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ABSTRACT

With the rise of blockchain technology, the security issues of smart contracts have become increasingly critical.
Despite the availability of numerous smart contract vulnerability detection tools, many face challenges such as slow
updates, usability issues, and limited installation methods. These challenges hinder the adoption and practicality
of these tools. This paper examines smart contract vulnerability detection tools from 2016 to 2023, sourced from
the Web of Science (WOS) and Google Scholar. By systematically collecting, screening, and synthesizing relevant
research, 38 open-source tools that provide installation methods were selected for further investigation. From a
developer’s perspective, this paper offers a comprehensive survey of these 38 open-source tools, discussing their
operating principles, installation methods, environmental dependencies, update frequencies, and installation chal-
lenges. Based on this, we propose an Ethereum smart contract vulnerability detection framework. This framework
enables developers to easily utilize various detection tools and accurately analyze contract security issues. To validate
the framework’s stability, over 1700 h of testing were conducted. Additionally, a comprehensive performance test
was performed on the mainstream detection tools integrated within the framework, assessing their hardware
requirements and vulnerability detection coverage. Experimental results indicate that the Slither tool demonstrates
satisfactory performance in terms of system resource consumption and vulnerability detection coverage. This study
represents the first performance evaluation of testing tools in this domain, providing significant reference value.
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1 Introduction

Blockchain is a distributed ledger that effectively addresses trust issues related to centralized
authorities. In a blockchain network, multiple nodes collaborate to maintain a shared transaction
record in a decentralized manner, eliminating the need for a trusted third party. In 2008, Nakamoto
introduced Bitcoin [1], the first cryptocurrency to use blockchain as a foundational technology.

Smart contracts, a type of code written on the blockchain, are known for their ability to automat-
ically execute contract terms based on predefined conditions. Computer scientist and cryptographer
Szabo first proposed the concept of smart contracts in 1995 [2]. Implementing smart contracts requires
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a trusted environment, which blockchain technology provides by offering a transparent and consensus-
driven operating environment without the need for third-party involvement. Initially, smart contracts
were used for asset transfers through Bitcoin scripts [3,4]. In 2013, Buterin introduced Ethereum,
a blockchain platform specifically designed for smart contracts [5]. This platform uses the Solidity
language to write smart contracts, which are executed on the Ethereum Virtual Machine, marking the
beginning of the Blockchain 2.0 era [6].

Smart contracts are software programs based on blockchain technology that execute in a decen-
tralized manner. Like any other computer program, smart contracts are susceptible to code vulnerabil-
ities. Additionally, smart contracts possess unique characteristics compared to traditional code, such
as public visibility [7] and tamper resistance [8]. Therefore, smart contracts face significant security
risks.

In recent years, the field of smart contracts has experienced numerous severe security incidents,
resulting in significant economic losses and impacting the development of the blockchain industry.
Research indicates that many smart contracts deployed on the Ethereum blockchain suffer from
programming flaws [9,10], making them vulnerable to attacks. For instance, the 2016 case of the
Decentralized Autonomous Organization (DAO) [11,12] smart contract demonstrated a reentrancy
vulnerability that allowed malicious users to repeatedly call the same function, leading to repeated
withdrawals of funds and causing millions of dollars in losses. Another example is the 2017 [13] incident
involving the Parity multi-signature wallet project, where tens of millions of dollars worth of Ether
was stolen, inflicting significant losses on users and the blockchain community. Additionally, the 2018
Beauty Chain (BEC) contract vulnerability incident [14] further illustrates the widespread existence of
smart contract security issues. These incidents not only resulted in economic losses but also harmed
user trust and the overall development of the blockchain industry. The security issues surrounding
smart contracts have become a formidable challenge.

Despite numerous research efforts and improvements in smart contract security over the past few
years, vulnerability detection remains a daunting challenge [15] due to the complexity and innovation
of smart contracts.

Currently, several smart contract vulnerability analysis tools have been proposed in academia.
These tools are significant for smart contract security. However, they face challenges such as slow
updates and difficulty of use, which pose serious challenges to smart contract developers. Therefore,
further research is necessary to expand and promote the practical application of these tools. By doing
so, we can enhance the security of smart contracts and safeguard users’ assets against vulnerability
attacks more effectively.

For a comprehensive survey, this paper searches literature databases such as Google Scholar and
Web of Science, retrieving a total of 780 articles from 2016 to 2023 on the detection of vulnerabilities
in smart contracts. We then selected 141 articles related to tools and narrowed it down to 38, focusing
on open-source and installable smart contract vulnerability detection tools.

The main contributions of this paper are as follows:

1. A summary of various techniques for analyzing smart contract code, including a detailed
analysis of the underlying principles of 38 open-source smart contract vulnerability detection tools.

2. A classification of analysis tools based on their level of installation difficulty. Additionally,
an extensible vulnerability detection framework is proposed, based on the most commonly used
vulnerability detection tools, which is convenient for developers.
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3. Comprehensive performance testing of the detection tools within the framework to determine
the corresponding hardware requirements.

The structure of this paper is as follows: Section 2 provides an overview of Ethereum and
smart contracts, including current mainstream vulnerability classifications and popular detection
methods. Section 3 details open-source Ethereum smart contract analysis tools. Section 4 introduces
a vulnerability detection framework based on a hybrid cloud platform, describing its architecture and
implementation. Section 5 evaluates the performance of the tools within the framework, including
running speed, multi-core optimization, and memory usage. Section 6 summarizes the paper and offers
suggestions for future work.

2 Structure
2.1 Ethereum and Smart Contracts

Ethereum is an open-source platform based on blockchain technology. Unlike other cryptocur-
rencies such as Bitcoin, Ethereum not only facilitates digital currency transactions but also enables
developers to build and deploy smart contracts. Smart contracts are programs that run on the
blockchain, automatically executing predetermined conditions and operations. Ethereum’s smart
contracts utilize the Turing-complete programming language Solidity, allowing developers to write
complex logic and algorithms. This makes Ethereum more than just a digital currency; it is also a
powerful decentralized computing platform.

One of Ethereum’s core components is the Ethereum Virtual Machine (EVM) [16], a stack-based
virtual machine used to execute code for Ethereum smart contracts. The EVM uses an intermediate
language called Ethereum bytecode to represent smart contract code. After developers write smart
contract code in Solidity, it is compiled into Ethereum bytecode and deployed onto the Ethereum
network.

The execution process of the EVM is stack-based. Each smart contract has its own storage and
stack spaces. When executing a smart contract, the EVM sequentially reads the code line by line and
places it into the stack. Instructions can include mathematical operations, conditional statements,
jumps, storage, and loading operations. While executing instructions, the EVM manipulates the stack
based on the opcode and operands of each instruction. For example, when executing an addition
instruction, the EVM pops two operands from the stack, adds them together, and pushes the result
back onto the stack.

The execution result of a smart contract is recorded on the Ethereum blockchain. Once a smart
contract completes execution, it can change its own state and send messages to other smart contracts
or call methods of other smart contracts. The execution result of a smart contract can also be recorded
as part of a transaction on the Ethereum blockchain.

The emergence of smart contracts in the field of blockchain has garnered widespread attention
and discussion. Traditional centralized institutions encounter several issues in areas such as financial
transactions and contract execution, including high fees, lack of transparency, and security concerns.
However, the decentralized nature of smart contracts built on blockchain offers a novel solution to
these problems. Decentralization allows anyone to participate in the operation of smart contracts
without relying on the trust of intermediaries. This has brought about more efficient, transparent,
and secure solutions in various fields such as finance [17,18], supply chain management [19], Internet
of Things [20–23],construction [24], and energy [25].
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2.2 Security Vulnerabilities in Smart Contracts

Smart contracts have introduced numerous innovations and conveniences across various indus-
tries within the realm of blockchain technology. By enabling automated contract execution, they
eliminate intermediaries and the issues of distrust commonly associated with traditional contracts.
However, the security of smart contracts has always been a pressing concern. Security vulnerabilities
primarily refer to logical flaws that arise during the design process of smart contracts. Once deployed
on the blockchain, these logical flaws can easily lead to security issues, such as financial losses for
users. Moreover, since smart contracts operate on a blockchain, once deployed, they cannot be altered,
making security issues potentially consequential.

Currently, the most widely used programming language for smart contracts on the Ethereum
platform, the largest smart contract operating platform, is Solidity. Solidity is based on a Turing-
complete language [26], which offers flexibility and powerful features that allow developers to
implement complex logic and business operations. However, this flexibility also provides opportunities
for attackers to discover and exploit vulnerabilities.

Researchers have proposed classifications of vulnerabilities for Ethereum smart contracts.
Li et al. [27] conducted a survey and analysis of six real attacks targeting blockchains. Nicola et al. [28]
were the first to categorize smart contract vulnerabilities into three classes and studied twelve
vulnerabilities related to smart contracts. Zhu et al. [29] identified forty different vulnerabilities. As
shown in Table 1, we summarize the current common smart contract vulnerabilities.

Table 1: Introduction to common vulnerabilities in smart contract

Vulnerability Description

Reentrancy When a contract transfers Ether to an external contract, an attacker can
construct a contract with malicious code in the external address’s
fallback function. The attacker then requests the contract to transfer
Ether again to the external contract. Since the first transfer has not yet
completed, the state variables of the original contract remain unchanged
and are still marked as not withdrawn. As a result, the attacker can
repeatedly withdraw funds until all the funds in the original contract have
been taken out.

Integer overflow During the execution of smart contracts, the EVM defines fixed-size
integer data types. However, when an integer exceeds its designated size,
integer overflow vulnerabilities can occur, including multiplication
overflow, subtraction overflow, and addition overflow, among others.
Since the parameters involved in these operations are often user inputs, if
the computed result exceeds the storage range and lacks robust detection
statements, attackers can exploit these vulnerabilities to bypass
conditional checks or directly manipulate data.

(Continued)
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Table 1 (continued)

Vulnerability Description

Unchecked low
level calls

In Solidity, there are two functions that can be used to enable transfer
functionality: transfer() and send(). The difference between them lies in
error handling and return values. When a transfer fails, the transfer()
function throws an exception and rolls back the entire transaction,
thereby aborting the execution of the contract. This helps avoid
unnecessary code execution. On the other hand, the send() function,
when a transfer fails, does not throw an exception but instead returns
false, indicating that the contract can continue executing other code.

Tx.origin In Ethereum smart contracts, Tx.origin is a global variable that
represents the initiator of a transaction. It traverses the entire call stack
and returns the address of the account that originally called the function.
However, Tx.origin poses security risks as attackers can exploit the
Tx.origin vulnerability to launch impersonation attacks, deceiving the
contract into executing uncontrolled operations.

Time
manipulation

In blockchain systems, generating entropy is not possible due to the
deterministic and lack of external input or random events. As a result,
Solidity, the programming language for smart contracts in blockchain
systems, does not provide a rand() function or similar random number
generation capability. In scenarios where random numbers are required,
developers often need to implement randomness through alternative
means, such as utilizing block hash values or participant addresses within
the blockchain system to generate pseudo-random numbers. Although
certain information within the blockchain system may appear random to
many developers, it is actually controllable by miners. Therefore, these
variables cannot be considered as a source of entropy.

Delegatecall To enhance code reusability, Solidity provides the Call and DelegateCall
mechanisms for invoking external code. When using Call, the invocation
is executed within the context of the called contract. On the other hand,
when using DelegateCall, the code of the called contract is executed
within the calling contract. When contract A utilizes DelegateCall to
invoke contract B, the context of contract A is preserved, while the code
of contract B is executed. During this process, functions within contract
B can access and modify the storage and state of contract A.

Access control In general, the default visibility of a function is public, which means it can
be accessed both internally and externally within a contract. However,
setting a function that should only be called internally as public can lead
to unexpected outcomes. In the case of the first hacking attack on the
Parity MultiSig Wallet, the attacker exploited a vulnerability where the
function visibility was not specified. They called the initWallet() function
and set themselves as the owner of the wallet. Because of this security
loophole, users suffered losses amounting to a staggering $31 million.

(Continued)
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Table 1 (continued)

Vulnerability Description

TOD Transaction Order Dependence (TOD) refers to the uncertainty in the
execution results of transactions on the Ethereum blockchain due to the
dependency between transactions. Miners have the option to include
transactions from the transaction pool in the current block, usually
ordered by gasPrice. Attackers can monitor the transaction pool, gather
data, and create transactions with higher gasPrices, allowing them to be
included in blocks faster than the original transactions.

Denial of service In smart contracts, the commonly used data structures are mappings and
arrays, which are used to record and store various types of information.
However, if an array is maliciously expanded, it can result in excessive
time and resource consumption when attempting to delete the array. This
can lead to the deletion requiring more gas than the block’s limit allows,
thus making it impossible to remove the array and potentially resulting in
a denial-of-service attack.

2.3 Common Detection Methods for Smart Contracts

Currently, the mainstream techniques for detecting vulnerabilities in smart contracts can be
categorized into four types: feature matching, fuzz testing, symbolic execution, and taint analysis.

Feature matching is a static analysis-based technique for detecting vulnerabilities in smart
contracts. It abstracts the features of malicious code [30,31] and detects smart contract source code or
bytecode using similarity comparing to features, which are representated by intermediate layer, such
as an Abstract Syntax Tree (AST) [32] or Control Flow Graph (CFG) [33].

Fuzz testing [34] is a unique vulnerability detection technique. It provides smart contracts with
a large amount of random or exceptional data to trigger potential abnormal states and observe
the results of contract execution to discover possible vulnerabilities. The core of fuzz testing lies
in the generation and evaluation of test cases. Based on the current execution results and coverage
information, it selects optimal test cases as inputs for the next round, thereby improving detection
efficiency and quality.

Symbolic execution [35] is a program analysis technique that employs abstract symbols to
represent program variables and simulates the execution of program instructions while collecting path
constraints for each branch encountered. When encountering program branches, symbolic execution
explores each branch path. Once a path is executed, the path constraints generated during symbolic
execution are handed over to a satisfiability modulo theories (SMT) solver for resolution. If the path
constraints can be solved by the SMT solver, concrete values that can execute the corresponding path
are obtained. If the solution fails, it indicates that the path is unreachable. However, due to the need for
symbolic execution to explore two program paths at each conditional branch, the number of program
paths to be explored grows exponentially as the program size increases. This leads to the problem of
path explosion, which is an inherent limitation of symbolic execution.

Taint analysis [36] is used to detect whether sensitive data or operations in smart contracts are
influenced by external input or untrusted data, leading to security vulnerabilities. This technique tracks
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the generation, propagation, and elimination of tainted information in the contract to determine if it
interferes with critical operations.

In recent years, deep learning-based techniques for smart contract vulnerability detection have
received widespread attention and research. These techniques leverage deep neural networks to
learn the semantic and structural features of smart contracts, enabling automatic identification and
classification of vulnerability types. Compared to traditional approaches, this technology does not
rely on manually defined vulnerability rules or patterns. It can handle large-scale smart contract data,
adapt to different smart contract languages and platforms, and detect multiple types of vulnerabilities.
Currently, deep learning-based detection techniques can be categorized into three main types: text
processing, static analysis, and image recognition. Text processing-based deep learning methods
employ natural language processing (NLP) techniques to extract semantic features from smart
contracts, such as word embedding, sentence embedding, and attention mechanisms. Static analysis-
based deep learning approaches utilize static analysis techniques to extract structural information from
smart contracts, such as control flow graphs and abstract syntax trees. Image recognition-based deep
learning methods convert smart contracts into images and employ convolutional neural networks
(CNN) or other image processing models for feature extraction and classification to determine the
presence and type of vulnerabilities. However, it is regrettable that most current deep learning-based
methods suffer from usability challenges and lack corresponding installation and usage instructions.
Therefore, they are beyond the scope of this paper’s discussion.

3 Smart Contract Vulnerability Detection Tools
3.1 Systematic Literature Review

We searched for relevant works in Google Scholar and Web of Science using the keywords ‘smart
contract tools’ and ‘smart contract detection’. In the first stage, 781 articles were found.

In the second stage, we selected papers related to our work by defining a set of inclusion and
exclusion rules, which are shown in Table 2. A total of 112 articles that meet the criteria were selected
through reviewing abstracts and main findings from 781 literature pieces.

Table 2: Filter rules

Inclusion criteria Exclusion criteria

Research field of smart contracts White papers
Vulnerability detection tool Review papers

In the third stage, we conducted detailed research and selected 38 open-source articles that
provided installation methods out of the 112 articles about tools to be included in our research. The
above work was independently completed by three individuals.

3.2 Brief Introductions

This section examines working principle and the methods used to identify targets in the 38 articles.

Vulpedia [37] is a static analysis tool developed using Python in 2022. Vulpedia identifies
vulnerabilities using vulnerability signatures. It clusters contracts with the same vulnerabilities using
abstract syntax trees and summarizes signatures through program dependency graphs. To build a
feature library, it extracts vulnerability signatures from vulnerable contracts of the same type and
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benign signatures from benign contracts. If a vulnerable signature is matched and no benign signature
is found, the contract is considered vulnerable.

SpCon [38] is a dynamic analysis tool that was released on 22 January, 2022. The tool utilises
the role-based access control (RBAC) model to divide contract users into different roles, each with
different permissions. Lower roles are unable to read or write data owned by higher roles, which
necessitates user mining and identity determination. Existing role mining techniques often assume that
user permission assignments are fully observed, but this is not the case in smart contracts. Therefore,
this tool considers users with the same behavior to have the same role and uses the average frequency
vector (AFV) for quantitative capture. The AFV measures how often users with a particular role
execute different permissions and serves as the signature of the role. The similarity in AFV between
different roles is low. Any discrepancy found between what is allowed and what is actually found
indicates a potential permission flaw.

Published in 2022, xFuzz [39] is a vulnerability analysis tool that utilises machine learning and
fuzz testing methods. The tool focuses on vulnerabilities that are most likely to cause cross-contract
problems. As multiple contracts interacting increases the search space, machine learning methods are
used to guide the fuzz testing of smart contracts. The contract vulnerability is transformed into a vector
using Word2Vec and combined with the contract’s static characteristics. This combined information
is then used as input for the machine learning model to train it. The trained model is then used to
determine the potential location of the vulnerability in the contract. This approach reduces the search
space and improves efficiency.

ESBMC [40] is a context-bounded model checker based on SMT that was published in 2022. The
tool initially receives the source code of the smart contract and analyses it through lexical and syntactic
analysis. It then converts the smart contract sol into an abstract syntax tree (AST) in JSON format.
The resulting AST is then transformed into the intermediate representation (IR) of ESBMC, which is
used to generate the symbol table. The table is then converted into a GOTO program and delivered to
the symbolic execution engine (SymEx) for processing to generate its static single assignment (SSA)
form. This form is then used to generate verification conditions. Finally, create logistic equations to
represent constraints (C) and properties (P) from the SSA form. When the SMT solver finds a solution
that satisfies the equation, a vulnerability is considered to exist.

In 2022, eTainter [41] was published. It takes the bytecode of smart contracts as input and builds
a control flow graph (CFG). By identifying the bytecode, it extracts the EVM instructions for reading
user data and can identify gas-related vulnerable EVM instructions. CFG paths are then extracted and
analyzed for contamination.

Sailfish [42] is a tool that identifies inconsistent state errors in smart contracts. It was released in
2022 and consists of two parts: the EXPLORE phase and the REFINE phase. During the EXPLORE
phase, the contract is converted into a storage dependency graph (SDG), which is then queried to
match vulnerable subgraphs. During the REFINE phase, the tool will utilise symbolic execution
to analyse contracts that match vulnerable subgraphs and use pre-stored variable constraints as a
prerequisite for symbolic execution.

RA [43] was released in 2021 and is used to detect reentrant vulnerabilities. It combines symbolic
execution and SMT solvers to simulate and verify reentrant vulnerabilities.

Eth2Vec [44] is a tool that automatically extracts features for each contract using machine learning
methods and neural networks for natural language processing. The tool will be released in 2022. Its
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purpose is to detect vulnerabilities in contracts by comparing the similarity of the extracted features
to previously learned code.

EtherSolve [45] released in 2021 proposes a symbolic execution algorithm based on the Ethereum
operand stack. The bytecode is converted to CFG by parsing the jump operation in the contract, and
reentrancy vulnerabilities are detected through CFG.

Gasgauge [46] was published in 2021. The tool divides its detection process into three stages:
detection, identification, and correction. In the detection phase, static analysis is used to identify all
loops in the contract. Then, fuzz testing methods are used to generate inputs that exhaust contract gas.
Finally, vulnerabilities are reported to users through the results of the running verification and static
analysis phases.

Echidna [47] is a smart contract vulnerability detection fuzz testing tool published in 2020. It
provides a complete Ethereum smart contract fuzz testing framework, which can analyze and simulate
the execution of smart contract source code and generate compliance with contract call specifications.
The tool uses random transaction data to fuzz test the contract and introduces coverage information
to detect the execution efficiency of fuzz testing.

WANA [48] was published in 2020. It uses the Wasm symbolic execution engine to parse, load,
and initialize the Wasm bytecode. It checks unsatisfied paths by calling the Z3 constraint solver and
collects execution information for vulnerability analysis. WANA performs vulnerability analysis based
on the collected execution information during symbolic execution.

SmartEmbed [49], published in 2020, is an effective tool for checking bugs in smart contracts. It
allows for easy development of error checking rules and addition of new errors. The similarity checker
is the core component of SmartEmbed, which takes in the error embedding matrix, code embedding
matrix, and embedding vector as input, and outputs error reports.

VERISMART [50] is a fully automatic tool based on static and dynamic program analysis
technology, implemented in OCaml and published in 2020. This tool analyzes the basic path of a smart
contract. Verify the generation conditions and detect vulnerabilities by collecting unknown paths.

sFuzz [51] was published in 2020 and aims to improve test case coverage by adopting a feedback
adaptive fuzzing strategy, while learning from the traditional fuzz testing tool AFL. The tool is
composed of three main modules: runner, libfuzzer, and liboracles. The runner module creates a
private test network for deploying test contracts and executing transactions. The libfuzzer component
generates test cases, while the liboracles component detects the execution of test cases and checks for
vulnerabilities.

EthBMC [52] is a dynamic symbolic execution-based bounded model checker published in 2020.
It can automatically generate specific inputs to simplify further analysis of EVM bytecode. EthBMC
addresses identified issues by more precisely reasoning about the internals of the EVM. The contract
is encoded with constraints and then solved using an SMT solver. EthBMC is effective in solving the
parity error vulnerability.

The EVMFuzzer [53] is a fuzz testing tool designed to detect abnormalities in the Ethereum Virtual
Machine (EVM). The tool was published in 2019. It uses smart contracts as input, generates random
mutation data, and sends it to the target EVM and baseline EVM. The output results and status
changes of each EVM are then compared. Any differences or abnormalities found are reported as
suspicious cases.
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SolidityCheck [54] was published in 2019. This is a static open-source tool written in C++ that
uses regular expressions and program instrumentation to address vulnerabilities in smart contracts
[55]. The tool’s detection process is divided into four main stages: 1. Formatting the smart con-
tract code; 2. Filtering keywords to extract problematic statements; 3. Prevention and detection; 4.
Generating detection reports and prevention contracts. SolidityCheck primarily identifies reentrancy
vulnerabilities and integer overflows with exceptional accuracy.

Published in 2019, Vultron [56] is a dynamic smart contract fuzz testing framework developed
using JavaScript. It can detect irregular transactions caused by various types of adversarial exploits.

VeriSolid [57] is an open-source web-based verification framework developed in 2019. It is built on
webGME and FSolidM and allows for collaborative development of Ethereum contracts with built-in
version control.

SIF [58] is a static vulnerability analysis and detection tool that is open source. It was developed
in C++ language and was invented in 2019. This tool is a comprehensive tool for analyzing, querying,
detecting, and generating code for Solidity contracts. Additionally, the tool incorporates a module
called Assertion Analyzer, which identifies Integer Overflow vulnerabilities based on the analysis.

FEther [59] is an open-source static smart contract analysis and detection tool developed using
Coq. Published in 2019, this tool is designed to provide objective evaluations of contract code. It
takes Solidity as input and analyzes and detects contract code through symbolic execution and logical
constraint solving.

Published in 2018, Vandal [60] is a static and open-source tool for detecting smart contract
vulnerabilities. The tool decompiles the bytecode of the Ethereum Virtual Machine (EVM) into an
intermediate representation (IR) and builds the control flow graph (CFG) of the program. The Vandal
tool converts the IR and CFG into logical relationships, which are then stored in a knowledge base.
The tool uses the Soufflé language to write security analysis specifications, which are inputted into
the Soufflé engine along with the knowledge base for query and reasoning. Finally, the tool generates
security analysis specifications based on the output results of the Soufflé engine. The report is then
produced.

Securify [61] is a static and open-source smart contract vulnerability detection tool that was
published in 2018. It uses symbolic execution to analyze smart contracts and extract data flow, control
flow, function calls, and other information from the code. The tool then checks for violations of the
preset pattern.

EthIR [62] is a static and open-source smart contract vulnerability detection tool published in
2018. Its main contribution is converting Ethereum bytecode into a rule-based representation (RBR),
which allows for easy application of advanced analysis methods to infer the nature of EVM code. To
begin, generate a control flow graph (CFG) from Ethereum bytecode using OYENTE. Next, extract
the basic blocks and jump targets from the CFG using a decompiler. Then, extract the rules and
operand stacks from the basic blocks using an interpreter. Finally, convert the rules and operand stacks
to RBR using a reconstructor.

MAIAN [10] was published in 2018. It uses symbolic execution and Hybrid Depth First Search
(Hybrid Depth First Search) technologies to analyze possible state transitions and abnormal behaviors
that may occur during multiple calls of smart contracts. The process mainly consists of four steps:
preprocessing, symbolic execution, recording paths and conditions that may trigger the vulnerability
using the Z3 theorem prover, and hybrid depth-first search. Use a heuristic algorithm to sort the
paths obtained by symbolic execution, and select the path most likely to trigger the vulnerability for
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further analysis; Verification, use specific input and transaction sequences to verify the results obtained
by symbolic execution and hybrid depth-first search vulnerability path and report the discovered
vulnerabilities.

Published in 2017, Porosity [63] is a static detection tool that converts EVM bytecode into
an intermediate representation (IR). It then analyses basic blocks and boundaries based on jump
instructions and function calls. Porosity connects basic blocks into CFGs and identifies loops,
conditional branches, and function entries. Finally, it converts the CFG into a Solidity syntax contract
and outputs it to standard output or a file.

FSolidM [64] is a tool for detecting static smart contract vulnerabilities that was published in 2017.
It is based on the Finite State Machine (FSM) model, which abstracts smart contract behavior into a
set of states and transitions. The tool includes a graphical editor that enables developers to create and
modify FSMs using drag-and-drop. Additionally, FSolidM provides a code generator that can convert
FSMs into Solidity language smart contracts and deploy them to the Ethereum network.

KEVM [65] was created in 2016 as a tool for detecting static smart contract vulnerabilities. It
uses the K framework to define the syntax and semantics of the EVM’s bytecode stack language,
allowing it to execute and simulate the behavior of the EVM. KEVM can simulate all instructions
and abnormal behaviors of the EVM, and its correctness and performance can be verified through the
official Ethereum test suite.

SmartCheck [30], a static open-source smart contract vulnerability detection tool developed in
Java, was published in 2018. SmartCheck conducts lexical and semantic analysis on Solidity source
code and utilizes ANTLR [66] and a custom Solidity language to generate an XML parse tree as an
intermediate representation. Users can detect vulnerability patterns by employing XPath queries on
the intermediate representation. SmartCheck offers significant improvements compared to existing
alternatives, as it has been extensively tested on real-world contracts and successfully identified code
issues in the majority of them.

Slither [31], published in 2019, is an open-source static analysis framework for smart contract
vulnerabilities. This tool serves four main purposes: (1) automatic detection of vulnerabilities, (2) auto-
matic detection of code optimization opportunities, (3) enhancing user understanding of contracts, and
(4) assisting with code reviews. Its working principle involves transforming Solidity smart contracts
into an intermediate representation called SlithIR. SlithIR utilizes Static Single Assignment (SSA)
form and a simplified instruction set to streamline the implementation of analysis while retaining
semantic information. Slither allows the application of common program analysis techniques such as
data flow and taint tracking to detect vulnerabilities. The tool is capable of detecting Reentrancy,
Integer Overflow, Unchecked Low Level Calls, Tx.origin, Time Manipulation, Delegatecall, and
Access Control.

Mythril [67], published in 2017, is a static and open-source smart contract vulnerability detection
tool. It utilizes symbolic execution techniques to simulate the execution process of a program. Instead
of using concrete input values, it uses symbolic variables to explore all possible execution paths of the
program. In addition, Mythril incorporates techniques such as taint analysis and control flow graphs
to enhance the efficiency and accuracy of the analysis.

Oyente [68], a tool that emerged in 2016, utilizes symbolic execution to analyze smart contract
bytecode. It consists of four key components: CFG Builder, Explorer, Core Analysis, and Validator.
Oyente operates at the bytecode level and dynamically explores the program’s control flow graph
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during symbolic execution. It detects contract vulnerabilities by considering path constraints, variable
origins, and other relevant information.

Solmet [69], published in 2018, is built upon the existing ANTLR4 grammar to parse Solidity
language. Although it does not directly detect vulnerabilities, Solmet analyzes Solidity smart contracts
and calculates relevant metrics.

Solhint [70], introduced in 2017, is a static analysis tool for smart contract vulnerability detection.
It begins by converting the source code of a smart contract into an abstract syntax tree (AST) using
a parser. Then, it traverses the AST using a visitor while loading user-specified configurations, which
include enabled or disabled rules and plugins. Solhint checks each AST node based on the rules in
the configuration file and collects detected issues. Finally, it formats the problems in different output
formats, such as console or file.

ContractFuzzer [71], published in 2018, employs fuzz testing techniques to identify security
vulnerabilities in Ethereum smart contracts. It operates in four steps: firstly, it generates fuzzy inputs
based on the smart contract’s ABI specification; then, it uses predefined test cases to detect common
vulnerability types; next, it utilizes an EVM instrumenter to record the runtime behavior of the smart
contract; finally, it employs a log analyzer to analyze the recorded logs and report any discovered
vulnerabilities.

Osiris [72], which was published in 2018, is a static and open-source framework for smart contracts
vulnerability detection and analysis. It primarily utilizes a combination of symbolic execution and
taint analysis to detect vulnerabilities. The tool converts the bytecode of smart contracts into an
intermediate representation (IR) and performs static analysis to identify instructions and variables that
may lead to integer-related vulnerabilities. Then, Osiris utilizes taint analysis to mark inputs, outputs,
and state variables related to integer-related vulnerabilities, creating a taint graph that represents their
data flow dependencies. Subsequently, the tool employs symbolic execution to traverse all paths in the
taint graph and generate corresponding path constraints and objective functions. Finally, Osiris uses a
constraint solver, such as Z3, to solve the path constraints and objective functions, resulting in a set of
input values satisfying the conditions, i.e., exploits. If no satisfying input values are found, it indicates
that the path is secure or unreachable.

HoneyBadger [73], published in 2019, consists of three components: symbolic analysis, cash
flow analysis, and honeypot analysis. The symbolic analysis component constructs a control flow
graph (CFG) and executes its different paths symbolically. The results of symbolic analysis are then
propagated to the cash flow analysis and honeypot analysis components. The cash flow analysis
section utilizes the results from symbolic analysis to detect whether a contract can receive and transfer
funds. Lastly, the honeypot analysis component aims to detect different honeypot techniques studied
in this article by combining heuristic and symbolic analysis results. All components employ the z3
SMT solver to check for constraint satisfaction.

3.3 Comparison of Open Source Tools

This section presents a summary of current open source tools. Table 3 presents specific informa-
tion, such as the detection method, project address, update time, installation method, and ease of use.
Ease of use is divided into five levels: 5� indicates that it is extremely easy to install and does not
require the installation of any environment; 4� indicates that it is easy to install and only requires
the installation of one environment dependency; 3� indicates that it is easy to install but requires
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the installation of two environment dependency; 2� indicates that requires the installation of three
environment dependency; 1� indicates that more than three environment dependencies.

Table 3: Solidity detection tool project address and environmental dependencies

Tool name Detection
method

Project address Update time Installation
method

Installation
difficulty

Vulpedia Feature
matching

https://github.
com/
ToolmanInside/
vulpedia_demo

2022.4.26 Docker 4�

Accessed: Mar.
19, 2024.

SpCon Feature
matching, taint
analysis

https://github.
com/
Franklinliu/
SpCon-Artifact

2024.3.13 Docker,
Python3.8

4�

Accessed: Mar.
19, 2024.

xFuzz Fuzz testing https://github.
com/zhang-alt/
xFuzz

2022.4.30 Docker,
solc-select+
python+
sFuzz+
slither/surya

4�

Accessed: Mar.
19, 2024.

ESBMC Symbolic
execution

https://ssvlab.
github.io/
esbmc/
documentation.
html

2022.7.26 solc, esbmc 3�

Accessed: Mar.
19, 2024.

eTainter Feature
matching, taint
analysis

https://github.
com/
DependableSystemsLab/
eTainter

2024.3.19 Python+
Z3-solver+
pysha3

3�

Accessed: Mar.
19, 2024.

Sailfish Symbolic
execution

https://github.
com/ucsb-
seclab/sailfish

2022.6.5 Docker, python 4�

Accessed: Mar.
19, 2024.

RA Symbolic
execution

https://github.
com/wanidon/
RA

2021.9.22 Python3.7+Z3-
solver+pysha3

3�

(Continued)
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Table 3 (continued)

Tool name Detection
method

Project address Update time Installation
method

Installation
difficulty

Accessed: Mar.
19, 2024.

Eth2Vec Feature
matching

https://github.
com/fseclab-
osaka/eth2vec

2021.3.26 Kam1n0 server
[74]+py-solc-x

1�

Accessed: Mar.
19, 2024.

EtherSolve Symbolic
execution

https://github.
com/SeUniVr/
EtherSolve

2023.8.17 Java 11.0.8,
Gradle [75]

3�

Accessed: Mar.
19, 2024.

Gas gauge Fuzz testing https://github.
com/gasgauge/
gasgauge.
github.io

2021.5.7 Slither+
Truffle+solc+
python+NodeJS

2�

Accessed: Mar.
19, 2024.

Echidna Fuzz testing https://github.
com/crytic/
echidna

2024.3.19 Docker,
Homebrew
[76], Nix [77],
Stack [78]

4�

Accessed: Mar.
19, 2024.

WANA Symbolic
execution

https://github.
com/gongbell/
WANA

2021.3.28 solc+six+
func_timeout+
Z3-solver

3�

Accessed: Mar.
19, 2024.

SmartEmbed Feature
matching

https://github.
com/
beyondacm/
SmartEmbed

2023.3.13 Flask+
WTForms+
genism+SciPy+
python

3�

Accessed: Mar.
19, 2024.

VERISMART Feature
matching,
symbolic
execution

https://github.
com/kupl/
VeriSmart-
public

2023.1.17 OCaml+Z3
+solc

2�

Accessed: Mar.
19, 2024.

(Continued)
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Table 3 (continued)

Tool name Detection
method

Project address Update time Installation
method

Installation
difficulty

sFuzz Fuzz testing https://github.
com/duytai/
sFuzz

2022.3.24 Web 5�

Accessed: Mar.
19, 2024.

EthBMC Symbolic
execution

https://github.
com/RUB-
SysSec/
EthBMC

2022.12.31 Go-ethereum
[50]+Rust
[51]+Yices2
[52]

1�

Accessed: Mar.
19, 2024.

EVMFuzzer Fuzz testing https://github.
com/
EVMFuzzer/
EVMFuzzer

2019.3.19 Python+
ethereum+solc

4�

Accessed: Mar.
19, 2024.

SolidityCheck Feature
matching

https://github.
com/xf97/
SolidityCheck

2021.6.28 Docker 4�

Accessed: Mar.
19, 2024.

Vultron Fuzz testing https://github.
com/ntu-
SRSLab/
vultron

2019.11.5 Node.js:
12.12.0
+Truffle:
5.0.42+Go-
ethereum:
1.8

2�

Accessed: Mar.
19, 2024.

VeriSolid Symbolic
execution

https://github.
com/anmavrid/
smart-
contracts

2023.1.4 NodeJS
(v4.x.x)+
MongoDB+
webgme+bower

1�

Accessed: Mar.
19, 2024.

SIF Feature
matching

https://github.
com/chao-
peng/SIF

2020.6.27 solc 4�

Accessed: Mar.
19, 2024.

(Continued)
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Table 3 (continued)

Tool name Detection
method

Project address Update time Installation
method

Installation
difficulty

FEther Feature
matching

https://github.
com/
openethereum/
fEther

2020.2.11 Web 5�

Accessed: Mar.
19, 2024.

Vandal Feature
matching

https://github.
com/usyd-
blockchain/
vandal

2020.7.29 Souffle+python 3�

Accessed: Mar.
19, 2024.

Securify Symbolic
execution

https://github.
com/eth-sri/
securify

2020.1.24 Docker,
solc+Java 8+
Soufflé

3�

Accessed: Mar.
19, 2024.

EthIR Feature
matching

https://github.
com/costa-
group/ethIR

2024.3.18 solc+ethereum
(last version
tested
1.8.18)+Z3
(last version
tested
4.5.0)+pip

3�

Accessed: Mar.
19, 2024.

MAIAN Symbolic
execution

https://github.
com/
ivicanikolicsg/
MAIAN

2021.10.4 python 4�

Accessed: Mar.
19, 2024.

Porosity Feature
matching

https://github.
com/msuiche/
porosity

2019.1.10 solc 4�

Accessed: Mar.
19, 2024.

(Continued)
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Table 3 (continued)

Tool name Detection
method

Project address Update time Installation
method

Installation
difficulty

FSolidM Symbolic
execution

https://github.
com/
contractshark/
fsolidm

2020.10.30 NodeJS (v4.x.x
recommended)+
MongoDB+
webgme

1�

Accessed: Mar.
19, 2024.

KEVM Symbolic
execution

https://github.
com/
runtimeverification/
evm-semantics

2024.3.18 kup 3�

Accessed: Mar.
19, 2024.

SmartCheck Feature
matching

https://github.
com/smartdec/
smartcheck

2023.5.25 NodeJS 4�

Accessed: Mar.
19, 2024.

Slither Feature
matching

https://github.
com/crytic/
slither

2024.3.19 Docker, python 4�

Accessed: Mar.
19, 2024.

Mythril Symbolic
execution, taint
analysis

https://github.
com/
ConsenSys/
mythril

2024.3.16 Docker,
solc+software-
properties-
common+
python3

4�

Accessed: Mar.
19, 2024.

Oyente Symbolic
execution

https://github.
com/
enzymefinance/
oyente

2020.11.7 Docker,
solc+Go-
ethereum+Z3+
pip

4�

Accessed: Mar.
19, 2024.

Solmet Feature
matching

https://github.
com/chicxurug/
SolMet-
Solidity-parser

2023.8.8 Java 4�

Accessed: Mar.
19, 2024.

(Continued)
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Table 3 (continued)

Tool name Detection
method

Project address Update time Installation
method

Installation
difficulty

Solhint Feature
matching

https://github.
com/protofire/
solhint

2024.3.16 NodeJS 4�

Accessed: Mar.
19, 2024.

ContractFuzzer Fuzz testing https://github.
com/gongbell/
ContractFuzzer

2020.3.16 Docker 4�

Accessed: Mar.
19, 2024.

Osiris Feature
matching, taint
analysis,
symbolic
execution

https://github.
com/
christoftorres/
Osiris

2023.3.7 Docker,
solc+Go-
ethereum+Z3+
python

4�

Accessed: Mar.
19, 2024.

HoneyBadger Symbolic
execution

https://github.
com/
christoftorres/
HoneyBadger

2023.3.7 Docker, Go-
ethereum+Z3+
python

4�

Accessed: Mar.
19, 2024.

3.4 Evaluation Vulnerability Detection Coverage

Table 4 displays the vulnerabilities that can be detected by the tools mentioned in this paper. It is
important to note that some tools only convert the code into an easy-to-analyze form without directly
instrumenting the smart contract. Although this method of converting code may aid in further analysis
and identification of potential vulnerabilities, it still necessitates manual review and verification.
Therefore, the security of smart contracts still requires a combination of expertise and experience
when using these tools.

Table 4: Detecting tool vulnerability coverage

Tool name Reentrancy Integer
overflow

Unchecked low
level calls

Tx.origin Time mani-
pulation

Delegatecall Access
control

TOD Denial of
service

Vulpedia √ × √ √ × × × × √
SpCon × × × √ × √ √ × ×
xFuzz √ × × √ × √ × × ×
ESBMC × √ × √ × × × × ×
eTainter × × √ × × × × × √
Sailfish √ × × × × × × √ ×

(Continued)
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Table 4 (continued)
Tool name Reentrancy Integer

overflow
Unchecked low
level calls

Tx.origin Time mani-
pulation

Delegatecall Access
control

TOD Denial of
service

RA √ × × × × × × × ×
Eth2Vec √ √ × × √ × √ × √
EtherSolve √ × × × × × × × ×
Gas gauge × × × × × × × × √
Echidna × × × × × × × × √
WANA × × × × √ √ √ × ×
SmartEmbed √ √ √ √ √ × √ × ×
VERISMART × √ × × × × × × ×
sFuzz × √ × × √ √ √ √ √
EthBMC × × × × × √ × × ×
EVMFuzzer × × √ × × × × × ×
SolidityCheck √ × × × × × × × ×
Vultron √ √ √ × × × × × √
VeriSolid √ × √ × × × × × √
SIF × √ × × × × × × ×
FEther × × × × × × × × √
Vandal √ × × √ × × × × ×
Securify √ √ × √ √ √ √ √ √
EthIR × × × × × × × × √
MAIAN × × × × × × √ × ×
Porosity √ × √ × √ × × × ×
FSolidM √ × × × × × √ √ ×
KEVM × × × × × × × × √
SmartCheck √ √ √ √ √ × √ × √
Slither √ √ √ √ √ √ √ × ×
mythril √ √ √ × √ √ √ × ×
oyente √ × √ × √ × × √ ×
Solmet × × × × × × × × ×
Solhint √ × √ √ √ × √ × ×
ContractFuzzer √ × √ × √ √ √ × ×
Osiris √ √ × × √ × × × ×
HoneyBadger × × × × × × × × ×

4 Vulnerability Detection Framework Based on Hybrid Cloud Platform

By researching the majority of existing vulnerability detection tools, we have discovered that
they are relatively challenging to use. López Vivar et al. [79] proposed the ESAF framework for a
unified analysis of smart contract vulnerabilities. This tool integrates several existing tools, allowing
developers to leverage the strengths of different tools for smart contract vulnerability analysis.
However, the tool itself relies on the user’s local setup of Python, Docker, and MongoDB, which
makes practical usage somewhat challenging. Ferreira et al. [80] introduced SmartBugs as a tool to
assist developers in comparing their work with existing tools. This tool is Docker-configured, which
enables users to utilize it through the command-line or web-UI. After execution, it generates reports
based on the corresponding tool’s returned results. However, practical users are required to possess
certain knowledge and skills, and some of the tools within SmartBugs have longer execution times,
making them unsuitable for running on personal computers.

Through literature research and practical experience, we have identified several challenges that
arise when using Solidity-based code vulnerability detection tools in real-world applications:
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Significant time spent on environment configuration and debugging. Different tools require different
runtime environments, which result in unnecessary cost of time, thus prolongs project completion
cycles;

Non-uniform input leads to strong independence. Current tools often exist as standalone entities,
meaning that developers need to input contracts into multiple detection tools for testing manually.
This adds complexity to the workflow and hinders the automation of testing processes;

Comprehension difficulty due to different output formats. The output formats and interpretation
methods of existing tools vary greatly, necessitating manual analysis by individuals with specialized
knowledge to obtain the final detection results.

These above issues increase the difficulty of smart contract development and maintenance.
Therefore, to facilitate the usage for developers, we have designed a vulnerability detection framework.
This framework provides a unified contract detection interface, simplifies the vulnerability analysis
process and offers more intuitive results.

The framework design encompasses the following four points:

• It provides developers with a more convenient experience using unified contract detection
interface. By reducing the learning curve and improving work efficiency. Developers no longer
need to learn various cumbersome tool usage methods.

• It possesses high scalability for tools. This scalability ensures that our framework can continu-
ously update alongside the development of vulnerability detection techniques.

• It offers a historical record query feature. Developers can conveniently review previous vul-
nerability analysis results and relevant information for comparison and analysis. Developers
can better track the progress of vulnerability fixes and promptly engage in vulnerability
prevention work.

• It exhibits compatibility with multiple platforms, facilitating cross-platform usage for users.
Whether operating on Windows, Mac, or Linux systems, developers can effortlessly employ
our framework for vulnerability analysis, enhancing work flexibility and convenience.

4.1 Environment and Related Technologies

In this section, we will introduce the operating environment of the framework. For the overall
framework operation, we utilize Python as the primary building tool to implement the user interface
and interaction logic. Python is a versatile programming language with powerful cross-platform
capabilities, which allowing it to run on different operating systems.

In the vulnerability detection section, we employ VMware to run the detection tools. Specifically,
we choose VMware as the platform to execute the detection tools. VMware is a virtualization software
that enables the creation of multiple virtual machines on a single host, each running different operating
systems. This allows for the simulation of various environments to accommodate the use of different
detection tools.

Regarding the storage of user information and running results, we utilize MySQL as the database
system. MySQL is an open-source relational database management system that is suitable for small to
medium-sized applications. It is user-friendly, providing sufficient performance and reliability to meet
most typical data storage and querying needs.
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4.2 Module Function

The design philosophy of our framework is based on converting functional requirements analysis
into a modular code structure. This design allows us to achieve better modularity and maintainability.
Each functionality is encapsulated as an independent module and interacts with other modules
through well-defined interfaces. This design enables us to conveniently expand and modify function-
alities while reducing code coupling.

Our framework consists of four parts: the display module, the preprocessing module, the database
module, and the virtualization validation module. The web interaction module serves as the user
interface of the system, providing users with convenient features such as uploading contract files,
viewing detection results, and accessing historical information. The preprocessing module performs
initial processing on the uploaded contracts to improve the efficiency and accuracy of subsequent
detection. The database module is an essential component of the smart contract vulnerability detection
system. It primarily handles the storage and management of contract detection-related data, including
preprocessed contracts, detection results, and the order of contract detection. The preprocessed
contract results are stored in the database in the form of file addresses, facilitating subsequent testing
and analysis. The virtualization testing module is the core part of the smart contract vulnerability
detection system. It is responsible for comprehensive testing of smart contracts and feeding the results
back to the database module for further analysis and processing.

Through the combination of these four modules, our framework is capable of achieving compre-
hensive detection and analysis of smart contracts. Moreover, this modular design allows for convenient
expansion and modification of functionalities, enhancing the system’s maintainability. Additionally,
the interaction between modules through well-defined interfaces reduces code coupling. This design
makes our framework more flexible and user-friendly.

4.3 Module Implementation

In this section, we will briefly describe the implementation details of the module based on the
schematic diagram.

The operational logic of these interconnected modules is illustrated in Fig. 1. The system com-
prises four key modules: the Display Module, the Preprocessing Module, the Database Module, and
the Validation Module. The Display Module functions as the user interface, allowing users to input
contract codes. The Preprocessing Module processes these input codes, preparing them for use by
subsequent modules. The Database Module acts as an intermediary for storage and transmission,
storing the preprocessed codes and transferring the data to the Validation Module in the order
received. The Validation Module verifies the received data and sends the validation results back to
the Database Module. Finally, the Database Module presents these validation outcomes to the user,
enabling them to review and understand the system’s evaluations.

By employing such a modular operational logic, users can conveniently input contract codes and
obtain corresponding validation results. This modular design enables each functional module of the
system to work independently, facilitating ease of maintenance and expansion.

4.3.1 Display Module

The display module serves as the user interface of the system, providing a platform for users
to interact with it. It encompasses functionalities such as uploading contract files, viewing detection
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results, and accessing historical information. Fig. 2 shows the interface and key features of the display
module.

Figure 1: Overall architecture of the framework

Figure 2: Schematic diagram of the display module

In terms of user authentication, this framework provides functions such as registration, modifi-
cation, and login to facilitate user identity management.

Throughout the entire interaction process, users can conveniently upload their contract files
through a concise and intuitive interface. The process of uploading contract files is extremely simple,
with just a click on the upload button and selecting the local file.

Simultaneously, the display module will perform a format check on the contract file uploaded by
the user to ensure that it is indeed a valid contract file. For example, Solidity contract files typically have
a .sol extension. This module will examine the file to ensure that it meets the required format. Once
the contract file is uploaded, the web interaction module will pass it on to the system’s preprocessing
module for initial processing.

4.3.2 Preprocessing Module

As shown in Fig. 3, the preprocessing module performs initial processing on the contracts
uploaded by users to improve the efficiency and accuracy of subsequent detection. This module
accomplishes two main tasks: removing comments from the source code to reduce code volume, and
performing symbol substitution by replacing symbols in the code (such as variable names, function
names, etc.) with fixed identifiers for further compilation and detection.

In the preprocessing module, the first step is to remove comments from the contracts. Although
comments contribute to code readability, they are not necessary for compilation and detection.
Therefore, removing comments can reduce code volume, save time and resources for subsequent
processing.
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Figure 3: Schematic diagram of the preprocessing module

To facilitate further compilation and detection, the preprocessing module also performs additional
operations such as deleting unnecessary characters like spaces and newline symbols, ensuring code
compliance and ease of subsequent detection.

4.3.3 Database Module

As shown in Fig. 4, the entire database module is a vital component of the Smart Contract
Vulnerability Detection Framework. It is primarily responsible for storing and managing data related
to contract detection, including preprocessed contracts, detection results, and contract detection
sequences. The results of the preprocessed module are stored in the database as file addresses,
facilitating subsequent testing and analysis.

Figure 4: Schematic diagram of the database module

The relevant tables in the database contain attributes such as contract ID, user ID, detection
results, and upload time. These attributes serve to uniquely identify contracts, differentiate between
users, record the storage location of contracts and reports, and track the historical records and status
of contracts. To ensure user privacy and confidentiality, appropriate permission controls have been
implemented on the database, ensuring that each user can only view the results and reports of their
own detected contracts.
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The database module also includes a scheduling queue, which stores the IDs corresponding to
contracts in the database. This queue is used to receive contracts processed by the preprocessing
module. It stores the contract IDs passed from the preprocessing module and sends the contracts to
the virtualized testing module. Once the virtualized testing module returns the results, they are stored
in the database.

4.3.4 Virtualization Verification Module

As shown in Fig. 5, we have the Virtualization Testing Module, which serves as the core component
of the Vulnerability Detection Framework Based on Hybrid Cloud Platform. Its main responsibility is
to comprehensively test smart contracts and provide feedback to the Database Module for subsequent
queries. These tools may require different environmental conditions during runtime or even face con-
flicting situations. To address this issue, we have employed virtualization technology, which provides
each tool with an independent operating environment that meets its specific runtime requirements,
thereby avoiding conflicts between the tools.

Figure 5: Schematic diagram of virtualization verification module

Furthermore, the Virtualization Testing Module also takes into account that different versions of
compilers may generate varying bytecode or even fail to compile, which could impact the execution
results of the contracts. Therefore, we have incorporated an automatic compiler version switching
module. Based on the contract’s version information, the system will automatically switch to the
corresponding compiler version, ensuring the fluency and reliability of the testing process. Once the
virtualization testing is completed, the testing results will be transmitted back to the Database Module
for further queries.

4.4 Network Design Based on Hybrid Cloud Platform

To ensure the integrity of the study and ensure the scalability of the detection framework, we
further propose the corresponding network structure and hardware planning. The purpose of these
supplementary works is to address the limitations of our method in specific tasks and provide more
efficient and accurate solutions.

As shown in Fig. 6, the web server provides services through a unique domain name. The user’s
access request first reaches the Display and Preprocessing Module Server, where the router evenly
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distributes the requests to the servers and performs authentication services. At the same time, this
server can preprocess the contracts after user submission. This architecture ensures that the system
maintains good performance and availability even under high concurrent requests.

The Database Server is responsible for receiving smart contracts and storing data locally to ensure
the security of user information. Additionally, this server can transmit the contracts to the virtualized
detection module in the public cloud via the VPN Server through a dedicated link. The public cloud
offers almost unlimited scalability. When demand increases, it is easy to add more virtual machines.
Similarly, when demand decreases, it is convenient to reduce the number of virtual machines. This
flexibility allows for dynamic adjustment of resources based on demand without the need for expensive
hardware investments. Furthermore, deploying virtual machines in the public cloud usually takes only
a few minutes, while deploying new physical servers locally may take several days or even weeks. This
enables the framework to quickly scale with new tools.

Figure 6: Network design schematic of the vulnerability detection framework based on a hybrid cloud
platform



1020 CMC, 2024, vol.80, no.1

Additionally, the Supervision Server allows for obtaining information from each server, including
performance logs and detection logs, for analysis.

4.5 Framework Functional Tests

a. As shown in Figs. 7 and 8, the framework offers user registration and login functionality,
enabling users to create accounts and access the framework by logging in.

b. As shown in Figs. 9 and 10, the framework possesses the capability of unified detection and tool-
specific detection to meet user requirements. Users can perform unified detection operations through
the framework or choose to use different tools for detection. This flexibility allows users to select the
most suitable detection method based on their own needs.

Figure 7: Framework registration function

Figure 8: Framework login function
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Figure 9: Overall query

Figure 10: Single tool query

c. As shown in Fig. 11, the framework offers a functionality to query the history records, allowing
users to conveniently retrieve their previous operation records. Users can trace their historical queries
on the framework through this feature, facilitating reference, review, or analysis purposes.

d. As shown in Fig. 12, the framework utilizes backend virtualization technology to establish a
detection server, which provides a detection interface to the frontend. Users can interact with the
backend virtualized detection server through the frontend page, submitting data for detection and
retrieving the corresponding detection results.

5 Performance Experimental Analysis of Vulnerability Detection Tools

To assess the stability of the framework, we conducted over 1700 h of testing. Simultaneously,
we aimed to investigate the hardware requirements of these tools by addressing the following three
research questions:

RQ1: How does the execution speed of each tool compare?
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To answer this question, we tested and compared different types of contracts, and calculated the
running time of each tool.

RQ2: Do different tools optimize for multicore processing, and does using more cores result in
faster execution speed?

To answer this question, we tested the running speed of various tools under different core counts.

RQ3: How does each tool consume memory during the execution process?

To answer this question, we tested the memory usage of different tools during the testing of
hundreds of contracts, and compared their memory requirements under different core counts.

Figure 11: Detection history query

Figure 12: Virtualized server interface

Section 5.1 introduces our datasets and the hardware environment used. In Section 5.2, we con-
ducted tests for different core counts and compared the differences in execution speed. In Section 5.3,
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we performed memory tests to showcase the memory requirements of the tools during different
detection processes.

5.1 Dataset

In recent years, the Ethereum community has developed numerous tools for analyzing vulnerable
smart contracts. However, there is a lack of standardized datasets available. To gather sufficient exper-
imental data, we utilized the dataset called SB Curated, manually constructed by Durieux et al. [81].
This dataset consists of 112 smart contracts, categorized into the five most common vulnerabilities:
access control, denial of service, reentrancy, time manipulation, and unchecked low-level calls.

5.2 Implement Environment and Related Settings

We conducted the tests on a computer equipped with an Intel(R) Xeon(R) CPU E5-2680 v3 @
2.50 GHz (48 CPUs) and 128 GB of memory. We chose ESXI 7.0 as the host system and used Ubuntu
20.04 as the virtual machine system.

For the batch testing script files, we used Python 3.8.10 as the programming language. Addition-
ally, unless otherwise specified by the tools, the environment consisted of Docker version 20.10.16,
npm version 6.14.4, and Java version 11.0.20.1.

We selected nine tools with different features and functionalities to cover various contract testing
requirements. To ensure the accuracy of the test results and eliminate any interference from unexpected
situations, we performed five tests on each contract and excluded the highest and lowest values to
eliminate possible outliers. In total, we tested over 25,000 contracts. The entire testing process was
time-consuming, totaling 1796.47 h. Among them, the main runtime was occupied by the Mythril
tool for approximately 1700 h. To meet the running requirements of Mythril, we employed multiple
servers and virtual machines for parallel execution.

In the experimental section, we conducted subgroup analysis to divide the study sample into
different subgroups and compared the differences among them to draw conclusions.

5.3 Tool Runtime Testing

To evaluate the operational efficiency of the tool, we conducted tests on the tool’s runtime. We
standardized the configuration to 8 threads (4 cores, 2 threads) to simulate common setups. During
the testing process, we recorded the runtime of each tool and performed a statistical analysis of the
results. By comparing the runtime of different tools, we were able to assess their efficiency in handling
contracts.

As shown in Fig. 13, differences in runtime between various smart contract detection tools are
evident. Notably, Solmet is the fastest tool, completing the detection in just 28.53393111 s. This tool
primarily focuses on extracting relevant metrics from contracts, contributing to its faster processing
speed.

Next in line are Slither and Solhint, with runtimes of 60.2818644 and 77.7760623 s, respectively.
Both of these tools employ feature matching techniques, which involve analyzing the relationships
between feature codes, thereby requiring less time. In contrast, ContractFuzzer and Honeybadger have
relatively longer runtimes, clocking in at 1134.240254 and 3048.585183 s, respectively. The slowest tool
is Mythril, which takes 254086.36 s. We can observe that tools utilizing symbolic execution and fuzz
testing for detection operate at a slower pace compared to those employing feature matching. This can
be attributed to Slither and Solhint directly analyzing Solidity code.
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Figure 13: Speed comparison for detection tools

5.4 Multi-Core Optimization Testing

To further evaluate the operational efficiency of the smart contract detection tool and enhance
its performance in real-world applications, we conducted multi-core optimization testing. These tests
measured the recommended number of cores utilized by different tools and provided crucial indicators
for optimizing resource utilization in subsequent frameworks.

During the testing process, we modified the configuration settings to various core counts and
ran the tools for performance testing, while recording the execution time. We adjusted the test
configuration to 1 thread, 2 threads, 4 threads, 8 threads, and 16 threads, respectively, and noted the
execution time for each tool under each configuration. Subsequently, we compared the execution times
to assess the impact of multi-core optimization on tool performance.

Fig. 14 shows that, in most cases, the number of threads does not affect the running speed of the
tools. This is because the execution process of these tools primarily depends on other factors rather
than CPU processing power, such as the speed of input data and the bottleneck of memory reading.
Therefore, the performance of some tools remains relatively stable, regardless of whether they are
executed in a single-threaded or multi-threaded environment.
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Figure 14: Test results for multi-core running speed of the detection tool
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When studying the tools SmartCheck, Solmet, and Solhint, which utilize feature matching, we
discovered their sensitivity to the number of threads through Fig. 15. Under configurations with a high
number of threads, these tools exhibited only a slight reduction in running time, indicating marginal
effects. However, as the number of threads decreased, the performance of these tools noticeably
declined. Particularly, the transition from 2 threads to a single thread resulted in a significant increase
in running time, suggesting a high level of support for multi-threaded parallel computing by these
tools.

Furthermore, during our multi-threading optimization testing, we also observed some anomalies.
Sometimes, increasing the number of threads did not necessarily result in a significant reduction in
run time. As in Fig. 16, the slither tool could even lead to a slight increase. This may be attributed
to competition among threads in a multi-core system, causing an uneven distribution of resources.
In particular, the slither tool demonstrated noticeable advantages in a single-threaded environment.
This probably because it can more efficiently utilize the computational resources of a single core.
However, in a multi-threaded environment, its performance decreases due to the presence of resource
competition.
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Figure 15: Test results for speed improvement of detection tools with multiple cores
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Figure 16: Test results for multi-core detection speed of the Slither

5.5 Memory Usage Test

To assess the memory usage of the system, we conducted a series of memory occupancy tests.
These tests aimed to measure the amount of memory the system uses under different load conditions
and provide us with crucial indicators to evaluate the system’s resource utilization.
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During the memory occupancy tests, we first ensured that the system was in a stable state and
recorded the initial memory usage. Then, we employed various tools to test different types of contracts,
such as withdrawal contracts, game contracts, gambling contracts, and more, to simulate diverse usage
scenarios. Throughout the execution process of each test scenario, we continuously monitored the
system’s memory usage and recorded the memory occupancy at each time point.

To accurately measure memory occupancy, we utilized the psutil [82] module, a professional
Python library for monitoring system resource usage. Throughout the testing process, we consistently
used 16 GB of memory for the tests and employed the psutil module to record the memory occupancy
of each contract at different time intervals.

After analyzing the experimental results in Fig. 17, we observed that Mythril and Honey Badger
consume a significant amount of memory during operation, reaching 13.76 and 3.952 GB, respectively.
In contrast, Solhint, Solmet, and SmartCheck exhibit noticeably lower memory usage rates, with only
82, 98, and 393 MB, respectively. Therefore, it can be concluded that symbol execution tools with
deep path coverage require a higher amount of memory. Conversely, tools based on feature matching
require lower memory resources.

1‰

10‰

100‰

1000‰

M
em

o
ry

u
sa

g
e

ra
ti

o

1core 2core 4core 8core 16core

Figure 17: Test on memory usage of detection tools

It should be noted that certain tools exhibit a high sensitivity of memory usage to the number
of cores. As shown in Fig. 18, Solmet and SmartCheck showed a memory usage increase of up to
double when running in multi-threaded mode compared to single-threaded mode. This indicates that
increasing the number of cores significantly increases the memory requirements of these tools. This
phenomenon could be attributed to the data interaction and synchronization operations involved in
parallel processing. It also explains why these tools show a significant improvement in detection speed
with higher thread counts.

5.6 Vulnerability Detection Coverage

In this section, we conducted a practical evaluation of the vulnerability detection capability
of the aforementioned tool and provided corresponding vulnerability detection results. However,
honeybadger, which can only detect honeypot contracts, and Solmet, which does not test the contracts
themselves, were excluded from the evaluation.
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Figure 18: Visualizing the results of a comparative test on memory usage for selected detection tools
with different core counts

Fig. 19 illustrates the specific vulnerability detection capabilities of each tool on SB Curated.
Among them, Slither, SmartCheck, and Solhint exhibit higher vulnerability coverage compared to
other tools. Slither and Solhint can cover all Time Manipulation vulnerabilities, while SmartCheck
can cover all Access Control and Unchecked Low-level Calls vulnerabilities. For Reentrancy, Slither
tool demonstrates the best coverage. On the contrary, Mythril and SmartCheck have lower coverage
for Time Manipulation, and Oyente exhibits poor coverage for Unchecked Low-level Calls.
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Figure 19: Vulnerability detection capabilities of each tools

6 Conclusion

This paper presents a systematic review of currently available open-source smart contract vulner-
ability detection tools. We conducted a thorough analysis of the installation complexity of different
open-source tools and their dependencies, providing a point of reference for future work.

Based on our current work, we propose a vulnerability detection framework to assist smart
contract developers in analyzing vulnerabilities and ensuring the security of their contracts. Addi-
tionally, we introduce a network topology that corresponds to the cloud-based vulnerability detection
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framework. To evaluate the performance of the tools used in the framework, extensive testing was
performed. The computational resource consumption and multi-core optimization of these tools were
evaluated by monitoring their CPU usage and memory consumption during large-scale smart contract
instrumentation. This allowed us to determine the processing power and memory capacity required for
actual deployment during contract analysis. This work also provides a reference for future research.
However, this paper did not evaluate the methods used by non-open-source tools, resulting in the
omission of some relevant studies and thereby affecting the comprehensiveness of the review.

In future work, we aim to enhance and expand our vulnerability detection framework by
integrating more smart contract vulnerability detection tools. As new vulnerability types and attack
techniques are constantly emerging, we will monitor these developments closely and collaborate with
the research community and security experts to update our research on vulnerability detection tools
in a timely manner.

Acknowledgement: I would like to express my heartfelt thanks to my colleagues, fellow researchers,
and mentors for their constant support, insightful discussions, and constructive feedback throughout
the course of this project. Their guidance and expertise have been invaluable in shaping the direc-tion
and improving the outcomes of this research. I am also grateful to the technical support team for
their invaluable assistance in ensuring the availability and functionality of the necessary equipment
and software required for conducting experiments and analyzing data. Their expertise and prompt
response to technical issues have significantly contributed to the quality and reliability of the results
obtained.

Funding Statement: The work is supported by the Major Public Welfare Special Fund of Henan
Province (No. 201300210200), and the Major Science and Technology Research Special Fund of
Henan Province (No. 221100210400).

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: Yaqiong He, Jinlin Fan; data collection: Jinlin Fan; analysis and interpretation of results: Jinlin
Fan, Yaqiong He, HuaiguangWu; draft manuscript preparation: Jinlin Fan, Yaqiong He. All authors
reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The dataset used in this study is the SmartBugs Curated dataset,
which is a publicly available collection of Ethereum smart contracts with known vulnerabilities. The
dataset is hosted on GitHub at the following link: https://github.com/smartbugs/smartbugs-curated
(accessed on 15/03/2024).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Accessed: Mar. 15, 2024. [Online].

Available: https://bitcoin.org/bitcoin.pdf
[2] N. Szabo, “Formalizing and securing relationships on public networks,” First Monday, vol. 2, no. 9, 1997.
[3] S. Lande and R. Zunino, “SoK: Unraveling bitcoin smart contracts,” Princ. Secur. Trust Lncs, vol. 10804,

p. 217, 2018.
[4] M. Andrychowicz, S. Dziembowski, D. Malinowski, and A. Mazurek, “Secure multiparty computations

on bitcoin,” Commun. ACM, vol. 59, no. 4, pp. 76–84, 2016. doi: 10.1145/2896386.

https://github.com/smartbugs/smartbugs-curated
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/2896386


CMC, 2024, vol.80, no.1 1029

[5] V. Buterin, “A next-generation smart contract and decentralized application platform,” White Paper, vol.
3, no. 37, pp. 1–2, 2014.

[6] M. Xu, X. Chen, and G. Kou, “A systematic review of blockchain,” Financ. Innov., vol. 5, no. 1, pp. 1–14,
2019. doi: 10.1186/s40854-019-0147-z.

[7] X. Wang, J. He, Z. Xie, G. Zhao, and S. Cheung, “ContractGuard: Defend Ethereum smart contracts
with embedded intrusion detection,” IEEE Trans. Serv. Comput., vol. 13, no. 2, pp. 314–328, 2019. doi:
10.1109/TSC.2019.2949561.

[8] M. Wohrer and U. Zdun, “Smart contracts: Security patterns in the ethereum ecosystem and solidity,” in
2018 Int. Workshop Blockchain Orient. Softw. Eng. (IWBOSE), Campobasso, Italy, IEEE, 2018, pp. 2–8.

[9] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “ZEUS: analyzing safety of smart contracts,” in Network
Distrib. Syst. Secur. (NDSS), San Diego, CA, USA, 2018, pp. 1–12.
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