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ABSTRACT

As a core part of battlefield situational awareness, air target intention recognition plays an important role in
modern air operations. Aiming at the problems of insufficient feature extraction and misclassification in intention
recognition, this paper designs an air target intention recognition method (KGTLIR) based on Knowledge Graph
and Deep Learning. Firstly, the intention recognition model based on Deep Learning is constructed to mine the
temporal relationship of intention features using dilated causal convolution and the spatial relationship of intention
features using a graph attention mechanism. Meanwhile, the accuracy, recall, and F1-score after iteration are
introduced to dynamically adjust the sample weights to reduce the probability of misclassification. After that, an
intention recognition model based on Knowledge Graph is constructed to predict the probability of the occurrence
of different intentions of the target. Finally, the results of the two models are fused by evidence theory to obtain
the target’s operational intention. Experiments show that the intention recognition accuracy of the KGTLIR model
can reach 98.48%, which is not only better than most of the air target intention recognition methods, but also
demonstrates better interpretability and trustworthiness.
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1 Introduction

With the introduction of new operational concepts such as Decision-Centric Warfare and Joint
All-Domain Operation, as well as the development of modern weapons, the intensity, timeliness, and
complexity of confrontation in the air and space domain have increased dramatically. This requires us
to quickly obtain and process battlefield information, infer the enemy’s target’s operational intention,
realize clear and effective battlefield situation assessment, and implement reasonable and favorable
decision-making [1].

As early as the 1970s, some countries had begun to use information systems to aid in intent
recognition. With the development of decision support systems, more and more researchers have begun
to study the problem of tactical intent recognition of air targets. Existing methods for target intention
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recognition are mainly based on statistical theory (evidence theory [2–4], Bayesian networks [5–7]),
cognitive modeling (template matching [8], expert systems [9]), and artificial intelligence [10–14].

Xia et al. used a gray Markov chain to analyze and predict four factors of enemy UAVs: speed,
angle, attack, and detection, while combining the predictors with rules provided by rough sets.
The proposed model can infer the intentions of enemy drones in a short time in the future [2].
Sun et al. used a similarity function in a high-dimensional data space to measure the degree of support
of a target’s state for its intention, and combined the D-S evidence theory to combine the support
of each temporal sequence to form a sequential identification of the target’s tactical intention [3].
Jun et al. combined confidence rule base and evidence theory to identify the intentions of aerial targets
[4]. Xu et al. applied the dynamic sequential Bayesian network to the problem of target intention
recognition, and optimized the algorithm through the information entropy theory, and achieved better
results [5]. Meng et al. proposed an improved algorithm based on data classification confidence based
on a semi-supervised plain Bayesian classifier to achieve effective identification of air combat target
intention [6]. Chen et al. constructed a posture template based on expert experience and used D-S
evidence theory to construct an inference model for intention recognition [8]. Yin et al. used a statistical
approach to the a priori knowledge to obtain the target operational intent knowledge and rule base
and proposed an intention recognition method based on discriminant analysis [9]. However, the real
battlefield environment has a high degree of complexity and uncertainty. Evidence theory methods
have problems in application such as limited ability to deal with conflict evidence and difficulty in
constructing basic probability assignment functions. Bayesian network methods have problems such
as difficulty in parameter estimation and poor adaptability to the dynamically changing battlefield
environment. Template matching methods have problems such as difficulty in constructing and
updating template libraries and limited ability to handle complex battlefield information. The expert
system has problems such as difficulty in knowledge acquisition, limited real-time, and practicality.

In response to the above problems, researchers continue to try new methods such as deep learning
and reinforcement learning. Zhou et al. proposed an air target intention recognition method based
on a deep neural network, which optimizes the backpropagation algorithm using ReLU (Rectified
Linear Unit) function and Adaptive Moment Estimation (Adam) algorithm to improve the model
recognition effect [10]. To address the temporal nature of target intention features, Teng et al. combined
a Temporal Convolutional Network (TCN) and a Bidirectional Gated Recurrent Unit (BiGRU) to
extract the temporal characteristics of the features and introduced an attention mechanism to assign
different weights to the features [11]. Aiming at the limitations of the existing algorithms such as
relying on empirical knowledge, having difficulty to extract full temporal features, and being unable
to meet the requirements of real combat, Wang et al. proposed a target tactical intention recognition
algorithm based on bidirectional long-short temporal memory (BiLSTM), with a recognition accuracy
rate of up to 92% [12]. Aiming at the deficiencies of existing methods in terms of temporal order and
interpretability, Wang et al. designed an air target intention recognition model based on BiGRU and
Conditional Random Field (CRF), which achieved high recognition accuracy [13]. Qu et al. proposed
an air target intention recognition method based on fully connected neural networks, convolu-
tional neural networks, and recurrent neural networks, which realizes the target intention recog-
nition function based on real-time situational information, and the proposed method has good
robustness [14].

Although the above methods have achieved better recognition results, there are the following
problems in the modeling process. Firstly, most models only consider the temporal characteristics of air
combat data, ignoring the influence of its spatial characteristics on the recognition results. Secondly,
although most models have high recognition accuracy, there is still room for improvement in accuracy.
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In the process of combat, once the intention of enemy targets is incorrectly recognized, it will bring
high combat costs or even lead to the failure of the whole battle. Third, most models ignore the effects
of misclassification in the process of recognizing target intent. For example, there is a great similarity
between the features of attack intention and feint intention, which can be easily misidentified.

To address the above problems, this paper proposes an air target intention recognition method
(KGTLIR) based on Knowledge Graph and Deep Learning, where K denotes the Knowledge
Graph, G denotes the graph attention mechanism, T denotes the temporal module based on dilated
causal convolution, L denotes the improved cross-entropy loss function, and IR denotes intention
recognition.

The main contributions of this paper are as follows.

(1) The problem of air target intention recognition is analyzed in detail, the air target intention
space and intention features set are constructed and coded uniformly, and the decision maker’s
empirical knowledge is encapsulated into intention labels.

(2) The temporal module based on dilated causal convolution is constructed to solve the temporal
feature extraction problem of air combat data; meanwhile, the graph attention mechanism is intro-
duced to solve the spatial feature extraction problem of air combat data. By combining the two, the
feature extraction capability of the model is greatly improved.

(3) Sample weights are introduced to improve the cross-entropy loss function, and at the same
time, combined with the attention mechanism module in GAT, to realize the dynamic adjustment of
sample category weights and reduce the misclassification probability of the model.

(4) Construct an air target intention recognition model based on Knowledge Graph, which mainly
consists of a data level and a schema level. The original data is stored in the data level, and the
probability distribution of different intentions of the target is predicted through the schema level.
The construction of the knowledge graph model can fully explore the potential relationship of the
data, which makes the model better understand the expert experience and improves the credibility of
the model.

(5) Evidence theory is used to fuse the recognition results of the knowledge graph model and the
GTLIR model, after which the target intention is decided. The accuracy of the model is improved
to 98.48%.

The rest of this paper is organized as follows. The second part describes in detail the problem of
air target operational intention recognition and the construction process of air target intention space
and intention features set. The third part describes in detail the air target intention recognition model
based on Deep Learning and the air target intention recognition model based on Knowledge Graph.
The fourth part presents the experimental results and experimental analysis. The fifth part summarizes
the whole paper and points out the direction of the research.

2 Description of Air Target Intention Recognition
2.1 Air Target Intention Recognition Problem

For the intention recognition task in air defense operations, firstly, extract the battlefield infor-
mation in time and airspace from the air defense battlefield environment as well as the static and
real-time dynamic attributes of air targets, and then analyze these elements to reason the enemy’s air
targets’ operational intention [15]. The specific process is shown in Fig. 1.
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Figure 1: Reasoning process of the operational intention of air targets in air defense operations

The air target intention recognition problem is a specific mapping of target intention features to
target intention types. Target intention recognition in air combat occurs in a real-time, complex, and
high-confrontation battlefield environment. There are certain limitations in the ability to obtain and
analyze information, which usually makes it difficult for our commanders to accurately obtain the
combat intention of enemy targets. Therefore, in this paper, we use the probability that an intention
may occur to represent the outcome of intention recognition at that moment. In the actual combat
environment, enemy targets may conceal their tactical intention through a variety of means, and there
is a certain degree of one-sidedness and falsity in judging the target’s tactical intention based only on
the battlefield data of a single moment. Therefore, in this paper, we choose to extract target features
from battlefield data obtained at consecutive moments and thus recognize their tactical intentions.
Define the set of temporal features of the target It = {

It1
, It2

, . . . , Itn

}
, I t consists of consecutive air

combat real-time features from moment t1 to moment tn. Define Y t as the tactical intent space of the
target. The air target intention recognition problem can then be described as a mapping process from
I t to Y t.

Yt = f (It) = f
(
It1

, It2
, . . . , Itn

)
(1)

In this paper, we build a KGTLIR model by training the data obtained from the battlefield
simulation system, so as to implicitly establish the mapping relationship between features and
intentions. The air target intention recognition process is shown in Fig. 2.

2.2 Air Target Intention Space

For different battlefield environments, different combat styles, and different combat objectives, the
intention space has large differences, so it needs to be defined in conjunction with the specific combat
context. This paper mainly focuses on air targets in air defense operations, such as reconnaissance
planes, fighter planes, early warning planes, etc., and determines that the intention space of enemy air
targets is {attack, penetrate, interference, feinting, surveillance, reconnaissance, retreat} seven kinds of
intention. The details of the different intentions are shown in Table 1.

The intention recognition problem is also a multi-classification problem, this paper establishes a
coding and decoding mechanism as shown in Fig. 3, which facilitates the training of the model by
coding the intention of the enemy target.
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Figure 2: KGTLIR-based air target intention recognition process. The model consists of three main
phases. First, the real-time battlefield information is feature-selected to obtain the initial dataset.
Secondly, the numerical data in the dataset is normalized and the non-numerical data is coded to
obtain the time series dataset. Finally, the processed data is fed into the intention recognition model
(KGTLIR) to get the target intention

Table 1: Detailed description of the operational intention of air targets

Intention Detailed description

Attack Firing of missiles, bombs, etc., by enemy air targets against air defense sites to
achieve destructive effects

Penetrate Actions by enemy air targets to break through our air defenses and enter the
intended target area

Interference Jamming of our radar and communications systems by enemy air targets through
electronic equipment

Feinting Enemy air targets to conceal combat attempts and to deceive and confuse our side
by attacking with a certain number of troops to create a false impression of
combat operations

Surveillance Passive surveillance of the area by enemy air targets
Reconnaissance Active detection activities by enemy airborne targets against our air defenses and

strongholds
Retreat Enemy air targets departed from the current area of operations

Figure 3: Air target operational intention coding and decoding method
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2.3 Air Target Intention Feature Selection

Once the target intention space has been determined, the feature information needed for the model
can be determined based on the relationship between the target attribute features and the intention.
From the perspective of the combat mission attempted by the enemy, there are certain differences
in the characteristic information displayed by enemy airplanes when they perform different combat
missions [16].

(i) As far as the flight speed of the target is concerned, the flight speed of fighter planes is generally
735 to 1470 km/h when they are engaged in aerial combat. The flight speed of bombers and transport
planes is generally 600 to 850 km/h when they are carrying out their missions. The flight speed of early
warning planes is generally 750 to 950 km/h when they are carrying out surveillance missions.

(ii) As far as the flight altitude of the target is concerned, when the enemy aircraft performs the
mission of surprise defense, the low altitude of surprise defense ranges from 50 to 200 m, and the high
altitude of surprise defense ranges from 10,000 to 11,000 m. The altitude of the fighter aircraft in the
aerial combat is generally from 1000 to 6000 m. When the enemy aircraft performs the mission of
reconnaissance, the flight altitude of the low altitude reconnaissance ranges from 100 to 1000 m, and
that of the ultra-high altitude reconnaissance ranges from 15,000 m or more.

(iii) As far as the radar status of the target is concerned, fighter planes usually keep their air-to-air
radar on when they are engaged in aerial combat. Transport planes generally keep their radar in a
silent state when they are performing transport missions. Bombers keep their air-to-air radar or sea-
to-sea radar on only when they are performing bombing missions. Planes keep their air-to-air radar
and sea-to-sea radar on when they are performing reconnaissance missions.

In addition, considering the limitations of information technology, there are target features that
cannot be directly acquired, such as target type, shape, etc., this paper chooses to use radar one-
dimensional distance image and radar reflection cross-sectional area instead.

In summary, the air defense target intention feature set constructed in this paper is {altitude,
velocity, acceleration, heading angle, azimuth, distance, radar one-dimensional distance image, radar
reflective cross-sectional area, air-to-air radar status, ground-to-ground radar status, interference state,
and target type} in 12 dimensions. The first eight are numerical features, and the last four are non-
numerical features. The detailed descriptions of the features are shown in Table 2.

Table 2: Air target intention feature set information

Feature name Description Data type Unit

Altitude Flight altitude of enemy air targets Numerical km
Speed Flight speed of enemy air targets Numerical m/s
Acceleration Flight acceleration of enemy air

targets
Numerical m/s2

Heading angle Direction of flight of enemy
airborne targets

Numerical °

Azimuth The angle between the direction of
flight of enemy airborne targets and
my air defenses

Numerical mil

(Continued)
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Table 2 (continued)

Feature name Description Data type Unit

Distance Distance of enemy air targets from
the center of my air defense
positions

Numerical km

1D range profile Distance between the nearest and
farthest peaks in a one-dimensional
distance distribution

Numerical m

RCS The size of the radar cross-sectional
area

Numerical m2

Air-to-air radar status Air-to-air radar is on or off. Non-
numerical

Coding

Ground penetrating radar status Ground penetrating radar is on or
off.

Non-
numerical

Coding

Interference state Enemy aircraft electronic jamming
devices are on or off

Non-
numerical

Coding

Target type Types and models of enemy air
targets

Non-
numerical

Coding

For the eight numerical types of data in the table, the Min-Max normalization method was used
to map them to the interval [0,1]. The specific calculations are as follows:

x′ = x − min
max − min

(2)

where x represents the eigenvalue of a numerical type of feature, x′ represents the normalized result of
this numerical type of feature, min represents the minimum value of this feature value in the set and
max is the maximum value of this feature value in the set.

The four kinds of non-numerical data in the table are all categorical data. In order to facilitate the
learning of the neural network, it is necessary to numericalize these four kinds of data, mapping them
into the interval between [0,1]. The specific calculations are as follows:

x = i − 1
j

(3)

where j represents the size of the classification space and x is the value of the original i-th class non-
numeric feature after mapping it to the interval [0,1].

3 Air Target Intention Recognition Model

Aiming at the problems of insufficient feature extraction and misclassification mentioned in
the introduction, this paper proposes an intention recognition model called KGTLIR, as shown in
Fig. 4. The raw data collected from the battlefield environment is simultaneously fed into an intention
recognition model based on deep learning (GTLIR) and an intention recognition model based on
Knowledge Graph to obtain the probability distributions p1 and p2 for different intentions. Afterward,
p1 and p2 are fused through evidence theory to get the final intention of the target.
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Figure 4: Overall framework of the KGTLIR model. The input of the model is situational information.
Input situational information into the GTLIR model to obtain the probability p1i of different
intentions of the target. Input situational information into the Knowledge Graph model to obtain
the probability p2i of different intentions of the target. The evidence theory is utilized to fuse p1 and p2

to get the final target intention

3.1 Air Target Intention Recognition Model Based on Deep Learning

This section focuses on the intention recognition model (Graph Temporal Net Intention Recog-
nition, GTLIR). Its steps are shown as follows:

First, data preprocessing. Raw data collected from the battlefield environment is characterized by
real-time, complexity and diversity. This paper transforms non-numerical features into numerical ones
by the method mentioned in Section 2.3, after which the features are normalized to form a standard
dataset.

Second, temporal feature extraction. To effectively extract the temporal features of the data,
inflated causal convolution is introduced in the paper to model the links between inputs at different
moments and mine the information embedded in the intention data.

Third, spatial feature extraction. To effectively extract the spatial features of the data, the graph
attention mechanism is introduced in the paper, which has a powerful feature extraction capability
to capture the connection between multiple features. The raw inputs are fused after the features are
extracted by one-dimensional convolution and inflated causal convolution, respectively, after which
they are transported to the graph attention mechanism to realize the extraction of temporal and spatial
features.

Fourth, intention recognition. The output of the graph attention mechanism will be delivered
to the SoftMax layer for classification, and finally get the result of target intention recognition. The
model is trained with an improved cross-entropy loss function to calculate the loss value.
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The overall framework of the model is shown in Fig. 5. V ∈ Rm denotes the processed standard
feature matrix, X denotes the output of the one-dimensional convolutional layer, S denotes the output
of the Temporal layer, H denotes the output of the fusion of X and S, H′ denotes the output of the
Graph Attention Mechanism layer, and Y denotes the final output of the target intent.

Figure 5: Overall framework of the GTLIR model

3.1.1 Temporal Block

Dilated Causal Convolution is a network structure that can handle time series data as proposed
by Bai et al. in 2018 in Temporal Convolution Neural Network [17]. Compared to CNN, causal
convolution can predict yt based on x1, x2, . . . , xt and y1, y2, . . . , yt−1, making yt close to the true
value. The computational process of causal convolution is shown in Fig. 6.

Dilated causal convolution adds a dilated factor to causal convolution [18]. It can realize the
exponential expansion of the sense field without increasing the parameters and model complexity,
which makes it able to deal with longer time series data, as shown in Fig. 7.

Given the model input V , f ∈ Rk represents the size of the one-dimensional inflated causal
convolution kernel, the output after the inflated causal convolution operation is shown in Eq. (4).

F (V , s) = (V ∗ d f ) (s) =
k−1∑
i=0

f (i) · Vs−d·i (4)
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where d represents the expansion factor, k represents the size of the convolution kernel and s − d · i
represents the position point corresponding to the input sequence. The exponential expansion of the
inflated causal convolutional sensory field enables it to cover all valid inputs of the input time series,
which leads to better fusion of information and effective modeling of long-term patterns in the series.

Figure 6: Causal convolution

Figure 7: Dilated causal convolution

In order to fully extract the temporal features of the posture data, this paper introduces the idea
of Inception to construct the Temporal Block as shown in Fig. 8, which consists of 4 parts, each of
which has the same size of the inflated causal convolution kernel and different inflation factors.

Given the processed input data V = {V1, V2, . . . , Vm}, activated by the sigmoid function and tanh
function respectively after Temporal Block, the output features Sa and Sb are obtained.

Sa = tanh (F (V , s)) (5)

Sb = σ (F (V , s)) (6)

S = Sa × Sb (7)

3.1.2 Graph Attention Network

Graph Attention Network is an attention-based node classification network proposed by
Velickovic et al. [19], whose basic idea is to update the node representation based on each node’s
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attention to its neighboring nodes. At the input layer, GAT receives the node features of the graph
data and the topology of the graph. For the KGTLIR model constructed in this paper, the node
features of the graph are the feature vectors extracted by fusing Temporal Block and Conv1d, and the
topology is the adjacency matrix constructed by the similarity between the feature vectors.

Figure 8: Specific framework of temporal block

The inputs are the node features H =
{→

h1,
→
h2, . . . ,

→
hN

}
,

→
hi ∈ RF , where N represents the number

of nodes and F represents the feature dimension of the nodes. In order to obtain sufficient expressive
power, GAT uses a shared linear transform implementation parameterized by a weight matrix to
transform the input features into higher-level features. At the same time, a shared attention mechanism
a is introduced in the paper to calculate the importance eij of node j’s features with respect to node i,
as shown in Eq. (8).

eij = a
(

W
→
hi, W

→
hj

)
(8)

where the shared attention mechanism a : RF ′ ×RF → R is a single-layer feed-forward neural network
and W ∈ RF ′×F denotes the weights applied to each node of the graph.

To make the coefficients between different nodes easy to compare, the paper is normalized using
the SoftMax function to obtain the normalized attention coefficients.

αij =
exp

(
LeakyReLU

(
→
a

T
[

W
→
hi||W

→
hj

]))

∑
k∈Di

exp
(

LeakyReLU
(

→
a

T
[

W
→
hi||W

→
hk

])) (9)

where
→
a ∈ R2F ′ is the initialized weight vector of the attention mechanism a, LeakyReLU is used to

perform nonlinear operations, Di is some domain of node i in the graph, and || represents the splicing
operation.

Finally, normalized attention coefficients are used to compute linear combinations of the corre-
sponding features and the output features of the nodes are obtained by means of a nonlinear activation
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function σ .

→
h′

i = σ

⎛
⎝∑

j∈Ni

αijW
→
hj

⎞
⎠ (10)

To stabilize the learning process of the self-attention mechanism, the paper extends the attention
mechanism to a multi-attention mechanism, where K attention mechanisms run independently, and
the obtained output features are spliced to obtain the final feature.

→
h′

i = ||K
k=1σ

⎛
⎝∑

j∈Ni

αk
ijW

k
→
hj

⎞
⎠ (11)

3.1.3 Introduction of Sample Weights

The GTLIR model uses a cross-entropy loss function to compute the loss values during the
training process. For the multi-classification task, the model’s loss function over the entire training
set is as follows:

Loss (p, q) = − 1
N

N∑
n=1

M∑
m=1

o
(
xn,m

)
ln q

(
xn,m

)
(12)

where N denotes the total number of training samples in the training set, M denotes the total number
of labeled categories in the training set, o(xn,m) denotes the probability of the n-th sample in the training
set for the true labeled category m, and q(xn,m) denotes the probability of the output value of the n-th
sample of the GTLIR model for the m-th category.

In the actual training process, the cross-entropy loss function is mainly used to quantify the
difference between the GTLIR model’s predicted result q and the true intention p. The closer the
two are, the smaller the value of the loss, and vice versa. This affects the model’s recognition results
for target intention to some extent, but it does not improve the misclassification problem well, and the
GTLIR model can only achieve 96.45% recognition accuracy for the test set.

Therefore, to address the problem of the cost associated with intention recognition misclassifi-
cation mentioned in the introduction, the paper introduces sample weights to give samples different
misclassification costs. The formula for calculating the sample weights is as follows:

Gi = Ni∑M
j = 0
j �= i

Nj

(13)

where Gi denotes the weight of the i-th sample; Ni denotes the number of the i-th sample, and M
denotes the total number of label types.

The sample weights are introduced into the cross-entropy loss function as misclassification cost
indicators, and the improved cross-entropy loss function is obtained as follows:

Loss (p, q) = − 1
N

N∑
n=1

M∑
m=1

Gmo
(
xn,m

)
ln q

(
xn,m

)
(14)
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During each round of iteration, the weights Gi are further updated based on the accuracy, recall,
and F1-score after iteration, and the updated Gi and loss function are calculated as follows:

G′
i = Gi · exp

(
Accuracy

M

)
· exp

(
Recall

M

)
· exp

(
F1
M

)
(15)

Loss (p, q) = − 1
N

N∑
n=1

M∑
m=1

Gm

′
p

(
xn,m

)
ln q

(
xn,m

)
(16)

where Accuracy denotes the accuracy after iteration, Recall denotes the recall after iteration, and F1
denotes the F1-score after iteration.

3.2 Intention Recognition Model Based on Knowledge Graph

After the discovery of enemy air targets, the enemy target information obtained through multiple
ways is fused through the Knowledge Graph to recognize their operational intention. In this paper,
we refer to Literature [20] to establish an air target intention knowledge graph model, which is mainly
composed of two parts, the schema level, and the data level, as shown in Fig. 9. The schema level refers
to the description of schema information such as relevant formulas, rules, and association relations
through formalization, which mainly consists of the motion state, entity attribute, and sensor state
of the air target, as shown in Fig. 9a. The data level contains the association relationships between
instances and is a concrete representation of the schema level, as shown in Fig. 9b. The data level is
the foundation, which is mainly used to store the feature data extracted based on the ACMG system.
The schema level is built on top of the data level, which firstly inputs the target entity attributes,
sensor states, motion states, and other information from the data level, after which the probabilities
of different intentions of the target are obtained through the relational constraints and the intention
analysis, and finally the probability with the largest probability is selected to get the intention as the
current state of the target. For the whole KGTLIR model, the original data is stored in the data level,
the probability distribution p2 of different intentions in the current state is obtained through the schema
level, and the probability distribution of the final target’s intention is obtained by fusing p2 with p1 using
evidence theory, and the one with the largest probability is selected as the intention.

Figure 9: (Continued)
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Figure 9: Intention recognition model based on Knowledge Graph

For the air target intention recognition task, each target has other entities in the knowledge graph
that are connected to it through direct or indirect relationship paths. These relationships include
affiliation, inclusion, synergy, etc. These entities include the target’s physical attributes, motion state,
and sensor state, which can reflect the target’s tactical intention tendencies to some extent.

To fully utilize this knowledge information, the collection of entities and relationship paths is
defined in the paper to represent the propagation information of the target entity, which is formulated
as follows:

S(l)
i = {(

pl = pl−1|| < r, > t
) | (pl−1, h

) ∈ S(l−1)

i ∧ (h, r, t) ∈ S
}

(17)

where || denotes the new path formed by placing the relation r on the path pl−1, pl denotes the relational
path that propagates from target entity i to the j-th hop. S(0)

i = {(<>, i)} is the initial set of entity and
path relationships, S(1)

i = {(< r2, e3 >, i), (< r3, e4 >, i)}, and so on.

The attentional weights between goals and relationship paths are calculated by Eq. (18). The
attentional weights between goals and entity paths are calculated by Eq. (19). Normalization is done
to get the final weights π̃ u

(pl ,t)
.

αu
pl = σ

(
δ (W1u + b1)

T pl
)

(18)

βu

(pl ,t)
= σ

(
δuTdiag

(
pl

)
el

)
(19)

π̃ u

(pl ,t)
= softmax

(
αu

pl · βu

(pl ,t)

)
=

exp
(
αu

pl · βu

(pl ,t)

)
∑

(pl ,t)∈Sl
i
exp

(
αu

pl · βu

(pl ,t)

) (20)

The normalized weights are linearly combined, which in turn yields the set Γi of all L-hop entity
embedding information.

eu

Sl
i
=

∑
(pl ,t)∈Sl

i

π̃ u

(pl ,t)
et (21)

Γi =
{

eu
S0

i
, eu
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i
, . . . , eu

SL
i

}
(22)
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The new embedding e∗
i can be obtained by performing a summation operation on eu

Sl
i

in the set Γi.

e∗
i = aggu

i =
∑

eu
Sl

i
∈Γi

eu

Sl
i

(23)

The embedding u∗ of target u can be obtained by combining the collaborative information between
targets with the SVD++ method.

u∗ = u + 1
|T (u) |

∑
eik

∈T(u)

eik
(24)

where T(u) is denoted as the set of intentions that have interacted with target u.

Finally, performing inner product operation on u∗ and e∗
i can obtain the probability score of the

predicted target’s intention.

ŷui = u∗Te∗
i (25)

4 Experimental Analyses
4.1 Experimental Data and Experimental Environment

The experimental data were obtained from the Air Combat Maneuvering Generator (ACMG).
During the data acquisition process, multiple air combat scenarios were set up, such as air defense
operations in different terrains such as plains and mountains. The temporal characterization data
of the target and the initially set intention data are output through the system interface, after
which the target intention is revised by experts in the field of air combat. The data under different
scenarios are fused to obtain a total of 10,560 samples, including 8448 training samples and 2112
test samples, with a time cloth length of 12 sampling cycles. Considering that the enemy air targets
perform different combat missions and our information technology, the paper selects {altitude,
speed, acceleration, heading angle, azimuth, distance, radar one-dimensional distance image, radar
reflective cross-sectional area, air-to-air radar status, ground-to-ground radar status, jamming status,
and enemy identification response} as the 12-dimensional features. The first eight numerical features
are normalized, and the last four non-numerical features are encoded to obtain the final air target
intention dataset.

The experiments performed in the paper are in Python language, version 3.8, accelerated by
NVIDIA GeForce RTX2080 GPUs and CUDA 12.2, and using pytorch deep learning framework.

4.2 Evaluation Indicators

To validate the performance of the proposed air target operational intention recognition method
in this paper, six metrics, namely Accuracy, Precision, Recall, F1-score, Loss, and Total_error, were
used to evaluate the classification of the network. They are calculated as follows:

Accuracy = TP + TN
TP + FN + FP + TN

(26)

Precision = TP
TP + FP

(27)

Recall = TP
TP + TN

(28)
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F1 = 2 × Precision × Recall
Precision + Recall

(29)

Total_error = FN + FP (30)

where TP is the true class, FN is the false negative class, FP is the false positive class, and TN is the
true negative class.

4.3 Model Parameter Setting

The hyperparameter settings of the GTLIR model have a significant impact on its classification
performance. In this paper, multiple sets of experiments are evaluated to select the hyperparameters
with optimal model performance. The hyperparameters of the GTLIR model mainly contain the
optimizer, batch size, epoch, learning rate, convolution kernel size, and dilated factor for dilated causal
convolution in Temporal Block, and the number of nodes for GTA.

For optimizers, this paper compares five candidate algorithms, Stochastic Gradient Descent
(SGD) [21], Root Mean Square prop (RMSprop) [22], Adaptive Moment Estimation (Adam) [23],
Nadam, and Adamax. The resulting test set accuracy and loss values are shown in Table 3. In the
paper, Adam, which has the highest accuracy, is chosen as the optimizer for the GTLIR model.

Table 3: Accuracy of test set obtained by different optimizers

Optimizer Accuracy (%) Loss Total_error

Adam 97.82 0.101 46
SGD 80.92 0.714 403
RMSprop 96.54 0.139 73
NAdam 97.02 0.115 63
Adamax 97.16 0.111 60

In this paper, we compare the accuracy of the model on the test set for different batch sizes and
learning rates, and the experimental results are shown in Table 4. The model achieved the highest
accuracy when the batch size was set to 64 and the learning rate was set to 0.001. The model
hyperparameter settings for GTLIR are shown in Table 5.

Table 4: Accuracy for different parameters

lr = 0.1 lr = 0.01 lr = 0.001 lr = 0.0001

Batch_size = 32 90.00% 96.59% 97.10% 94.74%
Batch_size = 64 94.24% 96.63% 97.82% 92.44%
Batch_size = 128 86.35% 96.31% 96.82% 86.12%
Batch_size = 256 91.38% 97.05% 97.23% 85.71%
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Table 5: GTLIR model hyperparameter setting

Hyperparameter Value

Optimizer Adam
Batch size 64
Epoch 500
Learning rate 0.001
Convolution kernel size in temporal block 2,4,6
Dilated factor in temporal block 2,4
The number of nodes for GAT 12

4.4 Analysis of Experimental Results of Different Loss Function

The effect of Eqs. (12) and (14) in the GTLIR model is compared experimentally, and the results
are shown in Fig. 10.

Figure 10: Comparison of loss function effects

In Fig. 10, L denotes the experimental accuracy and loss value variation curves for the loss
function in Eq. (12), and the GTLIR model has an accuracy of 96.45% on the test set. L′ denotes the
experimental accuracy and loss value change curve of the loss function in Eq. (14), and the GTLIR
model has an accuracy of 96.71% on the test set. It can be found that after the introduction of the
sample weights, the accuracy of the model is then improved, but the improvement is not obvious,
only 0.26%.

The effect of Eqs. (12) and (16) in the GTLIR model is compared experimentally, and the results
are shown in Fig. 11.

In Fig. 11, L denotes the experimental accuracy and loss value variation curves for the loss
function in Eq. (12), and the GTLIR model has an accuracy of 96.45% on the test set. L′denotes the
experimental accuracy and loss value change curve of the loss function in Eq. (16), and the GTLIR
model has an accuracy of 97.82% on the test set. It can be found that the introduction of dynamically
updated sample weights improves the accuracy of the model by 1.37%.
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Through the above two comparison experiments, we can clearly find that the improved loss
function in this paper has a beneficial effect on reducing the probability of misclassification.

Figure 11: Comparison of loss function effects

4.5 Analysis of Experimental Results of the GTLIR Model

4.5.1 Analysis of Intention Recognition Results

The GTLIR model achieved an intention recognition accuracy of 97.82%, a precision of 97.85%,
a recall of 97.92%, an F1-score of 97.87%, a loss value of 0.101, and a total number of misclassified
samples of 46 on the test set of 2112 samples. The number of samples for each intention of the target in
the test set varies is different. In the paper, the confusion matrix for the test set is generated, as shown
in Fig. 12, as well as the precision, recall, and F1-score for different intentions, as shown in Table 6.

Figure 12: Confusion matrix for the GTLIR model
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Table 6: Detection results of different intentions of the GTLIR model

Intention Precision (%) Recall (%) F1-score (%)

Retreat 95 100 98
Surveillance 98 95 97
Reconnaissance 97 98 97
Interference 100 98 99
Feint 99 99 99
Attack 96 98 97
Penetrate 100 96 98

From Fig. 12 and Table 6, it can be found that the GTLIR model has high recognition accuracy
for all seven intentions in the test set, especially for the retreat intention, which can reach 100%.
The remaining six intents were recognized with over 95% accuracy. The reason for this analysis is
that when the intention is to retreat, the target’s maneuvering characteristics are relatively special,
and the distance between the target and the center of our air defense strongholds is increasing, thus
making it easy to identify. There are some cases of misclassification between attack intention and
feint intention. The target performing a feint mission, in order to achieve the purpose of confusing
the opponent, has state characteristics that are very close to those of the target performing an attack
mission. Thus, there is a certain possibility of miscalculation between the two. Targets performing
surveillance intention and reconnaissance intention have certain similarities in characteristics such as
altitude, speed, acceleration, heading angle, azimuth, distance, etc., and thus are also susceptible to
misjudgment.

4.5.2 Ablation Experiment

In order to further validate the effectiveness of the GTLIR model on the task of air target intention
recognition, ablation experiments were conducted in the paper on the same test set. The experimental
results are shown in Table 7.

Table 7: Comparative results of ablation experiments

Model composition structure Accuracy
(%)

Precision
(%)

Recall (%) F1-score
(%)

Total_error

Temporal block GAT Wi
√ 95.55 95.68 95.78 95.68 94√ √ 96.35 96.58 96.63 96.57 77√ √ 96.45 96.35 96.49 96.39 75√ √ √ 97.82 97.85 97.92 97.87 46

The experiments show that all evaluation indexes of the GTLIR model are better than the other
three models. The introduction of sample weights improves the accuracy of Temporal Block by 0.8%
and TemporalBlock_GAT by 1.37%. The introduction of GAT improves the accuracy of the Temporal
Block by 0.9%.
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Considering the different sample sizes of each intention in the test set, this paper uses precision,
recall, and F1-score to reflect the recognition results of these four models, as shown in Table 8, where

1© denotes the Temporal Block model, 2© denotes the TemporalBlock_Wi model, 3© denotes the
TemporalBlock_GAT model, and 4© denotes the GTLIR model. The confusion matrix for whether
the GTLIR model introduces sample weights is shown in Fig. 13.

Table 8: Comparison of different intention recognition evaluation metrics

Intention Precision (%) Recall (%) F1-score (%)

1© 2© 3© 4© 1© 2© 3© 4© 1© 2© 3© 4©
Retreat 91 92 98 95 98 99 100 100 94 96 99 98
Surveillance 94 95 98 98 93 93 96 95 93 94 97 97
Reconnaissance 98 97 96 97 94 94 96 98 96 95 96 97
Interference 99 98 97 100 96 96 96 98 98 97 97 99
Feint 93 98 96 99 98 97 91 99 96 98 94 99
Attack 97 97 91 96 93 98 98 98 95 98 95 97
Penetrate 97 99 98 100 98 98 99 96 98 99 98 98

Figure 13: The confusion matrix for whether the GTLIR model introduces sample weights

As can be seen from Tables 7 and 8, the GTLIR model has a high recognition accuracy for each
class of intention, and the misclassification of intention on the test set improves greatly after the
introduction of sample weights, with the lowest total number of misclassified samples at only 46. From
Fig. 13, after introducing sample weights, the model has significantly improved the misclassification
of feint intention as attack intention and reconnaissance intention as surveillance intention. It is
further demonstrated that with the introduction of graph attention mechanism and sample weights, the
recognition accuracy of the GTLIR model is greatly improved and the effect of intention recognition
is better.



CMC, 2024, vol.80, no.1 1271

4.5.3 Comparative Analysis Experiment

To verify the superiority of the model, the paper first compares the GTLIR model with TCN,
GRU, LSTM, and their combinations, which are three neural networks commonly used for feature
extraction of time-series data. The intention recognition accuracy, total number of misclassified
samples, and runtime of the models are compared under the same test set, as shown in Table 9.

Table 9: Comparative experiments of different models

Model Accuracy (%) Total_error Time (ms)

GTLIR 97.82 46 24.15
TCN 90.91 192 29.31
GRU 85.42 308 20.36
LSTM 84.99 317 21.54
TCN-GRU 94.93 107 30.53
TCN-BiGRU 95.27 100 43.51
TCN-LSTM 94.98 106 37.41
TCN-BiLSTM 95.31 99 48.85

From Table 9, it can be seen that GTLIR achieves an intention recognition accuracy of up
to 97.82% on the test set with the least number of total misclassified samples. The comparison
experiments between LSTM and GRU, TCN-LSTM and TCN-GRU, TCN-BiLSTM and TCN-
BiGRU revealed that the recognition accuracy of the three groups of models did not differ much,
but the time to recognize the samples was significantly longer for LSTM compared to GRU, TCN-
LSTM compared to TCN-GRU, and TCN-BiLSTM compared to TCN-BiGRU. This is mainly due
to the different structure and number of parameters of LSTM and GRU. The GTILR model improves
the accuracy by at least 2.89%, the total number of misclassified samples is reduced by at least 53, and
the sample identification time is reduced to some extent compared to the four models, namely, TCN-
LSTM, TCN-GRU, TCN-BiLSTM, and TCN-BiGRU. The analysis found that the GTLIR model
introduces dilated causal convolution and GAT, which can effectively extract the temporal and spatial
features of the intent data. At the same time, due to the introduction of the GAT, the representation
of the model is improved, and the output features can be computed in parallel on all nodes, improving
the sample identification time of the model.

In addition, the paper compares the GTLIR model with seven existing air target intention
recognition models, namely LSTM-Attention [2], (Deep BP Neural Networks) DBP [10], Attention-
TCN-BiGRU [11], STABC-IR [13], BiGRU-Attention [24], PCLSTM [25], SVM. The intention
recognition accuracy and loss values of the models are compared under the same test set as shown
in Table 10. It can be found that the GTLIR model has the highest accuracy, which fully proves the
high efficiency and importance of the model in recognizing the intention of air targets.



1272 CMC, 2024, vol.80, no.1

Table 10: Comparison experiment between GTLIR model and existing model

Model Accuracy (%) Loss

GTLIR 97.82 0.101
STABC-IR 95.76 0.146
Attention-TCN-BiGRU 94.63 0.138
LSTM-attention 93.79 0.173
BiGRU-attention 93.54 0.180
PCLSTM 88.73 0.338
SVM 84.65 0.385
DBP 81.56 0.414

4.6 Analysis of Results by Fusing the Knowledge Graph Model and GTLIR Model

To further improve the accuracy of intention recognition, this paper comprehensively analyzes the
results based on the Knowledge Graph model and the results based on the GTLIR model to get the
final target intention. Given a set of data, feeding it into the Knowledge Graph model will result in
a probability distribution of different intentions p1, and feeding it into the GTLIR model will result
in a probability distribution of different intentions p2. Afterward, the two are fused through evidence
theory to obtain a new probability distribution p. The type of intention with the largest probability
value is selected as the final intention of the target.

In order to illustrate the intention recognition process of fusing the Knowledge Graph model and
GTLIR model, this paper is presented in two cases.

Case 1, the predicted results of the target under both recognition models are consistent.

The predicted probability distribution p1 of the target under the GTLIR model is as follows:

p1 = {0.0001, 0.02, 0.9795, 0.0001, 0.0001, 0.0001, 0.0001} (31)

The predicted probability distribution p2 of the target under the Knowledge Graph model is as
follows:

p2 = {0.08, 0.10, 0.61, 0.06, 0.03, 0.05, 0.07} (32)

The value of K is calculated according to the orthogonal sum formula as follows:

K =
∑

x∩y�=φ

p1 (x) × p1 (y) = 0.5995 (33)

The fused probability distribution of intentions P can be obtained from Eq. (34).

P (A) = 1
K

×
∑

x∩y=A

p1 (x) × p1 (y) (34)

P = {0.00001, 0.003301, 0.996656, 0.00001, 0.000005, 0.000008, 0.00001} (35)

The intention with the largest probability value is chosen as the target’s final intention. So, the
target’s intention was Reconnaissance.
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Case 2, the predicted results of the target under both recognition models are inconsistent.

The predicted probability distribution p1 of the target under the GTLIR model is as follows:

p1 = {0.0001, 0.0001, 0.0001, 0.0001, 0.6532, 0.3463, 0.0001} (36)

The predicted probability distribution p2 of the target under the Knowledge Graph model is as
follows:

p2 = {0.01, 0.01, 0.01, 0.01, 0.13, 0.48, 0.35} (37)

The value of K is calculated as follows:

K = 0.2512 (38)

The fused probability distribution of intentions P can be obtained from Eq. (34).

P = {0.000004, 0.000004, 0.000004, 0.000004, 0.338041, 0.661720, 0.000223} (39)

The intention with the largest probability value is chosen as the target’s final intention. So, the
target’s intention was Attack.

For the test set of 2112 samples, the recognition accuracy using the above method can reach
98.48%, which significantly improves the recognition results of the model, reduces the probability
of misclassification, and increases the interpretability and trustworthiness of the proposed air target
intention recognition model.

5 Conclusions

Air target intention recognition plays an important role in modern air operations as a core part of
situational awareness. Aiming at the problems of insufficient feature extraction and misclassification in
intention recognition, this paper designs an air target intention recognition method based on dilated
causal convolution and graph attention mechanism. Firstly, relevant intention features are selected
and coded by analyzing the characteristics of the air target intention recognition task. Secondly,
the Temporal Block module composed of dilated causal convolution is used to mine the temporal
relationship of intention features, and the graph attention mechanism is used to mine the spatial
relationship of intention features. Thirdly, the iterated evaluation metrics are introduced to design the
sample weights to reduce the possibility of misclassification. Fourthly, the Intention recognition model
based on Knowledge Graph is constructed to predict the probability of different intentions. Fifthly,
the final intent determination result is given by comprehensively considering the intent recognition
probability distribution of the two models. Finally, the performance of the proposed model in this
paper is verified through simulation experiments, ablation experiments, and comparative analysis
experiments, which show that the KGTLIR model has a high accuracy of intention recognition.
Besides, the interpretability and trustworthiness of the model are both improved to some extent.

During the study, it was found that there are still many problems with the air target intention
recognition task, and the following areas will be focused on in the next study.

Firstly, the costs of war caused by miscalculation of intention in actual combat are beyond the
means of either side. Although the existing intent recognition models have achieved high recognition
accuracy, the performance and interpretability of the models still need to be improved.
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Secondly, the existing intentions are labeled by experts based on empirical knowledge. In actual
combat, there is a large similarity between the intentions, and it is difficult to make a strict distinction
between different intentions.

Thirdly, the battlefield data collected in the actual combat is less, and the existing model is more
dependent on the support of data, how to obtain more high-quality intent data is also a future research
direction.

Fourthly, analyzing from the perspective of the OODA ring, if we can predict the enemy target’s
combat intention in advance, we can lay the foundation for accelerating the closure of the OODA ring,
and then we can obtain the prerequisites for the victory of the war.
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