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ABSTRACT

Rail fasteners are a crucial component of the railway transportation safety system. These fasteners, distinguished
by their high length-to-width ratio, frequently encounter elevated failure rates, necessitating manual inspection
and maintenance. Manual inspection not only consumes time but also poses the risk of potential oversights. With
the advancement of deep learning technology in rail fasteners, challenges such as the complex background of
rail fasteners and the similarity in their states are addressed. We have proposed an efficient and high-precision
rail fastener detection algorithm, named YOLO-O2E (you only look once-O2E). Firstly, we propose the EFOV
(Enhanced Field of View) structure, aiming to adjust the effective receptive field size of convolutional kernels
to enhance insensitivity to small spatial variations. Additionally, The OD_MP (ODConv and MP_2) and EMA
(Efficient Multi-Scale Attention) modules mentioned in the algorithm can acquire a wider spectrum of contextual
information, enhancing the model’s ability to recognize and locate objectives. Additionally, we collected and
prepared the GKA dataset, sourced from real train tracks. Through testing on the GKA dataset and the publicly
available NUE-DET dataset, our method outperforms general-purpose object detection algorithms. On the GKA
dataset, our model achieved a mAP 0.5 value of 97.6% and a mAP 0.5:0.95 value of 83.9%, demonstrating
excellent inference speed. YOLO-O2E is an algorithm for detecting anomalies in railway fasteners that is applicable
in practical industrial settings, addressing the industry gap in rail fastener detection.
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1 Introduction

The Belt and Road Initiative has made the development of railway safety an imperative, involv-
ing the assurance of safe, reliable, and sustainable railway transportation. This holds significant
importance in fostering the development of countries and regions along the routes. Railway is also
an important means of transportation in people’s lives, and ensuring railway safety is crucial to
safeguarding the lives of passengers. As a means of efficient, rapid and mass transportation, railways
play a crucial role in economic development [1]. Track fracture and abnormal track fasteners are the
two most common causes, which have affected the safety of railway line operation [2].
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Rail fasteners are crucial to railway infrastructure, securing rails to sleepers to ensure stability and
prevent movement. However, prolonged exposure to adverse weather and friction from train wheels
can lead to fastener fractures and anomalies [3]. Therefore, detecting the health status of rail fasteners
is indispensable. At present, the detection of railway track lines in our country is mainly assisted
by manual inspection or the use of track detection car. However, there are about 6700 fastenings
per kilometer of railway transportation in our country. The efficiency of manual inspection is too
low, and it is easy to be affected by subjective judgment. However, the track detection car has some
shortcomings such as high manufacturing cost and long detection cycle [4]. Hence, developing a rail
line detection system leveraging advanced technologies like deep learning is of paramount importance.
This endeavor aims to address the deficiencies of current methods, streamline detection processes,
enhance the precision in identifying fastener anomalies, and bolster the safety and reliability of railway
transportation [5].

Over the past decade, researchers at home and abroad have proposed the use of digital technology
and various sensors to detect anomalies in orbit. For example, detection based on vibration signal [6,7],
ultrasonic detection [8], acoustic analysis detection [9]. These methods require expensive equipment
and require detailed track geometry parameters to help locate the position and state of the fastener,
so this method is not popular due to its high cost. With the development of machine learning, many
scholars strive to explore its application in the field of track fastener detection. Liu et al. [10] extracted
improved edge gradient characteristics and macro-texture characteristics of fasteners, and used image
fusion features and Bayesian compressed sensing model to realize automatic recognition of anomalies
of track fasteners. Ma et al. [11] proposed a method combining improved Canny edge detection and
median filter, and used the curve feature projection template to match the edge profile of fasteners to
achieve rapid detection of missing fasteners. Gibert et al. [12,13] proposed a method based on extreme
value theory (EVT) and Bayesian framework to show that detection performance can be enhanced
across various detectors, and the accuracy of this method in railway track anomaly detection has
been improved. In order to address the issue of insufficient abnormal fastener samples, Li et al. [14]
generated virtual negative samples of simulated broken fasteners based on normal fastener images.
They extracted image features using the HOG feature calculation method and ultimately achieved
abnormal fastener detection through a trained SVM classifier. Although the above machine learning
detection method has enhanced the detection precision to a certain degree, it still has poor robustness,
easy to be affected by the environment, many constraints, a large amount of computation, and low
recognition speed due to complex image processing and feature extraction.

In this paper, we attempt to choose the state-of-the-art object detection model YOLOv7 for
anomaly detection and apply it to the detection of rail fastening anomalies. Fig. 1 illustrates the entire
process of rail fastening anomaly detection. The visual acquisition system introduces mileage-related
functionality, allowing users to set and track the mileage of railway vehicles or engineering projects,
real-time monitoring of equipment operating status and key milestones achieved, and collection of
fastening information. Subsequently, the collected data files in both DAT and XML formats are
visualized, and the images are preprocessed. The trained model is then utilized to locate and classify
various anomaly categories in the fastening images. In Fig. 1, the rightmost section represents the rail
fastening pattern categories predicted by our model, comprising one normal category and four fault
mode categories. Finally, the detected fastening anomalies provide maintenance references for railway
maintenance personnel.

Specifically, the contributions outlined in this paper can be summarized in the following four
aspects:
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(1) A platform has been established for gathering datasets on rail fastener anomalies, designated as
GKA, which encompasses a standardized category of railway fastening datasets. Furthermore,
it addresses certain fastening anomaly categories omitted in existing literature, encompassing
diverse railway fastening categories across various conditions. Precise manual annotations have
been provided through discussions with railway technicians and maintenance personnel.

(2) We propose a Multi-branch Parallel and Enhanced Field of View (EFOV) module, which
operates in parallel branches within the EFOV. By extracting features at different scales
and utilizing dilated convolutions in the module, the receptive field can be enlarged without
increasing network depth and computational load.

(3) In real-world scenarios, rail fastener anomaly detection can be affected by changes in lighting
conditions, and the images may experience blurring as the equipment moves. To address this,
we propose OD_MP, which incorporates Orthogonal Dynamic Convolution (ODConv) and
constructs a parallel four-dimensional attention mechanism. This mechanism refines local fine-
grained features in the image, facilitating the extraction of salient features.

(4) Introducing the Efficient Multi-Scale Attention module (EMA) based on cross-space learning,
we leverage a cross-space learning approach and design a multi-scale parallel sub-network to
establish short and long dependencies. This enhancement aims to improve multi-dimensional
perception and multi-scale feature extraction capabilities.
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Figure 1: The overall process of rail fastener anomaly detection

2 Related Work
2.1 Object Detection

In the contemporary realm of computer vision, fueled by the rapid growth of deep learning and
ongoing advancements in computing resources, object detection evaluation metrics have significantly
improved. This progress offers robust technical backing for industrial anomaly detection applications.
Object detection networks can be classified into two-stage and one-stage [15]. Two-stage object
detection networks typically consist of two main stages: The Region Proposal Network (RPN) and
the stage of target classification and regression. In contrast, one-stage networks directly complete
object detection in a single forward pass without generating candidate regions. For instance, two-stage
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detection models are more inclined to incorporate R-CNN networks [16–18]. Subsequently, anchor-
free detection methods emerged, such as ATSS [19], FSAF [20], CornerNet [21], and others. Models
that have appeared in the development history of YOLO, such as [22–25], also dominate the realm of
one-stage models. These networks greatly influenced object detection development. Table 1 presents
the results from different detectors on the MS-COCO [26] dataset and contrasts their attributes. The
table highlights the notably superior performance of one-stage models.

Table 1: Comparing experimental results from different detectors on the MS-COCO validation dataset

Methods Backbone APval

Faster R-CNN [16] ResNet-101-FPN 39.8
Cascade R-CNN [17] ResNet-101-FPN 42.8
Sparse R-CNN [18] ResNet-101-FPN 44.2
RetinaNet [27] ResNet-101-FPN 39.1
ATSS [19] ResNet-101-FPN 43.6
GFL [28] ResNet-101-FPN 45.0
FSAF [20] ResNet-101-FPN 42.8
YOLOv4-CSP [22] CSPDarknet-PAFPN 46.2
YOLOv5-L [23] CSPDarknet-PAFPN 49.0
YOLOvX-L [29] Darknet-PAFPN 49.7
YOLOv7-L [25] Yolov7Backbone-PAFPN 51.2

The YOLO series has seen rapid development since YOLOv3. Initially, YOLOv4 and YOLOv5
emerged as successors to YOLOv3, all developed based on the Darknet framework. YOLOv4
employs the CSPDarknet53 [30] backbone, enhancing the expressive power of the backbone network.
Additionally, the model’s Neck section utilizes PANet [31] for feature fusion, enhancing the top-down
pathway and facilitating the propagation of low-level spatial information to the top. It utilizes three
detection heads to predict targets at multiple scales. YOLOv5 shares a similar overall framework with
YOLOv4, but differs in the backbone part, incorporating the Focus structure. Both models adopt
an Anchor-Based approach to extract target boxes. After YOLOv5, there have been more iterative
versions, such as YOLOX and YOLOv7. YOLOX introduces the anchor-free approach into the YOLO
series, and after replacing the previous Coupled head with Decoupled Head, the model’s expressive
power is further improved. In 2022, the team led by Alexey Bochkovskiy introduced the forefront
YOLOv7 for object detection. This anchor-based algorithm is characterized by its lightweight and
high-speed features, resulting in improved performance. Consequently, it is well-suited for industrial
anomaly detection.

2.2 Rail Fastening Detection

The rapid development of target detection has propelled advancements in railway track detection
technology, with many deep learning methods being applied to the abnormal detection of railway track
fasteners. This field has shifted from traditional visual methods to deep learning approaches, leading
to the emergence of representative models for rail fastening anomaly detection [32]. Wei et al. [1]
introduced an innovative and intelligent method using image processing technology and deep learning
network to realize automatic detection of fastener anomalies on the railway track bed, thus signifi-
cantly improving railway safety. Faster R-CNN [16] is used to detect fastener anomalies to improve
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the detection speed and efficiency. However, Faster R-CNN, as a two-stage detection model based on
anchor frames, has complex structure and slow positioning speed, rendering it unsuitable for meeting
real-time requirements. Aydin et al. [33] proposed to combine the features of MobileNetV2 [34] and
SqueezeNet [35] to achieve a compromise between computational efficiency and accuracy. However,
this method may still have some difficulties in detecting the noise, low contrast and uneven density
of the track surface. Wei et al. [4] introduced an improved YOLOv3 [36] model TLMDDNet, and
used DenseNet [37] to optimize the feature extraction of the backbone in TLMDDNet model. While
accuracy has been appropriately improved, there is still potential for enhancement in both accuracy
and speed. This study can be considered the first application of the YOLO series algorithm in the field
of anomaly recognition of track fasteners.

The YOLO series models have gradually gained traction and innovation in computer vision,
but have been scarcely seen in the field of railway fastening components. Therefore, we conducted
a comprehensive comparison of the evaluation metrics of the YOLO series and selected YOLOv7
as the most suitable model for improvement. Addressing the characteristics and challenges of the
GKA dataset, we proposed YOLO-O2E. It can be effortlessly integrated into track inspection vehicle
systems for real-time object detection, surpassing cutting-edge models in identifying anomalies in rail
fastenings.

3 Methods
3.1 Outline of the YOLO-O2E

We use YOLOv7 as the base model, which is an advanced one-stage deep learning detector,
achieving a good balance of accuracy and speed. To enhance the practical performance of YOLOv7
in rail fastening anomaly detection, three improvements to YOLOv7 are introduced: EFOV Block,
OD_MP, and EMA. Based on these enhancements, we propose YOLO-O2E, and its overall structure
is depicted in Fig. 2.

YOLO-O2E consists of three main components: Backbone, Neck, and Head. The feature extrac-
tion stage of the backbone comprises four CBS, one ELAN Block, three MP-1, and three EFOV
Blocks. In the backbone structure, we introduce a Multi-branch Parallel Enhanced Field of View
module (EFOV) to enhance the performance of feature extraction. The area between the backbone and
the prediction is where the improved OD_MP is integrated into the feature pyramid fusion stage. After
three ELAN Block layers, EMA attention is merged, aiming to enhance various features to enhance
robustness and learning performance of the model. Ultimately, various-scale features produced by
the Neck structure are inputted into the original head detection layer for regression and classification
procedures.

3.2 Multi-Branch Parallel and Enhanced Field of View Module (EFOV)

In the category of rail fastening component anomalies, regions with lower anomaly severity
occupy fewer pixels, resulting in fewer extractable features and lower detection accuracy. However,
the information carried by feature points near the target center is crucial for the detection results.
For feature maps, each neuron captures a different receptive field area, and there is overlap between
receptive field areas. Moreover, elements closer to the center are scanned more frequently, resulting in
more overlap of receptive fields. As the depth of convolutional neural networks increases, the receptive
fields on neurons become larger, meaning that neurons carry more information. At the feature
extraction network of the Backbone, we introduce an improved Multi-branch Parallel Enhanced
Field of View module (EFOV). This module employs convolutional kernels of different sizes to
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capture features from the feature map, further improving the network’s ability to fuse features. The
EFOV module serves to enlarge the receptive field, concentrating more information about fastening
component anomalies in the center of the receptive field, allowing the features of fastening component
anomalies to be better refined by the network. This allows for better categorization and differentiation
of defective rail fastenings with similar features.
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Figure 2: The structure diagram of YOLO-O2E we designed, where EFOV Block, OD_MP and EMA
are detailed in the “Multi-branch Parallel and Enhanced Field of View”, “OD_MP” and “EMA
Attention Mechanism” module, respectively

The proposed EFOV, inspired by the Receptive Field Block (RFB) [38] in Fig. 3, simulates
the receptive field of human vision. It utilizes a multi-branch structure and introduces dilated
convolutions. Different scales of conventional and dilated convolutions are applied in the multi-branch
structure to enlarge the effective receptive field area of the feature map, enhancing feature resolution
capability. As shown in Fig. 4, the designed EFOV structure starts by reducing the number of
channels using a 1 × 1 convolution. The three middle branches of the original structure undergo three
convolutional layers with kernel sizes of 1, 3, and 5, respectively. We modify the 5 × 5 convolutional
kernel in the branch with a rate of 5 to two stacked 3 × 3 convolutions, simulating perception fields
at different scales and reducing the parameter count. The tail end employs dilated convolutions to
replicate the correlation between receptive field size and eccentricity observed within the human visual
system. Different dilation factors are employed to simulate this relationship. By simulating the human
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eye’s sensitivity to the central region, we adjust the effective receptive field size of the convolutional
kernel to improve insensitivity to small spatial changes. In Fig. 4, the EFOV structure’s upper part
demonstrates the expansion of the receptive field of feature maps without losing image information,
where zero values are inserted into the middle of the convolution kernel. Fig. 4a is a common 3 × 3
convolution. As shown in Fig. 4b,c, the 5 × 5 zero convolution is essentially a 3 × 3 convolution with
the addition of 2 zero values in the middle. Similarly, the 7 × 7 zero convolution is essentially a 3 × 3
convolution with the addition of 4 zero values in the middle. This enlarges the perceptual range, but
during actual training, the parameters are the same as those in a 3 × 3 convolution. A residual branch is
added on the far left to concatenate the input features directly with the receptive fields obtained at three
eccentricities, ensuring comprehensive fusion and preventing feature loss or distortion, thus enhancing
network performance and convergence speed. On the far right is an efficient aggregation network
structure that fuses features from different hierarchies, effectively utilizing semantic information at
different levels to improve the model’s capacity for feature representation. Finally, the branches are
concatenated and the quantity of channels is modified using a 1 × 1 convolution.

1*1 Conv 3*3 Conv
r=1

3*3 Conv 3*3 Conv
r=3

5*5 Conv 3*3 Conv
r=5

Figure 3: Schematic diagram of feature extraction of perceptual field module
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3.3 OD_MP Module

In railway fastening component images, well-lit and clear normal fastening components typically
dominate the feature learning process compared to blurry images and components with low lighting
conditions. This makes it difficult to detect some low-quality fastening components.

In most cases, images typically boast high resolution, allowing the model to effectively learn
features by skipping redundant pixel information when capturing visual features of targets in the
feature pyramid. However, in rail fastening component anomaly detection, the assumption of skipping
redundant information is no longer valid due to the characteristics of blurry images and dim lighting,
leading to the loss of fine-grained information and inadequate feature learning outcomes. To address
this issue, we introduce the OD_MP module, which can downsample while preserving learnable
information within the feature maps.

We introduce an Orthogonal Dynamic Convolution (ODConv) proposed by Li et al. [39], as an
embedded design that can replace many regular convolutions in CNN architectures. It enhances the
ability of dynamic convolution to capture rich contextual clues in terms of spatial dimensions, input
channel numbers, and output channel numbers for each convolutional kernel. Compared to existing
dynamic convolution designs, it achieves a more optimal balance model accuracy and efficiency. In
ODConv, as shown in Fig. 5, (a) allocates varying attention values αsi to the convolutional parameters
at the K ∗ K spatial positions for the convolution kernel Wi; (b) allocates varying attention values αci

to handle convolution kernels for different input channels; (c) allocates varying attention values αfi to
handle convolution kernels for different output channels, and (d) assigns different attention values αwi

to handle n overall convolutional kernels. According to Eq. (1), ODConv can be defined as:

Y =
(

n∑
i=1

αwi � αci � αfi � αsi � Wi

)
∗ X (1)

In the formula, X embodies input features, and Y embodies output features. αwi ∈ R represents
the attention vector of the convolutional kernel Wi, αsi ∈ Rk×k, αci ∈ RCin, αfi ∈ RCout represent the
attention vectors along the spatial dimension of the kernel space, the input channel dimension, and
the output channel dimension of the convolutional kernel Wi, respectively. � denotes element-wise
multiplication of attention vectors along different dimensions of the convolutional kernel Wi, and ∗
represents convolution operation.
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Figure 5: Progressive fusion of four attention mechanisms with convolutional kernels in ODConv
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In the Neck, the MP-2 module has two branches, as shown in Fig. 6a, with the purpose of
downsampling. The first branch undergoes downsampling through a max-pooling operation, followed
by a 1 × 1 convolution to modify the channel quantity. The second branch performs channel
adjustment with a 1 × 1 convolution, followed by downsampling using a 3 × 3 convolution with a
stride of 2. Finally, the results of the first and second branches are added together to achieve super
downsampling. In Fig. 6b, the ODConv module replaces the normal 1 × 1 convolution in the bottom
right part of the MP-2 module. Utilizing the multidimensional attention mechanism of ODConv,
attention is learned across multiple dimensions of the convolutional kernel space, allowing the model
to capture a broader context and enhance expressive power. ODConv is also employed to replace
the normal 3 × 3 convolution in the MP-2 module, further diminishing the model’s computational
complexity and mitigating memory access burden. This improved module is referred to as OD_MP,
as illustrated in Fig. 6c. By integrating this module, we can improve the ability to extract features for
dark and low-quality fastening components, further improving the model’s detection accuracy.

(a) (b) (c)

Figure 6: The composition of OD_MP (ODConv + MP-2) module in the Neck network: (a) The
composition diagram of the MP-2 module, (b) the architectural diagram of the lightweight ODConv
module, and (c) the architectural diagram of the OD_MP module designed in this work,which is the
integration of MP-2 and ODConv modules

3.4 Efficient Multiscale Attention Mechanism (EMA)

Attention mechanisms play a pivotal role in the realm of computer vision by capturing locally
important information, enabling models to focus on relevant features for target detection. EMA
(Efficient Multiscale Attention) [40] is an efficient multiscale attention mechanism that reshapes
certain channels into the batch dimension, preventing channel reduction. When fastening components
appear blurred or indistinguishable due to lighting conditions, there is a high level of uncertainty
in target boundaries, which can interfere with localization performance. By adding EMA attention
before the number of channels in the final outputs P3, P4, and P5, the center of the target becomes
more certain, facilitating the distinction between foreground and background. The EMA mechanism
structure is illustrated in Fig. 7.

In the diagram, for the input feature X ∈ RC×H×W , EMA divides it into G sub-features based on
the number of channels to learn different semantic information. The input feature X is represented as
X = [X 0, X 1, . . . , X G−1], where X i ∈ RC//G×H×W . Without sacrificing generality, let G << C, ensuring
that the acquired attention weights are utilized to improve the portrayal of sub-features across all
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attention clusters. Next, EMA employs three pathways to retrieve attention weights for grouped feature
maps, where 1 × 1 convolutions are present in the first two pathways, and a 3 × 3 convolution is
used in the third pathway. In the 1 × 1 branch, two global average pooling operations are applied to
encode channels in the X and Y spatial directions. The encoded features from both operations are
concatenated without dimension reduction in the subsequent 1 × 1 convolution. The result of the
1 × 1 convolution is then split into two vectors, and two Sigmoid non-linear functions are used to
represent the 2D binary distribution of the linear convolution. In the 3 × 3 convolution branch, multi-
scale feature descriptors are captured. Finally, channel attention is achieved through multiplication to
facilitate cross-channel interactions. Utilizing 2D global average pooling for encoding global spatial
information within the branch output, the output is transformed into the corresponding dimensional
shape, i.e., R1

1×C//G ×R2
C//G×H×W . The pooling operation formula is given by Eq. (2).

Zc = 1
H × W

H∑
j

W∑
i

xc (i, j) (2)

Here, Zc is the pooling result on channel c, and H and W are the height and width of the input
feature map, respectively. xc(i, j) represents the value of channel c at position (i, j) in the input feature
map. Finally, a non-linear softmax function is applied to fit the linear transformation. The outputs of
the three branches are computed by combining the two spatial attention weight values. The Sigmoid
activation function is used to highlight the contextual pixels for each pixels. The final output is of the
same dimension as the input feature map X ∈ RC×H×W .

Figure 7: Depiction of our proposed EMA. Here, “g” means the divided groups, “X Avg Pool”
embodies the 1D lateral global pooling and “Y Avg Pool” signifies the 1D vertical global pooling,
respectively

This paper chooses to integrate the EMA module at the end of the three outputs from the
Neck, effectively establishing short-term and long-term dependencies. This contributes to the model
capturing spatial and temporal information of the target at different scales, enhancing the model’s
capability for target recognition and localization. Moreover,the attention mechanism in the EMA
module helps the neck focus on important feature channels, enabling it to adapt better to targets
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at various scales and low resolutions. Through multidimensional interactions, EMA enhances the
representational capability of the feature pyramid, improving the model’s robustness.

4 Experiments

We implemented our network on the PyTorch framework, a widely-used deep learning library.
Our training strategy follows a similar approach to YOLOv7, utilizing stochastic gradient descent
with cosine annealing learning rate decay. During training of YOLO-O2E, we employed the Adam
optimizer with a preset learning rate of 0.01. The input image size was set to 640 × 640. All experiments
were conducted under consistent conditions with a predetermined quantity of training epochs set to
100. Considering memory utilization, we used a batch size of 16.

4.1 Dataset and Preprocessing

To achieve high-speed image acquisition of railway fasteners, the image acquisition system used
in this paper is illustrated in Fig. 8. The system comprises a data collection module, a trigger module,
and an industrial computer, all mounted on a detection vehicle. The data collection module consists
of an industrial camera, a structured light laser, and an inertial navigation unit. It employs the camera
to capture the projection of structured light on the object, acquiring laser reflection intensity and
object contour information. To enhance data accuracy and reliability, an inertial navigation unit is
introduced for calibrating the collected data. The trigger module includes an encoder and a signal
trigger distributor. The encoder generates signals as the vehicle travels a fixed distance, transmitting
them to the distributor to trigger camera capture. The encoder generates signals 10 times for every
1 mm of forward movement, and the data is collected every 10 signals, as set based on the detection
requirements. The industrial computer is responsible for controlling the start and stop of the detection
process, storing collected data, and performing post-processing and analysis.

Encoder Signal trigger distributor

Signal Trigger

Industrial camera

Structured light laser

Inertial navigation
unit

Data

Industrial computer

Figure 8: Sketch of image acquisition system

The collected data is in DAT format and is accompanied by an XML format data description
file. By reading the data description file, images of railway fasteners of various sizes can be obtained.
To achieve better detection results, certain sections of the rail are preconfigured with Deficiency,
Displacement, Snap, and Skew of rail fasteners.

We have filtered through a set of images captured continuously by a rail vehicle. The images have
been stitched to create compositions containing various types of fasteners. In total, there are 1288
images. An analysis of the dataset revealed several issues: there is significant noise, uneven lighting,
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and image blurring in images captured during rapid movement of railway vehicles. Additionally,
sample labels in the railway fastener dataset often exhibit imbalances, with the “normal” category
representing more than 50% of the overall label distribution. In response to these challenges, we
applied data augmentation techniques to the dataset, including horizontal flipping, random brightness
adjustments, random occlusion, and motion blur algorithms. The types of data augmentation are
illustrated in Fig. 9. By applying the above-mentioned algorithms for augmentation, we obtained
a dataset comprising 3870 images, including authentic photographs. We named the final dataset
‘GKA’. Subsequently, we partitioned the dataset, allocating 75% for training, 12.5% for validation,
and another 12.5% designated for testing purposes. Table 2 provides a statistical comparison of the
fastener categories before and after data augmentation.

(a)

Flip Random brightness

Random erasing MotionBlur

Four types of data Augmentation in GKA

The 
processed 

image

The 
processed 

image

Types

Types

(b)

Figure 9: (a) The obtained image via the image acquisition system. (b) Data augmentation

Table 2: Number of samples before and after data augmentation

Class Before data augmentation After data augmentation

Normal 640 1576
Skew 103 461
Snap 102 456
Displacement 247 836
Deficiency 196 541

4.2 Evaluation Metrics

For the annotation of GKA, we have consistently followed the format of YOLO. To conduct a
thorough and impartial evaluation of the model’s performance in this paper, we use precision (PR),
recall (RE), and mAP as evaluation metrics. Precision (PR) measures the true positives among all
samples predicted as positive, providing an indicator of the model’s accuracy, as shown in Eq. (3).
Recall (RE) gauges the proportion of actual positives successfully predicted as positive by the model.
This metric relates to the model’s coverage of positives, i.e., how many positives the model captures
without missing, as expressed in Eq. (4). Average Precision (AP) refers to the area beneath the
Precision-Recall curve, while mAP denotes the mean of AP across all classes, as defined in Eq. (5).

Precsion = TP
TP + FP

(3)
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Recall = TP
TP + FN

(4)

mAP = 1
m

m∑
n

APn (5)

In the above formulas, TP, FP, and FN represent true positives (correctly predicted positive sam-
ples), false positives (incorrectly predicted positive samples), and false negatives (correctly predicted
negative samples), respectively. In the domain of object detection, mAP 0.5 and mAP 0.5:0.95 are
two crucial metrics for evaluating the performance of object detection models, measuring the accuracy
of the model under different conditions. When assessing object detection performance, the Intersection
over Union (IoU) between predicted bounding boxes and ground truth boxes is commonly used as a
criterion. mAP 0.5 calculates the mAP considering detection results with an IoU greater than or
equal to 0.5 as correct, while mAP 0.5:0.95 considers a range of IoU thresholds from 0.5 to 0.95,
computing the model’s average precision.

FLOPs refers to the number of floating-point operations and is used to measure the computational
complexity of a model. Params represents the sum of all parameters in a trained model and serves as
an indicator of the model’s scale. The calculation method for FLOPs is outlined in Eq. (6), while the
calculation method for Params is provided in Eq. (7).

Params = Cout (H × W × Cin + 1) (6)

FLOPs = 2Cout

(
CinK2 + 1

) × H × W (7)

Here, H × W denotes the size of the input feature map. Cin and Cout represent the channel numbers
of the input and output feature maps, respectively, measured in quantity. K indicates the size of the
convolution kernel.

4.3 Experimental Comparison with Other Models

4.3.1 Experimental Verification Based on GKA

To validate the effectiveness and superiority of our proposed YOLO-O2E detection method,
we conducted comparative experiments on the GKA dataset against current relatively lightweight
YOLO series models. To guarantee a fair comparison, we trained all models from scratch without
any pre-training and tested their runtime on an RTX 3060 Ti. We conducted training and evaluation
of YOLOv4, YOLOv5, YOLOX, and YOLOv7 using the GKA dataset, juxtaposing their empirical
results against those of our proposed model.

By comparing the results in Table 3, although our proposed model has a higher parameter count
than models such as YOLOv5 and YOLOX, it is significantly lower than YOLOv4. Moreover, it
outperforms other models in terms of mAP 0.5 and mAP 0.5:0.95. Simultaneously, our proposed
YOLO-O2E model achieves an inference time of 27.3 ms, which can be considered at an advanced
level. YOLOv4 demonstrates the lowest overall performance on the GKA dataset. YOLOv5, currently
the most widely used network, still has room for improvement in both detection accuracy and
speed compared to the network proposed in this paper. YOLOX, an Anchor-free object detection
model, demonstrates excellent overall performance but when compared to YOLO-O2E, it has certain
limitations in various aspects, except for the parameter count, where it stands out. The results are
shown in Fig. 10. From the graph, we can observe the comparative performance of these models. Our
model exhibits superior performance in terms of Precision, Recall, and loss, among other metrics.
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Table 3: The outcomes of different models on GKA

Model mAP 0.5 mAP 0.5:0.95 Inference time Params

YOLOv4 79.6% 65.3% 46 ms 87.3 M
YOLOv5 90.4% 75.7% 54.6 ms 7.6 M
YOLOX 92.0% 79.8% 71.3 ms 9.5 M
YOLOv7 95.4% 82.5% 28.6 ms 36.6 M
Ours 97.6% 83.9% 27.3 ms 39.8 M

Figure 10: The performance of GKA across various models

4.3.2 Comparison and Discussion of Current Object Detection Models

To further assess the model’s robustness, We performed precision evaluations, comparing our
model with contemporary mainstream object detection models using the NEU-DET dataset. NEU-
DET is a publicly available dataset for surface defect detection, comprising 1800 grayscale images
featuring six distinct types of typical surface defects. We allocated 75% of the dataset for training and
25% for validation.

While models like Sparse R-CNN, Deformable DETR, and YOLOv7 have comparable Params to
our model, their performance in terms of accuracy is inferior, as indicated in Table 4. YOLOv5, with
relatively fewer Params, yields the poorest results. Our algorithm outperforms Deformable DETR by
a substantial margin in FLOPs metrics. It is important to highlight that our proposed model achieves
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notably higher mAP 0.5 and mAP 0.5:0.95 in contrast to Sparse R-CNN, Deformable DETR,
YOLOv5, and YOLOX. Furthermore, when compared to YOLOv7, despite respective increases of 5.8
and 2.9 GFLOPs in parameter count and model computation, our model realizes improvements of
1.8% and 1.3% in mAP 0.5 and mAP 0.5:0.95 metrics, demonstrating its outstanding performance.

Table 4: Comparison results with other algorithms on the NEU-DET dataset

Model Backbone mAP 0.5 mAP 0.5:0.95 FLOPs Params

Sparse R-CNN ResNet-101 70.3% 36.1% 203 B 34 M
Deformable DETR ResNet-50 74.1% 39.2% 153 G 42 M
YOLOv5 CSPDarknet 68.3% 32.7% 90.7 G 7.8 M
YOLOX CSPDarknet 74.2% 41.5% 97.3 G 10.4 M
YOLOv7 YOLOv7 76.5% 42.2% 107.6 G 38.2 M
YOLO-O2E (ours) YOLOv7 78.3% 43.5% 110.5 G 44 M

4.4 Ablation Experiments

In this article, we introduce a new object detection model, YOLO-O2E. To validate the effective-
ness of this model on the GKA dataset, YOLOv7 is taken as the baseline. Iterative improvements are
made based on the methods described in the paper, sequentially incorporating the enhanced EFOV
module, OD_MP module, and attention-enhanced EMA. The final aggregated model is our proposed
one. The ablation study results on the dismantled networks are presented in Table 5. After integrating
the proposed EFOV structure into the base model, mAP 0.5 improved by 1.1%, mAP 0.5:0.95
increased by 0.8%, with a slight increase in parameter count and GFLOPs. This is because the EFOV
module, replacing the original ELAN, introduces additional channels, requiring some computational
overhead. Subsequently, incorporating the proposed OD_MP module resulted in a further increase of
0.7% in mAP 0.5, and 0.5% in mAP 0.5:0.95, with a slight reduction in parameter count compared
to when the EFOV module was added, and a negligible increase in GFLOPs. This suggests that
the module enhances accuracy while maintaining model lightweight. Introducing EMA led to an
additional improvement of 0.4% in mAP 0.5 and 0.1% in mAP 0.5:0.95, with corresponding slight
increases in parameter count and GFLOPs. Compared to the baseline YOLOv7, our proposed model
achieved a 2.2% improvement in mAP 0.5, a 1.4% improvement in mAP 0.5:0.95, with negligible
increases in parameter count and GFLOPs.

Table 5: Ablation study of network designed

YOLOv7 EFOV OD_MP EMA mAP 0.5 mAP 0.5:0.95 FLOPs (G) Params

� 95.4% 82.5% 103.2 36.6 M
� � 96.5% 83.3% 105.2 37.2 M
� � � 97.2% 83.8% 105.7 37.1 M
� � � � 97.6% 83.9% 114.6 38.8 M

Meanwhile, we have compiled the mAP for all types of rail fastener detections in different
improved models, as shown in Table 6. The mAP for Normal, Skew, Snap, Displacement, and
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Deficiency has been enhanced in our proposed model. Particularly, in the Baseline, the mAP for Skew
and Displacement types is relatively low. However, with the inclusion of the EFOV module, there is a
significant increase in mAP. One major reason is the similarity in the states of Skew and Displacement
types, making it relatively challenging for the original model to discern. The introduction of the
improvement module enables the model to identify them more clearly. Fig. 11 compares the impact of
the standard model YOLOv7 and YOLO-O2E on the rail fastener detection results. The left, middle,
and right sides of the figure respectively display the input original rail fastener image, the detection
outcomes of YOLOv7, and YOLO-O2E.

Table 6: The mAP comparison of different improvements on the GKA dataset.We have compiled
the mAP for all types of rail fastener detections, including Normal, Skew, Snap, Displacement, and
Deficiency

Model Normal Skew Snap Displacement Deficiency
mAP mAP mAP mAP mAP

Baseline 96.3% 93.2% 97.3% 95.2% 96.6%
+EFOV 97.4% 94.6% 98.0% 95.9% 97.3%
+OD_MP 96.6% 94.0% 97.6% 95.6% 97.1%
+EMA 97.1% 93.0% 97.4% 95.5% 96.8%
+EFOV+OD_MP 98.0% 94.8% 98.2% 96.4% 97.7%
+OD_MP+EMA 97.8% 94.2% 98.1% 96.2% 97.5%
+EFOV+EMA 97.5% 94.5% 98.0% 95.9% 97.6%
Ours 97.7% 94.7% 98.5% 96.7% 97.8%

Figure 11: (Continued)
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Figure 11: Baseline and proposed model detection performance on GKA dataset

5 Conclusion

In this paper, we propose an enhanced object detection model, named YOLO-O2E, designed
to improve the accuracy of detecting anomalies in rail fastening components under challenging
conditions. The algorithm introduced in this research is tailored for the detection of anomalies in
rail fastening components and is applicable to objects with high feature similarity and suboptimal
image quality. Our proposed EFOV (Multi-branch Parallel and Enhanced Field of View) module,
achieved through dilated convolution layers with varying dilation factors, simulates the heightened
sensitivity of the human eye to the central region. This allows the network to better distinguish between
similarly shaped fastening components. Additionally, we introduce the OD_MP and EMA (Effi-
cient Multiscale Attention) module to enhance feature extraction capabilities. We comprehensively
evaluated the model’s performance and design characteristics, revealing its significant advantages in
terms of accuracy, real-time capability, and robustness, rendering it suitable for deployment on mobile
devices. Addressing challenges arising from adverse weather conditions, temperature fluctuations, and
humidity in real-world scenarios will constitute the focal point of our future research endeavors,
ensuring reliable detection and analysis of rail fastening components under diverse environmental
conditions.
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