
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.052611

ARTICLE

EDU-GAN: Edge Enhancement Generative Adversarial Networks with
Dual-Domain Discriminators for Inscription Images Denoising

Yunjing Liu1,#, Erhu Zhang1,2,#,*, Jingjing Wang3, Guangfeng Lin2 and Jinghong Duan4

1School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an, 710048, China
2Department of Information Science, Xi’an University of Technology, Xi’an, 710054, China
3School of Faculty of Painting, Packaging Engineering and Digital Media, Xi’an University of Technology, Xi’an, 710048, China
4School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, 710048, China

*Corresponding Author: Erhu Zhang. Email: eh-zhang@xaut.edu.cn
#Yunjing Liu and Erhu Zhang are co-first authors with equal contributions
Received: 08 April 2024 Accepted: 12 June 2024 Published: 18 July 2024

ABSTRACT

Recovering high-quality inscription images from unknown and complex inscription noisy images is a challenging
research issue. Different from natural images, character images pay more attention to stroke information. However,
existing models mainly consider pixel-level information while ignoring structural information of the character, such
as its edge and glyph, resulting in reconstructed images with mottled local structure and character damage. To solve
these problems, we propose a novel generative adversarial network (GAN) framework based on an edge-guided
generator and a discriminator constructed by a dual-domain U-Net framework, i.e., EDU-GAN. Unlike existing
frameworks, the generator introduces the edge extraction module, guiding it into the denoising process through the
attention mechanism, which maintains the edge detail of the restored inscription image. Moreover, a dual-domain
U-Net-based discriminator is proposed to learn the global and local discrepancy between the denoised and the
label images in both image and morphological domains, which is helpful to blind denoising tasks. The proposed
dual-domain discriminator and generator for adversarial training can reduce local artifacts and keep the denoised
character structure intact. Due to the lack of a real-inscription image, we built the real-inscription dataset to provide
an effective benchmark for studying inscription image denoising. The experimental results show the superiority of
our method both in the synthetic and real-inscription datasets.
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1 Introduction

Inscription images have a high value and irreplaceable role, but mess noise commonly exists in
real-inscription images, hindering reading and understanding. Cleanly inscribed images are essential
for influencing the performance of downstream tasks, such as character recognition [1], font style
transfer [2], and other high-level computer vision tasks. Therefore, it is a crucial step to remove the
noise from the inscription images.
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Edge prior is an essential component of the image feature, which provides more texture and
detailed information in the reconstruction tasks of natural images [3,4]. Meanwhile, a fine edge
can provide localization information for segmentation and object detection. Both of the mentioned
properties of edge prior are helpful to the task of reconstructing high-quality inscription images.
Another important prior is skeleton prior, which provides rich topological information for an object [5]
and maintains semantic coherence and structural features [6]. As a result, the edge and glyph structure
of the character should be preserved correctly in the inscription image denoising task. On the contrary,
missing the two glyph information will result in restored images with blurred local and incoherent
font structures. Fig. 1 exemplifies the inscription images denoising task, where (a) represents the noisy
image. (b and c) represent the results of incorrect denoising, where (b) has severe artifacts and (c) has
damaged font structures, and we highlight the inaccurate parts with red boxes. (d) represents the results
of correct denoising.

Figure 1: Inscription images denoising examples. (a) Noisy image (b and c) Incorrect denoising results,
marking the inaccurate parts of font structure with red boxes, (d) Accurate denoising results

Recently, some inscription image restoration methods have been studied by establishing noise
patterns to remove noise. For example, Feng [7] proposed a Gaussian mixture method to simulate
noise in document images, but it is unsuitable for complex real-inscription image degradations.
Subsequently, Zhang et al. designed a more complex noise model [8,9], where they modeled the noise
of documents and inscriptions by adding dots and squares to clean images. Zhang et al. [10] and
Wang et al. [11] introduced a GAN to perform blind inscription image denoising, improving image
restoration performance. However, inscription images with mottled local and damaged font structures
since these works mainly consider pixel-level image restoration and ignore glyph information.

We propose an EDU-GAN framework to address the mentioned issues. The main contributions
of our work are summarized as follows:

(1) Unlikely existing denoising architectures, we design edge extraction and edge guidance modules
as generator conditions, making the recovered image edge consistent and improving the quality
of the restoration image.

(2) We adopt morphological domain training, which boosts the complete semantics of the recov-
ered glyph structure.
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(3) Experimental results show that the EDU-GAN model is more suitable for inscription font
generation and denoising.

2 Related Works
2.1 Inscription Image Restoration

Early research on inscription images mainly focused on physics-based algorithms and filters
[12,13]. Recently, deep learning models have been gradually introduced to inscription image restora-
tion. Zhang et al. [9] modeled noises in calligraphic images and then used an adversarial network
to restore degraded document images. Miao et al. [8] applied simulated noise methods [9] to the
inscription images. Yue et al. [14] introduced a dual adversarial network [10] to perform blind
inscription image denoising. A study [15] proposed an improved autoencoder for denoising letter
images in scanned invoices. Shi et al. [16] integrated skeleton information into the denoising task and
introduced a global-local feature interaction module, thereby improving the denoising performance
of the network. Reference [17] input the skeleton and degraded character image into the network and
then used the GAN network to reconstruct the character image. However, the above works ignore the
structural characteristics of Chinese character images, resulting in unsatisfactory recovery results.

2.2 GAN-Based Image Restoration

Recently, GAN networks have gradually been applied to restore clean images from degraded
images. Chen et al. [18] designed the GAN network to generate paired datasets and introduced
Convolutional Neural Networks for blind denoising. Yue et al. [14] proposed the simultaneous removal
and generation of noise tasks in a unified Bayesian framework. Wang et al. [19] explored a more
effective rainy image generation method under the Bayesian framework to improve rain removal
performance. However, the above study ignores the consideration of the discriminator. A pioneer work
[20] proposed a discriminator based on the U-Net architecture that simultaneously captured global
and local information from images, thus encouraging the generator to construct high-quality samples.
Subsequently, Huang et al. [21] applied the discriminator of the U-Net structure to medical image
denoising. Wei et al. [22] introduced the discriminator of U-Net structure into the super-resolution
tasks to generate more high-resolution images with better realistic. The successful application of the
above method inspired us to employ based on GAN ideas for restoring inscription images.

3 The Proposed Method

Based on the above consideration, we design an EDU-GAN network for inscription image
denoising, as shown in Fig. 2, which contains a generator and two based U-Net discriminators. We
detail the design of network architecture and modules in this section.

3.1 Overall Framework

As shown in Fig. 2, the denoising process is to guide an edge-guided generator (EGG) to map the
input noisy image IN ∈ Rw×h×c with size w×h and channel c into the clean inscription image IC ∈ Rw×h×c.
The process can be expressed as:

IDN = G (IN) ≈ IC (1)

where IDN represents the reconstructed clear inscription image. The IDN is input to the discriminator
of the image and morphological domains, which contains an encoder-decoder structure in each
discriminator. For the image domain (Dimg), the encoder is Dimg

enc , and the decoder is Dimg
dec . Similarly, the
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encoder is Dmog
enc , and the decoder is Dmog

dec in the morphological branch (Dmog). The discrimination fed
back the generated image and skeleton information, prompting the generator to restore more accurate
images IDN.

Figure 2: Inscription-denoising network framework

3.2 Generator Overview

The proposed edge-guided generator, as shown in Fig. 3. Firstly, the network performs five stages
of feature extraction. Secondly, an edge extraction module (EEM) excavates edge semantics from the
lowest scale-ensemble block (SEB1) and highest scale-ensemble block (SEB5). Thirdly, the asymmetric
feature fusion module (AFF) is applied to enhance the information flow of different stages. Fourthly,
the edge-guide feature module (EFM) integrates the font edge and contextual feature information to
improve the restored text edge of consistency. Finally, multiple context prediction modules (CPM) are
employed to fuse features in a bottom-up aggregate manner. The CPM1 module outputs the generator
prediction results.

3.2.1 Feature Extraction Module

Considering the unknown and complexity of the noise pattern (such as the shape and size of
the noise patches) on the inscription images, we design a scale-ensemble block (SEB) as shown
in Fig. 4. By utilizing receptive field information of different scales to boost feature extraction
capability. Specifically, the feature extraction module contains five SEB modules. SEB1 applies two
3 × 3 convolutions for extracting the shallow information of the inscription image, and SEB2∼SEB5
concatenates three different scale convolution features and further adopts the convolution layer to
model the connected features, thereby obtaining the depth features from the inscription image. The
output is SEBout

i (i = 1, 2, . . . , 5), which will be entered into the next SEB module. The output size of
each SEB module is {1, 1/2, 1/4, 1/8, 1/16} of the original image size. Refer to Table 1 for the detailed
parameters of the SEB module.
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Figure 3: Edge-guide generator framework

Figure 4: Scale-ensemble block
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Table 1: Scale-ensemble blocks details

Stage Parameters

SEB1 Conv3 × 3, dilation = 1, C = 64
Conv3 × 3, dilation = 1, C = 64

SEB2 DConv: BN+ReLU+ Conv3 × 3, dilation = 1, C = 32
DConv: BN+ReLU+ Conv3 × 3, dilation = 2, C = 32
DConv: BN+ReLU+ Conv3 × 3, dilation = 3, C = 32
Conv Layer: BN+ReLU+Conv4 × 4, dilation = 1, stride = 2, C = 128

SEB3 DConv: BN+ReLU+ Conv3 × 3, dilation = 1, C = 32
DConv: BN+ReLU+ Conv3 × 3, dilation = 2, C = 32
DConv: BN+ReLU+ Conv3 × 3, dilation = 3, C = 32
Conv Layer: BN+ReLU+Conv4 × 4, dilation = 1, stride = 2, C = 256

SEB4 DConv: BN+ReLU+ Conv3 × 3, dilation = 1, C = 32
DConv: BN+ReLU+ Conv3 × 3, dilation = 2, C = 32
DConv: BN+ReLU+ Conv3 × 3, dilation = 3, C = 32
Conv Layer: BN+ReLU+Conv4 × 4, dilation = 1, stride = 2, C = 512

SEB5 DConv: BN+ReLU+ Conv3 × 3, dilation = 1, C = 32
DConv: BN+ReLU+ Conv3 × 3, dilation = 2, C = 32
DConv: BN+ReLU+ Conv3 × 3, dilation = 3, C = 32
Conv Layer: BN+ReLU+Conv4 × 4, dilation = 1, stride = 2, C = 1024

3.2.2 Edge Extraction Module

As we discussed, edges are beneficial to image reconstruction tasks, and how to extract clean
and accurate text edges from noisy inscription images is crucial. As shown in Fig. 5, we build an
edge extraction module (EEM) to excavate edge information from low-level features (SEBout

1 ), which
provides rich edge detail information, and high-level semantic features (SEBout

5 ), which contain text
positions. The output is EEMout, which can be denoted as:

SEBout′
1 = Conv1×1

(
SEBout

1

)
SEBout′

5 = Conv1×1

(
SEBout

5

)
EEMout = [

Conv1×1

(
Conv3×3

(
Conv3×3

(
SEBout′

1 + (
SEBout′

5 ↑))))] (2)

where ↑ represents up-sampling.

Figure 5: EEM framework
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3.3 Asymmetric Feature Fusion

Due to the unknown noise level of inscription images, the feature of small noise patches is easy to
obtain in the shallower layer, but large noise patches are easy to extract in the deeper layer. To further
fully exploit captured shallow and deep features, we design an asymmetric feature fusion module
(AFF), inspired by Cho et al. [23], which integrates features at different levels into the original features
to enhance the information flow of different levels, refer to Fig. 6.

AFFout
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, SEBout
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3

)↑
,
(
SEBout

4

)↑
,
(
SEBout

5

)↑)
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SEBout
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)↓
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(
SEBout

2

)↓
,
(
SEBout
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(
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AFFout
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1
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,
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,
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4
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where AFFout
j represents the outputs of the j asymmetric feature fusion module. ↓, ↑ represent down-

sampling and up-sampling.

Figure 6: AFF framework

3.4 Edge-Guide Feature Module

Since the high-frequency edge features will gradually disappear with the depth of the network
increase, to fully utilize the edge information to reconstruct high-quality images, we design an edge-
guide feature module (EFM). The module combines the aggregated information obtained by the AFF
module and edge information to supplement the feature representation of structural semantics.

As shown in Fig. 7, given a feature SEBout
1 or multi-scale feature AFFout

j (j = 1, 2 . . . 4)and an edge
feature EEMout, take the input AFFout

j and EEMout as examples. The EEMout performs 1×1 convolution
and Sigmoid layer, which changes from 3 channels to 1 channel. Then, AFFout

j performs element-
wise multiplication with EEMout′ and element-wise addition with skip-connection. Finally, it applies
3 × 3 convolutions to obtain the initial feature fusion AFFout′

j . The output of the EFM module can be
described as:
EEMout′ = D ((σ (Conv1×1 (EEMout))))

AFFout′
j = Conv3×3

((
AFFout

j ⊗ EEMout′) ⊕ AFFout
j

)
EFMout

i = Conv1×1

(
σ

(
Conv1d

(
GAP

(
AFFout′

j

))) ⊗ AFFout′
j

) (4)

where D represents down-sampling. ⊗ and ⊕ denote element-wise product and element-wise addition,
respectively.
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Figure 7: EFM framework

3.5 Context Prediction Module

As shown in Fig. 8, we design a bottom-up context prediction module (CPM) to fuse EFMout
i

of each layer, the CPM module output at each stage is CPMout
j (j = 1, 2...4), and CPM1 outputs the

final prediction result CPMout
1 . The CPM module used similar ensemble blocks of the SEB module,

especially the [IN+ReLU] layer added to the deconvolution layer in the transpose convolution scale
ensemble block, and the output is EFMout′

i . The EFMout′
i performs a concatenation operation with the

output EFMout
i−1 of the previous EFM and then applies two 3 × 3 convolutions. We introduce an

attention module (CBAM) [24] after the 3 × 3 convolution to enhance the representation ability by
focusing on critical features and suppressing unnecessary information.

Figure 8: CPM framework

3.6 Dual-Domain U-Net Discriminator

3.6.1 Image Domain U-Net Discriminator

Inspired by [22], we introduce a U-Net architecture of the discriminator to improve the ability of
GAN networks to represent global and local differences. The discriminator consists of an encoder
module, a decoder module, and several skip connections attention modules. Encoder Dimg

enc focuses
on learning global structural information in the image domain. The decoder Dimg

dec is responsible for
capturing the difference in local information between real and fake samples.

3.6.2 Morphological Domain U-Net Discriminator

The noise may damage the font structure in the inscriptions. To ensure the complete semantics
of the font structure, we propose branch of the morphological domain to maintain the skeleton from
the inscription image reconstruction. Specifically, the denoised image first inputs the morphological
operation of skeleton extraction, i.e., IDSK = SK (IDN) ≈ SK (IC) = ICK , and then is input to the
morphological domain discriminator Dmog. Among them, Dmog and Dimg adopt the same network
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architecture. Likewise, the encoder Dmog of Dmog
enc captures global information, the decoder Dmog

dec captures
local information, SK represents the skeleton extraction operation, IDSK represents the denoised image
skeleton, and ICK represents the clean inscription image skeleton.

3.7 Loss Function

3.7.1 Generator Loss

The generator adopts compound loss, including content loss, perceptual loss, and adversarial loss,
with different perspectives to better constrain and encourage the generator, which produces better
realistic images. The detailed losses are as follows:

Adversarial Loss: We employ the Least Squares GAN [25] as discriminator loss. The total
adversarial loss can be expressed as:

Ladv = λim_do

[
EIDN

[
Dimg

enc (IDN) − 1
]2 + EIDN

[
Dimg

dec (IDN) − 1
]2

]
︸ ︷︷ ︸

image domain

+

λmo_do

[
EIDN

[
Dimg

enc (IDSK) − 1
]2 + EIDN

[
Dimg

dec (IDSK) − 1
]2

]
︸ ︷︷ ︸

morphological domain

(5)

where λim_do and λmo_do are the weights for the adversarial loss in the image and the morphological
domain, respectively. We set weights to 0.005 and 0.01.

Content Loss: The image reconstruction loss Limg, edge reconstruction loss Ledge, and skeleton
reconstruction loss Lsk constitute content loss Lcount, among Limg and Ledge introduce pixel loss, and
Lsk uses dice loss [26]. It can be formulated as:

Limg = E(IDN , IC)

(||IDN − IC||2
)

(6)

Ledge = E(IDE , ICE) (||IDE − ICE||1) (7)

Lsk = 1 − 2

∑
i IDSKi ICKi∑

i

(
IDSKi

)2 + ∑
i

(
ICKi

)2 (8)

Lcount = λimgLimg + λedgeLedge + λskLsk (9)

where λimg, λedge and λsk are the weights for Limg, Ledge and Lsk, we set weights to 1, 0.5 and 0.5, respectively.

Feature Loss: We also consider the feature-level loss Lfeat, employing the pre-trained model VGG19
[27] VGG (.) on the ImageNet dataset to extract IDN and IC features. Lfeat contains perceptual loss Lperc,
style loss Lstyle [28], and contrastive loss Lcr [29], as follows:

Lperc = E(IC ,IDN) [||VGG (IC) − VGG (IDN) ||1] (10)

Lstyle = E(IC ,IDN) [||γ (VGG (IC)) − γ (VGG (IDN)) ||1] (11)

Lcr = ||VGG (IC) − VGG (IDN) ||1

||VGG (IN) − VGG (IDN) ||1

(12)

Lfeat = βpercLperc + βstyleLstyle + βcrLcr (13)
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where γ (.) denotes the Gram matrix operation. βperc, βstyle, and βcr are the weights of Lperc, Lstyle, and
Lcr, respectively. We set weights to 0.01, 120 and 0.1. Finally, the total loss LG of the generator can be
expressed as follows:

LG = Ladv + Lcount + Lfeat (14)

3.7.2 Discriminator Loss

The discriminator loss LD, including discriminative loss LDimg and skeleton discriminative loss
LDmog , from the image and morphological branches, respectively. Based on the least-square GAN
background, Dimg and Dmog can be formulated as:

LDimg = EIC

[
Dimg

enc (IC) − 1
]2 + EIDN

[
Dimg

enc (IDN)
]2

︸ ︷︷ ︸
global adversarial

+ EIC

[
Dimg

dec (IC) − 1
]2 + EIDN

[
Dimg

dec (IDN)
]2

︸ ︷︷ ︸
local adversarial

(15)

LDmog = EIC

[
Dmog

enc (ICK) − 1
]2 + EIDSK

[
Dmog

enc (IDSK)
]2

︸ ︷︷ ︸
global adversarial

+ EIC
[Dmog

dec (ICK) − 1]2 + EIDSK
[Dmog

dec (IDSK)]2

︸ ︷︷ ︸
local adversarial

(16)

Therefore, the total loss for the discriminator is:

LD = LDimg + LDmog (17)

4 Experiments
4.1 Training Details

The proposed method of EDU-GAN is implemented by PyTorch in the PyCharm integrated
development environment and conducted on NVIDIA GeForce RTX 4070 with 12 GB GPU. During
training, the initial learning rates of the discriminators Dimg, Dmog and the generator EGG are 0.004,
0.004, and 0.002, respectively. The learning rates are from 200 iterations to begin decay, which is half
every 100 iterations. The number of iterations and the batch size Nb are 500 and 18, respectively. In
each iteration, we randomly crop noisy inscription images IN of 18 × 100 patches with size 64 × 64 in
the Ddata to train the network. In addition, the entire framework of EDU-GAN in Fig. 2 is updated
using the Adam optimizer.

4.1.1 Algorithm

Algorithm 1 details the EDU-GAN network implementation process. The network inputs the
noisy inscription image IN and the clean image IC, which is optimized and trained for 500 iterations,
and the network outputs the denoised image IDN.
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Algorithm 1: Pseudo-code of EDU-GAN method.

Input: Training data Ddata = {
INn , ICn

}N

n=1
, batch size Nb, number of modules i = {1, 2, . . . , 5} and

j = {1, 2, . . . , 4}, iter = 500.
Output: the final denoised inscription image IDN.

1. Randomly initialize the model parameter θ .
2. For m = 1 to iter, do
3. {IN, IC} ← Sample (Ddate, Nb).
4. SEBout

i ← SEBi (IN).
5. AFFout

j ← AFFj

(
SEBout

1 , SEBout
2 , SEBout

3 , SEBout
4 , SEBout

5

)
.

6. EEMout ← EEM
(
SEBout

1 , SEBout
5

)
.

7. EFMout
i ← EFMi

(
SEBout

1 or AFFout
j , EEMout

)
.

8. IDN ← CPMj

(
EFMout

i , EFMout
i−1

)
.

9. IDSK ← SK (IDN).
10. ICK ← SK (IC).
11. Update EGG with fixed Dimg, Dmog.
12. Update Dimg, with fixed EGG, Dmog.
13. Update Dmog, with fixed EGG, Dimg.
14. End for

4.2 Dataset Description

In our EDU-GAN, we require noisy Chinese characters images with stains or scratches to train
our network, but those kinds of public datasets are lacking. Therefore, we create synthetic inscription
and real-inscription datasets to evaluate the performance of the EDU-GAN network. Our synthetic
datasets are constructed by adding noise patches on widely used printed Chinese character images1

and handwritten dataset2. And the real-inscription dataset is collected from websites3.

4.2.1 Synthetic Inscription Datasets

Printed Chinese Character Datasets: We generate 41,305 images, including 11 fonts (such as
FangSong). Each font contains 3755 commonly used Chinese characters in GB2312. We use Random
Walk Modeling (RWM) and the Square Circle Noise Modeling method [9], adding noise to the printed
Chinese character images to create synthetic datasets, denoting as Dsyn and Dscm, respectively. We use
33,044 images for training and 8261 for testing.

Handwritten Chinese Character Dataset: HWDB1.1 is a handwritten Chinese character dataset
containing 1,176,000 images from 300 writers. We select 65,709 images written by 30 people, which are
preprocessing and adding noise by RWM methods to create synthetic dataset, denoted as Dhw. This
dataset uses 52,568 for training and 13,141 for testing.

4.2.2 Real-Inscription Dataset

Due to the lack of a real-inscription image dataset, we collect inscription images from different
dynasties. These images are cropped into 1356 images with 256 × 256 size and manually processed to

1https://www.foundertype.com (accessed on 10/05/2024)
2http://www.nlpr.ia.ac.cn/databases/handwriting/Download.html (accessed on 10/05/2024)
3https://www.9610.com/index.htm (accessed on 10/05/2024)

https://www.foundertype.com
http://www.nlpr.ia.ac.cn/databases/handwriting/Download.html
https://www.9610.com/index.htm
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produce corresponding clean inscription images. We build the real-inscription images dataset4, denoted
as Dreal, including 1,085 inscription images for training and 271 for testing. This dataset provides an
effective benchmark for studying inscription images denoising and is available within the article.

4.3 Evaluation Metrics

There are two commonly used metrics to evaluate the performance in image reconstruction, i.e.,
peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). However, there is no quantitative
index for font structure in inscription denoising, so we propose to evaluate the similarity between
skeletons, i.e., SGap.

The main idea of SGap is that the skeleton of the denoised and clean images is the same or similar.
Specifically, given a noisy image IN, input it into the trained network to get IDN, and then through the
morphological skeleton extraction operation to obtain IDSK , which can be expressed as:

SGap = SSIM
(
SK

(
IDN

)) − SSIM
(
SK

(
IN

))
(18)

Obviously, the larger the value of the first term on the right side of the equation, the IDSK =
SK (IDN) and ICK are closer, and the larger the SGap.

4.4 Experiment Results and Analysis

We compare the performance of the EDU-GAN network with other classic image restoration
methods, including calligraphy image denoising CIDGan [9], CharFormer [16], and RCRN [17],
considering edge priors denoising methods EdCNN [30] and Mlefng [4] and the well-performing image
restoration methods DnCNN [31], Uformer [32], VRGNet [19] and the established and representative
methods CBDNet [33] and NBNet [34] for natural image denoising. To fairly evaluate the performance
of different methods by setting and providing training environment and data to be the same.

4.4.1 Comparison with Other Methods

Results on Synthetic Datasets: In Table 2, we summarize the performance of our EDU-GAN and
other methods on the Dsyn,Dscm and Dhw. Our EDU-GAN achieves better performance than other
methods. For intuitive demonstration, we present the visualization of denoised images on the Dscm

dataset. As shown in Fig. 9, all methods can remove noise patches, but these methods generally
have artifacts and severe edge distortion (marked by red arrows). Compared with other methods, the
proposed method can more effectively preserve and restore the edge details of Chinese characters in
the image, indicating that our network is more suitable for inscription image denoising. Moreover,
we have visualized the output of each part of the network. Taking the EDU-GAN network trained
on Dsyn as an example, the trained model can be directly used for noisy inscription images in the test
dataset and visualize the output of the network component, as shown in Fig. 10. The edge extraction
module (EEM) can predict the fine edges from the noisy image in the test dataset, the encoder Dimg

enc of
the discriminator Dimg outputs the global score, and the decoder Dimg

dec outputs the confidence map and
focuses on the text area. Similarly, the encoder Dmog

enc of the discriminator Dmog outputs the global score,
and the decoder Dmog

dec focuses on font structure.

4https://github.com/liuyunjing0306/EDU-GAN (accessed on 10/05/2024)

https://github.com/liuyunjing0306/EDU-GAN
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Table 2: Performance comparisons among different methods on the synthetic and real-inscription
datasets

Methods Dscm Dsyn Dhw Dreal

PSNR SSIM SGap PSNR SSIM SGap PSNR SSIM SGap PSNR SSIM SGap

Raw image 9.167 0.3528 – 9.410 0.3903 – 9.156 0.3598 – 16.701 0.7472 –
DnCNN 36.680 0.9822 0.5978 32.774 0.9554 0.5500 26.036 0.9773 0.5839 23.860 0.8973 0.1720
CBDNet 35.011 0.9874 0.5905 32.991 0.9104 0.5464 26.353 0.9598 0.5852 23.886 0.9335 0.1714
NBNet 35.068 0.9914 0.5945 32.380 0.9553 0.5474 25.847 0.9449 0.5867 23.379 0.9525 0.1721
Uformer 27.140 0.9698 0.5650 19.485 0.8782 0.4696 20.689 0.9451 0.5542 21.372 0.9284 0.1612
VRGNet 33.422 0.9835 0.5945 30.279 0.8939 0.5360 26.184 0.8574 0.5845 21.415 0.8499 0.1511
EdCNN 32.498 0.9845 0.5856 32.168 0.9523 0.5422 26.261 0.9757 0.5831 22.745 0.9251 0.1596
Mlefng 32.871 0.9870 0.5922 29.009 0.9086 0.5269 24.179 0.9559 0.5758 21.422 0.9132 0.1512
CIDGan 35.300 0.9908 0.5960 32.345 0.9567 0.5441 25.433 0.9793 0.5841 21.943 0.9341 0.1610
CharFormer 33.847 0.9839 0.5907 30.502 0.9621 0.5468 26.135 0.9824 0.5862 23.404 0.9411 0.1692
RCRN 33.994 0.9866 0.5912 29.963 0.9392 0.5323 24.624 0.9737 0.5783 19.314 0.8921 0.1268
EDU-GAN 37.880 0.9916 0.6002 34.260 0.9623 0.5502 26.386 0.9812 0.5874 24.204 0.9563 0.1723

Figure 9: Visualization of denoising results on the Dscm
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Figure 10: Visualization of different parts of the EDU-GAN trained on the Dsyn. Note that blue and
red indicate lower and higher confidence scores, respectively

Results on Real-Inscription Dataset: As shown in Table 2, we also compare EDU-GAN with
other methods on the Dreal dataset. Compared with synthetic datasets, the real-inscription images are
more complex degradation and result in removing noise difficulty. Our EDU-GAN outperforms all
other methods with 24.204 dB PSNR and 0.9563 SSIM on Dreal. We also compare EDU-GAN with
other methods on the quality of denoising results, provided in Fig. 11. We can observe that DnCNN,
CBDNet, VRGNet, EdCNN, Mlefng, and RCRN cannot successfully remove dense noise patches and
suffer from the gray-mottled artifacts (as shown in the red marked area). In addition, NBNet has a
more serious phenomenon of destroying the font component structure. CIDGan, CharFormer and
Uformer achieve the restoration with higher quality. However, they still cannot thoroughly remove
the noise in some regions (as shown in the green rectangles). Our method, EDU-GAN, recovers the
best image quality, and the exact font integrity is closest to the ground truth image.



CMC, 2024, vol.80, no.1 1647

Figure 11: Visualization of real-inscription denoising results

4.4.2 Ablative Study

Components Analysis: Table 3 presents the quantitative results of the ablation studies. To verify
each design in EDU-GAN is reasonable. First, benefiting from the discriminative architecture that
provides global and local information for the generator, EDU-GAN with two U-Net discriminators
achieves the highest PSNR and SSIM than EDU-GAN-Dimg and EDU-GAN-Dimg-Dmog. Specifically,
the PSNR, SSIM, and SGap of EDU-GAN with dual domains are 1.095, 0.0137, and 0.0003 higher
than those without dual domains (EDU-GAN-Dimg-Dmog), respectively. Second, ablation experiments
of each component in the generator. Compared with EDU-GAN-Dimg-Dmog, EDU-GAN-Dimg-Dmog-
AFF-EEM-EFM with PSNR, SSIM, and SGap reduced by 4.481, 0.0077, and 0.0009, respectively. It
denotes that the generator (EGG) with AFF, EEM, and EFM modules can effectively retain the key
features of the text, making the generator more accurate in removing noise. In addition, the perfor-
mance with the attention mechanism increased by 0.501, 0.048, and 0.0273, respectively, compared to
the performance without the attention mechanism, indicating that the attention mechanism can focus
on critical features, thereby enhancing the network’s denoising performance.

Table 3: Ablation study results on different modules

Methods PSNR SSIM SGap

EDU-GAN 34.260 0.9623 0.5502
EDU-GAN-Dimg 34.162 0.9598 0.5497
EDU-GAN-Dimg-Dmog 33.165 0.9486 0.5499
EDU-GAN-Dimg-Dmog-AFF 32.807 0.9441 0.5495
EDU-GAN-Dimg-Dmog-EEM-EFM 31.474 0.9315 0.5459
EDU-GAN-Dimg-Dmog-AFF-EEM-EFM 28.684 0.9409 0.5490
EDU-GAN-Dimg-Dmog-AFF-EEM-EFM- CBAM 28.183 0.8929 0.5217
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Architectures of Discriminator: Since the discriminator is crucial and cannot be ignored in the
GAN network, it is worth exploring the highlights of the U-Net structure discriminator compared
with other classic discriminators, such as the patch discriminator [35], global discriminator [36], pixel
discriminator [35]. For fair comparisons, using the same overall pipeline, referred to as Fig. 2, the
generator uses the EGG network, and the discriminator applies the above three classic discriminators,
respectively. Table 4 reports the assembly of global and local information in the discriminator of the
U-Net structure achieved the best PSNR and SSIM scores, which denotes our U-Net discriminator
outperforms the other three mentioned classical discriminators for inscription image denoising.
Because the classic discriminator can only focus on local or global information, it cannot better
represent the differences between images. Unlike classical discriminators, the U-Net constructed
discriminator can simultaneously capture global and local features in images, thereby guiding the
generator towards restoring better images and improving the denoising performance of the network.

Table 4: Ablation study results on different discriminators

Methods PSNR SSIM SGap

Patch 32.998 0.9107 0.5413
Global 31.827 0.9549 0.5471
Pixel 32.556 0.9426 0.5477
U-Net 34.260 0.9623 0.5502

Effect of Patch Size: The selection of patch size is also important during the training process,
so we randomly cut the training data set into 64 × 64, 128 × 128, and 256 × 256 pixels to train our
model. Table 5 shows that small patches can achieve better denoising performance, which is likely
because smaller patches can better capture local contextual information. Additionally, larger patches
increase computational complexity and may result in insufficient training samples, ultimately leading
to ineffective model training. Therefore, smaller patches can attain better denoising performance. To
be a more visual representation, we provide the denoising results of different patch sizes in Fig. 12.
As shown, the image quality restored by smaller patches has the highest quality, and the recovered
characters are closest to the ground truth image.

Table 5 : Ablation study results on different patch sizes

Patch sizes PSNR SSIM SGap

64 × 64 34.260 0.9623 0.5502
128 × 128 31.234 0.9569 0.5451
256 × 256 30.171 0.9213 0.5267
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Figure 12: Visualization of denoising results at patch sizes

Effect of Loss Functions: The loss of our generator has three parts, which encourages the generator
to produce more high-precision denoised images. We compare the impact of denoising with/without
these losses, as shown in Table 6. These results on Dsyn indicate that the loss function with capturing
feature-level information loss (Lfeat) and the skeleton loss (Lsk) function obtains the best performance.

Table 6: Ablation study results on loss functions

Methods LG LG − Lcr LG − Lcr − Lperc LG − Lcr − Lperc − Lstyle︸ ︷︷ ︸
Lfeat

LG − Lfeat − Lsk

PSNR 34.260 32.948 32.459 30.171 29.285
SSIM 0.9623 0.9415 0.9589 0.9380 0.9340
SGap 0.5502 0.5436 0.5475 0.5286 0.5296

Network Complexity Analysis: Table 7 provides the model parameters, training time, and inference
time of different methods. From Table 7, it shows that more complex models require longer training
times. Although our model parameters and training time are not advantageous, it achieves the best
denoising performance. In particular, our network application scenarios do not require real-time, so
we are more tolerant of network training time and inference time. For limited devices, our model needs
to be further lightweight.

Table 7: Network complexity analysis. Note: Model parameters are in units of M, and time is in units
of s

Methods Parameters Training time Inference time

DnCNN 0.5583 7792.9215 0.0054
CBDNet 4.3654 10,459.6548 0.0065

(Continued)
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Table 7 (continued)

Methods Parameters Training time Inference time

NBNet 10.4552 16,030.6980 0.0332
Uformer 556.4987 24,252.6255 0.1807
VRGNet 6.3610 12,382.5443 0.0150
EdCNN 0.0820 3788.5015 0.0029
Mlefng 6.8599 14,118.4067 0.0646
CIDGan 0.9426 8978.4516 0.0161
CharFormer 13.2260 20,609.8823 0.0745
RCRN 11.0130 16,596.9125 0.0087
EDU-GAN 170.8706 23,253.9459 0.0305

Generalization Analysis: Table 8 shows that different methods are trained on three independent
synthetic datasets and then directly used for testing on real-inscription images to verify the robustness
ability of the network. Our EDU-GAN achieves better robustness performance than other methods
from Table 8. Taking the EDU-GAN network trained on Dhw as an example, our method improves
PSNR and SSIM by 3.294 and 0.1071, respectively, compared to the lowest values. Specifically, the
ability to remove noise from real- inscriptions is more significant on Dsyn and Dhw, which may be related
to the amount of data and the method of adding noise when creating the synthetic dataset.

Table 8: The network generalization analysis. Different methods are trained on a synthetic dataset
(Dscm/Dsyn/Dhw) and tested on the same real inscription images (Dreal)

Methods Dscm Dsyn Dhw

PSNR SSIM SGap PSNR SSIM SGap PSNR SSIM SGap

DnCNN 17.680 0.7558 0.1169 18.310 0.7693 0.1149 20.701 0.8145 0.1537
CBDNet 17.867 0.7590 0.1151 17.823 0.7490 0.1154 20.699 0.8144 0.1539
NBNet 18.593 0.7790 0.1226 18.457 0.7778 0.1202 21.606 0.8391 0.1636
Uformer 16.405 0.7493 0.1180 18.228 0.8073 0.1217 18.560 0.8895 0.1402
VRGNet 16.327 0.7735 0.1204 18.094 0.7900 0.1214 20.995 0.8305 0.1557
EdCNN 18.368 0.7993 0.1176 18.385 0.7843 0.1233 20.945 0.9142 0.1517
Mlefng 17.948 0.7520 0.1178 18.076 0.7916 0.1191 20.684 0.9143 0.1570
CIDGan 16.861 0.7801 0.1150 16.898 0.7639 0.1239 20.375 0.9183 0.1557
CharFormer 17.222 0.7596 0.1161 17.626 0.7691 0.1245 21.589 0.9298 0.1633
RCRN 16.295 0.7479 0.1140 17.472 0.7483 0.1024 20.374 0.9204 0.1520
EDU-GAN 18.838 0.7882 0.1185 18.491 0.7923 0.1246 21.854 0.9215 0.1634

5 Discussion and Conclusion

In the paper, we propose EDU-GAN, a novel framework to remove noise from inscription
images. In the generator, the scale-ensemble block (SEB) can model the multi-scale features and
improve the ability to detect noise patterns with unknown and complexity. The asymmetric feature
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fusion module (AFF) is beneficial for obtaining rich multi-level features by effectively aggregating the
features of multiple SEB modules. The edge-guide feature module (EFM) is responsible for effectively
integrating edge information from the edge extraction module (EEM) and context information to
enhance the representation ability of edge information in the deep network. The bottom-up content
prediction module (CPM) fuses the features between layers and outputs the prediction results. In
the discriminator, we introduce U-Net architecture, providing global and local information for the
generator and further applying it to the morphological domain, which enhances the skeleton features
and structural integrity of fonts. We comprehensively evaluate the performance of EDU-GAN on
synthetic and real-inscription datasets, which demonstrates superior performance gains over other
methods.

Although our network can obtain high evaluation indicators, it still has some limitations. Firstly,
the successful application of our network is crucial to multiple downstream tasks such as font style
recognition and font restoration. However, the size of our network model is relatively large, such as
the SEB module. Existing computing resources can afford the proposed network, but our model needs
to be further lightweight for devices with limited memory. Secondly, our network is also applicable to
non-experts. When the network is trained, the noisy inscription image is input into the network, and
the network outputs the denoised image. However, an intuitive user interface may be easier to operate
for non-experts, which is a part that needs improvement for future deployment and implementation.

In conclusion, our model performs well in denoising inscription images and has good generaliza-
tion ability, but the model size is large and needs to be further lightweight in the future.
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