research progress
by 4.3% and 4.5%, respectively. To avoid generating redundant data, MAGF integrates cross-modal
messages, transferring the most significant features between text and visual modalities. During the
fusion process, text features and image region features that have undergone message passing are input
into the cross-modal gated fusion network. By introducing gating units to adaptively control cross-
modal feature fusion, MAGF achieves precise feature fusion and avoids interference from mismatched
information, thereby enhancing the accuracy of fake news detection.

4.6 Ablation

4.6.1 Quantitative Analysis

We designed three model variants for three sets of experiments. The three variants of MAGF are
the model without cross-modal message aggregation (MAGF w/o A), the model without gated fusion
(MAGF w/o G), and the model without collaborative attention (MAGF w/o C). Through these three
sets of experiments, we can analyze and compare the contributions of each component in our model,
further understanding the role of each component in fake news detection.

(1) MAGF w/o A. BERT is used to extract word-level and contextualized text features. For images,
Faster R-CNN is first employed to generate candidate region objects, and ResNet is then
applied to extract regional features from these objects. Meanwhile, VGG-19 is used to extract
global features from the entire image. The word-level text features and image regional features
are processed through a gated fusion network, and fused with the image global features using
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a collaborative attention mechanism to obtain a multi-modal feature representation, which is
fed into the fake news detector as input.

(2) MAGF w/o G: Similarly, BERT is utilized to extract word-level and contextualized text
features. For images, Faster R-CNN generates candidate region objects, and ResNet extracts
regional features from them, while VGG-19 extracts global features from the whole image.
Afterward, the word-level text features and image regional features are aggregated to combine
information between regions and words. This aggregated feature is then fused with the image
global features using the collaborative attention mechanism to obtain a multi-modal feature
representation, which serves as input for the fake news detector.

(3) MAGF w/o C. BERT is again used to extract word-level and contextualized text features.
For images, Faster R-CNN generates candidate region objects, and ResNet extracts regional
features from these objects. The word-level text features and image regional features undergo
message aggregation, and the resulting features are then fed into a gated fusion network to
obtain fused text and image features. These fused features are simply concatenated to form a
feature vector, which is used as input for the fake news detector.

The comparison of results between MAGF and the three model variants on the two datasets is
shown in Table 5.

Table 5: Comparison of result of ablation experiments

Dataset Method Accuracy Fake news Real news

Precision Recall F1 Precision Recall F1

Twitter MAGF w/o A 0.866 0.853 0.873 0.863 0.878 0.859 0.868
MAGF w/o G 0.855 0.833 0.899 0.865 0.883 0.809 0.844
MAGF w/o C 0.882 0.870 0.906 0.887 0.895 0.856 0.875
MAGF 0.918 0.922 0.971 0.946 0.904 0.863 0.875

Weibo MAGF w/o A 0.847 0.831 0.882 0.856 0.866 0.810 0.837
MAGF w/o G 0.843 0.846 0.850 0.848 0.839 0.835 0.837
MAGF w/o C 0.866 0.852 0.897 0.874 0.884 0.834 0.858
MAGF 0.887 0.859 0.935 0.895 0.924 0.837 0.878

From the results presented in Table 5, we can make the following observations: 1) The MAGF
w/o A variant achieved poorer performance, highlighting the importance of cross-modal message
aggregation in fake news detection. This module effectively aggregates information between regions
and words and reinforces key messages that need to be communicated across different modalities. This
ensures that important information is fully considered and utilized in subsequent steps of the model,
thus improving its performance. 2) The MAGF w/o G variant also exhibited lower performance,
indicating that the gated fusion module significantly contributes to the model’s performance. By
dynamically adjusting the gate values, this module suppresses the fusion of image region features that
do not match the text, allowing for a more effective integration of relevant information between text
and images. This effectively reduces interference from irrelevant information. 3) Compared to MAGF,
the MAGF w/o C variant showed relatively poor performance, suggesting that the collaborative
attention fusion module, which learns multi-modal features, is more effective compared to the
approach of simply concatenating features to create multi-modal representations.
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These observations demonstrate that the complementary and synergistic effects of the various
modules are crucial for the effectiveness of fake news detection. By comprehensively utilizing textual
features, global image features, and regional image features, combined with optimization methods
such as cross-modal message aggregation, gated fusion networks, and collaborative attention fusion,
the model is able to achieve outstanding performance in fake news detection on both datasets.

4.6.2 Qualitative Analysis

To further analyze the effectiveness of the gated fusion network in MAGF, we used T-SNE [35] to
qualitatively visualize the multi-modal features learned by MAGF w/o G and MAGF on the Weibo
test set, as shown in Fig. 4.

From Fig. 6, it becomes evident that the separability of the multi-modal feature representations
learned by MAGF is superior to MAGF w/o G. As depicted in Fig. 6a, while MAGF w/o G is
able to learn distinguishable features, many of them are still prone to misclassification. In contrast,
MAGF utilizes multi-modal information more precisely through gated fusion, resulting in a more
distinct separability of the learned feature representations in Fig. 6b. Additionally, there are larger
isolated regions in Fig. 6b. Therefore, the introduction of gated fusion and its integration with other
components enable our model to excel in distinguishing between real and fake news.

Figure 6: Visualization of multi-modal features

4.7 Case Study

The objective of Content-Based Fake News Detection (CBFND) is to assess the intent of news, as a
set of quantifiable features extracted from news content, typically machine learning features. CBFND
is a crucial tool for identifying the harmfulness of news [36]. Both text features and image features
can be part of CBFND. In order to emphasize the significance of multimodal features in fake news
detection, we conducted a comparative analysis between the results obtained from MAGF and those
from unimodal models. Figs. 7 and 8 showcase fake news instances correctly identified by MAGF but
overlooked by unimodal models.
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New species of fish found at Arkansas. Sharks in the streets of New York 
and New Jersey because of 
hurricane Sandy.

Figure 7: Fake news detected correctly by MAGF but incorrectly by the text

This is a species of water mantis 
with a highly toxic head, two to 
three times more potent than that of 
a pufferfish. There is no cure once 
poisoned.

Mr. Run Run Shaw has passed away. We 
have thousands of school buildings 
named "Run Run Shaw Teaching 
Building," and many hospitals have 
"Run Run Shaw Outpatient Building." 
Throughout his lifetime, this gentleman 
donated billions upon billions of medical 
and educational facilities.

Figure 8: Fake news detected correctly by MAGF but incorrectly by the image

Fig. 7 displays two high-confidence tweets successfully detected by MAGF but missed by pure
text. The textual evidence in these two examples is sparse, making it difficult for the model to classify
them as fake news. However, the accompanying images appear to be manipulated and inconsistent
with the textual content.

In Fig. 8, two examples were successfully detected by MAGF but missed by the pure image model.
The accompanying images appear normal; however, the textual content is exaggerated and illogical.
This situation poses a challenge for MAGF based solely on images, but our MAGF model, leveraging
multimodal features, is able to classify them correctly.

From these comparative cases, we can draw a conclusion that when the singlemodal model fails to
distinguish false news, the detection accuracy can be improved by using MAGF based on multi-modal
features.

4.8 Analysis and Discussion

In our study, the adaptive message passing and the gated fusion network played a crucial role
in enhancing the model’s performance. By integrating textual and visual information, our approach
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significantly improved the accuracy and robustness of fake news detection. Specifically, the cross-
modal message aggregation module enabled the model to recognize complex relationships between text
and images, while the gated fusion network adaptively controlled the information flow, ensuring that
only relevant information was retained for decision-making. Our research demonstrates innovation in
several aspects. Firstly, unlike traditional methods, our modal not only considers the global features
of images and text but also emphasizes the extraction of local features. The experimental findings
demonstrate the significance of extracting both global and local features from images in the context
of fake news detection. Global features provide the overall context of the image, while local features
help detect details that are inconsistent with the textual description. This method effectively identifies
contradictions between images and text. Secondly, the cross-modal message aggregation module
achieves deeper information interaction between text and images. Finally, the gate-controlled fusion
network, through its adaptive mechanism, filters out irrelevant information, allowing for the full
utilization of cross-modal data, which further enhances the detection performance and robustness
of the model. These innovations collectively strengthen the model’s performance in the task of fake
news detection.

Despite the significant effectiveness of our model, there are still some limitations. Firstly, relying
on pooling operations to extract global features may lead to the loss of some important image
information. Specifically, pooling operations compress image data to reduce computational load, but
in the process, some details and local information may be overlooked. These details are crucial for
detecting subtle inconsistencies between images and text. For example, if a small region in the image
contains important information directly related to the textual description, pooling operations might
discard it, preventing the model from effectively capturing this critical information. To mitigate this
issue, we also extracted local features of the images to retain more detailed information, but we cannot
guarantee that all important information is preserved. Therefore, future research could explore other
methods to ensure that significant details are not overlooked during feature extraction. Secondly, the
generalization ability of the model needs further verification when handling different types of data. Our
experiments were mainly based on specific datasets, and the applicability and robustness of the model
need to be validated for news data from different sources and types. This also provides a direction
for future research, which can involve experiments on more diverse datasets to verify the model’s
generalizability and stability.

5 Conclusion

The interaction between cross-modal information and the effective utilization of key information
play a critical role in multimodal fake news detection. We first formulate the task of cross-modal
information aggregation. Based on this, we utilize the aggregated information to calculate gate values
for dynamic fusion, focusing particularly on the effective information between text and images. A
multimodal fake news detection model is constructed based on cross-modal message aggregation and
gated fusion. Through experimental comparisons of different features, the results show that utilizing
the deep interaction between text features and image regional features, as well as global features, can
effectively distinguish between fake news and real news. Extensive experiments have been conducted
on publicly available Weibo and Twitter datasets, verifying the effectiveness of our model. However,
we have only explored text and image features at this stage. In the future, we will further explore how
to incorporate other informational features in news into our consideration and seek better methods
to enhance the extraction of detailed information, to further enhance the model’s performance and
applicability, certain measures can be taken.
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