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ABSTRACT

Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and
environmental monitoring. Addressing the limitations of conventional convolutional neural networks, we propose
an innovative transformer-based method. This method leverages transformers, which are adept at processing data
sequences, to enhance cloud detection accuracy. Additionally, we introduce a Cyclic Refinement Architecture
that improves the resolution and quality of feature extraction, thereby aiding in the retention of critical details
often lost during cloud detection. Our extensive experimental validation shows that our approach significantly
outperforms established models, excelling in high-resolution feature extraction and precise cloud segmentation.
By integrating Positional Visual Transformers (PVT) with this architecture, our method advances high-resolution
feature delineation and segmentation accuracy. Ultimately, our research offers a novel perspective for surmounting
traditional challenges in cloud detection and contributes to the advancement of precise and dependable image
analysis across various domains.
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1 Introduction

Cloud detection in remote sensing is crucial for accurate analysis of satellite and aerial imagery.
Clouds cover approximately 67% of the Earth’s surface at any given time [1], significantly impacting
the quality of data from these images due to obscuration of the Earth’s surface. This often leads to
erroneous measurements or interpretations. Therefore, the development of effective cloud detection
methods is essential to preserve data integrity and mitigate the impact of clouds that may obscure
surface features. This is particularly vital in applications that require precise surface observations, such
as land cover classification [2,3], agricultural monitoring [4,5], and urban planning [6].

Cloud detection methodologies encompass a diverse range of techniques. Threshold-based meth-
ods [7] leverage specific spectral bands—namely visible and infrared—to set thresholds, utilizing

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.052208
https://www.techscience.com/doi/10.32604/cmc.2024.052208
mailto:20220033@cqnu.edu.cn


662 CMC, 2024, vol.80, no.1

the higher brightness levels of clouds within these bands to accurately classify pixels exceeding
predetermined brightness values as clouds. Additionally, the use of spectral indices, such as the
Normalized Difference Snow Index (NDSI) [8] and the Normalized Difference Vegetation Index
(NDVI) [9], provides an alternative by exploiting the distinct spectral signatures of clouds, snow, and
vegetation to facilitate their differentiation.

In recent years, the application of machine learning and deep learning (DL) [10] algorithms has
attracted considerable attention for their ability to autonomously learn from training datasets and
distinguish between cloudy and clear pixels. Convolutional Neural Networks (CNN)-based methods
[11,12] are notably effective, excelling at identifying spatial hierarchies in images. This ability highlights
CNNs’ strength in recognizing spatial features within cloud imagery with remarkable precision.
However, despite their efficacy in recognizing spatial features, CNNs often fall short in capturing
global image features, presenting a significant research opportunity to develop advanced algorithms
that provide a more comprehensive understanding of image data.

In this study, we propose a novel transformer-based approach to address these enduring chal-
lenges. Our methodology utilizes the Pyramid Vision Transformer (PVT) [13] as the core network
for feature extraction, specifically chosen to enhance the extraction of high-resolution features—a
known limitation of traditional CNN architectures. The selection of PVT over other Transformer
[14] architectures is due to its ability to efficiently process high-resolution inputs while maintaining
computational efficiency, facilitated by its innovative design featuring a progressive shrinking pyramid
and spatial-reduction attention mechanisms. These design elements contribute to a more computation-
ally efficient model, enabling the extraction of high-quality features with less computational overhead
typically required for processing high-resolution data.

We introduce the Cyclic Refinement Architecture (CRA) to extract multi-scale features and
simultaneously generate multiple prediction results using feature maps at various scales. Additionally,
this framework enhances the utilization and refinement of both high and low-resolution features
through iterative feedback loops, providing comprehensive solutions to the challenges identified
without compromising the ability to learn high-resolution features. To improve the performance and
efficacy of these methodologies, we compute the loss for each of the five predictions generated by the
CRA module. This computation aggregates these individual losses to formulate the final loss function,
concluding the optimization process. The primary contributions of our work are as follows:

1) We introduce a transformer-based architecture, specifically the Pyramid Vision Transformer
(PVT), tailored for cloud detection tasks. This model excels in learning global features,
significantly enhancing high-resolution segmentation under challenging conditions.

2) We design the CRA module to refine multi-scale feature maps and generate iterative predictions
through feedback loops, thereby offering a robust solution that supports high-resolution
learning.

3) Our methodology has undergone rigorous evaluation through comprehensive experiments
conducted on the HRC_WHU dataset. The results of these experiments unequivocally confirm
the superior performance of our proposed approach, showcasing its effectiveness in cloud
detection tasks.
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2 Related Works
2.1 Remotely Sensed Imagery

Remotely sensed imagery is an essential tool for capturing the physical characteristics of a geo-
graphic area without physical presence. This technology enables the capture, visualization, and analysis
of objects and features on the Earth’s surface. Remote sensing utilizes sensors mounted on specialized
platforms such as airplanes, satellites, and Unmanned Aerial Vehicles (UAVs). Each platform category
offers distinct advantages and disadvantages, enhancing the versatility and applicability of remote
sensing across various research and practical applications.

For example, UAVs and drones provide very high-resolution imagery and can follow pro-
grammable flight paths equipped with LiDAR technology. However, they are limited by small coverage
areas and the requirement for a visual line of sight. Airplanes and helicopters also capture high-
resolution images and possess LiDAR capabilities; they follow specific flight paths but face limitations
due to small coverage areas and complex flight operations. Conversely, low Earth orbit satellites offer
imagery from high to coarse resolution across extensive areas, but their coverage is constrained by
orbital paths and can be adversely affected by cloud cover.

Remote sensors are pivotal in acquiring remotely sensed images, primarily categorized into two
types: active and passive. Active sensors emit energy toward the target and measure the reflection
back to the sensor, proving invaluable in low-light conditions or for capturing specific wavelengths.
Conversely, passive sensors detect natural radiation emitted or reflected by objects, often utilizing
sunlight reflected from the Earth’s surface. This abundant natural illumination makes passive sensors
highly effective for a variety of Earth observation tasks.

The analysis of such reflected light supports numerous applications including environmental
monitoring, land use mapping, and atmospheric studies. Among the key datasets for cloud detection
and other remote sensing applications are those derived from passive sensors on Landsat and Sentinel
satellites at the present time, Landsat imagery has been foundational in remote sensing research due
to its open data policy, enabling widespread use in diverse studies for many years. Similarly, imagery
from the Sentinel program (Europe), Gaofen (China), and Himawari (Japan) has also seen increased
use in recent years.

Recognized for its diversity and high resolution, the HRC_WHU dataset, sourced from Google
Earth, includes a wide range of landscapes such as water bodies, vegetated areas, urban environments,
snow/ice regions, and barren terrains. The high resolution and variety of scene categories enable
thorough evaluations of the algorithm’s adaptability and performance across different environmental
contexts. Each image in the dataset is paired with a Ground Truth (GT) cloud mask, meticulously
annotated by remote sensing experts at Wuhan University. These expertly annotated GT cloud masks
serve as a high-quality, authoritative benchmark, ensuring accurate and credible evaluations of cloud
detection algorithms. Additionally, the public availability of the HRC_WHU dataset promotes its
widespread adoption and benchmarking within the research community.

Table 1 provides a concise summary of several prominent datasets used in cloud detection. These
datasets primarily originate from the Landsat, Sentinel, Google Earth and Gaofen satellite programs.
The datasets cover a wide range of scenes, with specific datasets like L8 SPARCS and L8 38 Clouds
tailored to smaller dimensions for particular needs. In contrast, the S2 Hollsteins dataset is noted for
its use of pixel-level data.
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Table 1: Public accessible remotely sensed imagery datasets for cloud detection

Dataset Number of scenes Image resolution Source Cell size

L7 Irish [15] 206 Full scene Lansat-7 30 m
L8 SPARCS [16] 80 1000 × 1000 Lansat-8 30 m
L8 38Clouds [17] 38 384 × 384 Lansat-8 30 m
S2 Hollsteins [18] 59 – Sentinel-2 10 m
S2 Baetenshagolle
[19]

38 1830 × 1830 Sentinel-2 10 m

GF1_WHU [20] 108 Full scene Gaofen-1 WFV 16 m
AIR-CD [21] 34 Full scene Gaofen-2 PMS 4 m
HRC_WHU [22] 150 1280 × 720 Google earth 0.5–15 m

2.2 Cloud Detection

Cloud detection is crucial in the preprocessing of satellite imagery. With the increasing availability
of data, significant research has been directed toward this area, focusing on images captured by
various remote sensors. Zhu et al. [23] provided a comprehensive classification of cloud and cloud
shadow detection algorithms, while Li et al. [24] offered an in-depth review of features, algorithms,
and validation aspects.

In satellite-based atmospheric observation, the extraction of specific cloud features depends on
satellite conditions. This analysis explores cloud characteristics across spectral, spatial, and temporal
dimensions. Spectrally, clouds are identified by high brightness and a predominantly white appearance,
with a distinct low thermal signature. Various methodologies [25] explicitly use spectral features,
employing artificially designed feature extractors for cloud detection. These methods typically involve
establishing either fixed or dynamic thresholds, ascertained through parametric sensitivity analysis [26]
or supported by supplementary data. The Fmask series [27] estimates cloud probabilities by analyzing
spectral variability and brightness temperature, facilitating dynamic threshold-based segmentation
and cloud mask generation. Due to its robust performance globally, the latest version of Fmask is
widely adopted for quality assessment in Landsat imagery.

Spatially, clouds are characterized by their high-altitude presence and homogeneous texture with
blurred edges, indicating minimal shape complexity.

Temporally, an increase in cloud reflectance is a key indicator of dynamic behavior in atmospheric
layers. Innovative methodologies for cloud detection leverage these temporal variations. For example,
Lin et al. [28] introduced a multi-temporal cloud detection method using invariant pixels identified
across multiple images, highlighting the utility of temporal information in enhancing detection
accuracy. Similarly, Bian et al. [29] developed a technique for detecting clouds and snow in multi-
temporal imagery by using a series of images over several days to compose a cloud-and snow-free
reference image.

From an algorithmic perspective, the advent of deep learning (DL) algorithms for cloud detection
marks a significant research focus. By treating cloud detection as an image segmentation task, DL algo-
rithms demonstrate substantial capabilities. Unlike traditional machine learning methods like Random
Forests [30] or Support Vector Machines (SVM) [31], which often fall short in feature extraction
and representational capacity. DL approaches show superior promise. This is highlighted in studies
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like that by Mateo-Garcia et al. [32], which demonstrated the effectiveness of CNNs in multispectral
satellite imagery for cloud detection and supported by Li et al. [33] through the development of a DL-
based algorithm using multi-scale feature fusion. Further advancements in weakly supervised learning
[34,35], unsupervised learning [36,37], semisupervised learning [38], and domain adaptation [38] are
addressing the challenges of data label dependency and model generalizability across different sensors,
making significant progress in the field of cloud detection.

2.3 Transformer

Originally introduced in the literature, the Transformer architecture has marked a significant
advancement in deep learning. Comprehensive analyses by Hu et al. [39] and Liu et al. [40] have
explored its application and impact. Initially dominant in natural language processing (NLP), this
model has powered major language models like BERT [41], RoBERTa [42], and GPT 1-4 [43],
demonstrating exceptional performance across various NLP tasks. Hu et al. [39] highlighted the
substantial contributions of Transformers to NLP.

The success of Transformers in NLP has generated considerable interest in their application to
computer vision. For example, the Vision Transformer (ViT) [44] adapts the Transformer Encoder,
originally for NLP, to process images by embedding image patches linearly with positional embeddings
for effective image classification. The Detection Transformer (DETR) [45] introduces a linear pro-
jection layer to reduce the dimensionality of CNN features, integrates spatial positional embeddings
in each multi-head self-attention layer of both the encoder and decoder and adds object queries to
enhance object detection capabilities in each decoder’s layer. The Contrastive Language–Image Pre-
training (CLIP) [46] framework trains image and text encoders using image-text pairs, optimizing
for maximum similarity between valid pairs and minimum otherwise, showcasing the adaptability of
Transformer models beyond NLP.

The Pyramid Vision Transformer (PVT) is a novel adaptation within computer vision, enhancing
the ViT model to support diverse image resolutions and computational demands with a scalable
and efficient architecture. Unlike ViT’s single-scale patch processing, PVT employs a hierarchical,
multi-scale strategy akin to CNNs’ pyramidal feature hierarchies, allowing for the capture of a wide
range of features from fine to coarse details. This approach makes PVT suitable for tasks requiring
multi-scale representations. Traditional transformer models face substantial computational costs when
applying self-attention across global scales, especially at higher image resolutions. PVT addresses these
issues through spatial-reduction attention, which reduces the spatial dimensions of the self-attention
mechanism’s key and value matrices, significantly lowering computational complexity and memory
requirements.

With its pyramidal architecture, PVT effectively integrates into various downstream tasks like
object detection, semantic segmentation, and instance segmentation, serving as a backbone network
that provides essential multi-scale feature maps. Its compatibility with conventional CNN com-
ponents—such as convolutional layers, pooling layers, and skip connections—allows for seamless
integration into existing CNN frameworks, enabling the synergistic utilization of both transformers
and CNNs. By offering hierarchical and multi-scale representations, PVT outperforms traditional
CNNs and standard ViT models in various vision tasks, including image classification, object detection
[47], and semantic segmentation. Its spatial-reduction attention mechanism also makes it highly
suitable for processing high-resolution images under tight computational constraints. Due to these
attributes, we have chosen PVT as the network feature extractor for our study.
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3 Method
3.1 Overview

To attain a high standard of cloud detection, our method employs a novel strategy that emphasizes
both low-resolution and high-resolution image features. This is achieved by incorporating the Pyramid
Vision Transformer (PVT) and a cyclic refinement architecture. The PVT is designed to extract
multi-scale features, while the cyclic refinement architecture facilitates the generation of multiple
prediction results using feature maps at various scales. By integrating these predictions, we compute a
comprehensive final loss, significantly enhancing the accuracy of cloud detection. We will discuss the
PVT, cyclic refinement architecture, and the final optimization method in detail subsequently. Fig. 1
illustrates the technology roadmap.

Figure 1: Technology roadmap

3.2 Pyramid Vision Transformer

Our research highlights the significant performance advantages of the Transformer architecture
and addresses one of its main drawbacks: high memory consumption. This issue is particularly acute
in resource-constrained environments, which can limit the widespread adoption of Transformers.
To mitigate this, we have implemented the Pyramid Vision Transformer (PVT) as our primary
backbone network architecture. The PVT is designed to alleviate the memory constraints of traditional
Transformer models without compromising on performance.

First, we introduce the overall structure of the Pyramid Vision Transformer (PVT). The PVT
processes the input image, denoted as X , through four sequential stages, each producing feature
maps at progressively larger scales. Each stage follows a similar core architecture consisting of patch
embedding and a transformer encoder. Detailed implementation specifics are available in the original
paper [13]. To clarify, let Win and Hin represent the width and height of the input image X . The
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dimensions of the feature maps at the four scales are as follows:
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. For clarity in this paper, these feature maps are referred to as FM1, FM2, FM3, and FM4,

respectively, from smallest to largest.

In addition to partitioning the input image X into feature maps at four scales, the Pyramid Vision
Transformer (PVT) incorporates the Spatial Reduction Attention (SRA) mechanism, a critical feature
designed to decrease memory consumption and computational load. The SRA mechanism effectively
reduces the dimensionality of keys (K) and values (V ), maintaining the performance advantages of
traditional transformers while significantly reducing their memory footprint. This innovation makes
the PVT particularly advantageous for resource-constrained environments.

Following the extraction of feature maps at four distinct scales, we conduct further operations on
these maps, completing the structure of the PVT.

3.3 Cyclic Refinement Architecture

Utilizing the Pyramid Vision Transformer (PVT) solely to extract multi-scale feature maps and
generate multiple predictive outcomes through upsampling does not fully achieve high-precision pre-
dictions. With this limitation in mind, our study introduces a PVT-based cyclic refinement architecture
specifically designed to efficiently extract information from multi-scale feature maps. The core of
this architecture is a meticulously designed iterative feedback process that progressively enhances the
quality and accuracy of the feature maps by effectively integrating them across different scales.

Next, we provide a detailed introduction to the specific implementation details of this architecture.
At the start of the iteration, feature FMi is merged with the feedback feature map FD left over from the
previous iteration. It is important to note that during the first iteration stage, there will be no feedback
feature map FD, and only FM1 and FM3 will be merged with the feedback feature map FD:

FMi = fusion (FMi, FD) (1)

The fusion is a method of integration, mainly achieved by up-sampling FMi to match the
dimensions of FD. Upon completion of the fusion method, we proceed to refine the feature maps
of different scales, a process that begins with the smallest scale feature map, FM1. This refining
process incrementally improves the detail and quality of the feature maps, working progressively from
the smallest scale upwards. To further illustrate this process, we will describe the refinement steps
using pseudocode. This approach not only provides a clear understanding of the sequential nature
of the refinement but also offers insight into the algorithmic logic used to improve the precision and
effectiveness of the feature maps.

Algorithm 1: Cyclic refinement architecture
Input: FMi, i ∈ {1, 2, 3, 4, 5}
Output: Pi, i ∈ {1, 2, 3, 4, 5}
1: FDi = None
2: Pi = None
3: for each i ∈ [1, 5] do

(Continued)
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Algorithm 1 (continued)
4: FM1 = fusion (FM1, FDi)
5: FM1 = CAB (FM1)
6: FM2 = cat (FM1, FM2)
7: FM2 = CAB (FM2)
8: FM3 = fusion (FM3, FDi)
9: FM3 = cat (FM2, FM3)
10: FM3 = CAB (FM3)
11: FM4 = cat (FM3, FM4)
12: FM4 = CAB (FM4)
13: FDi = FM4
14: Pi = FDi↑
15: end for
16: return Output

P is an array that stores the four predictions finally obtained. ↑ represents an up-sampling
operation. The cat means concatenation according to channel = 1.

The most important structure is the CAB, a Channel Attention Block. The CAB plays a crucial
role in our cyclic refinement architecture. We utilize the CAB to extract and refine channel features,
achieving efficient and precise feature processing. The workflow of the CAB is as follows: Initially, the
input image X is passed through the CAB. The image then undergoes deep feature extraction through
multiple convolutional layers, accompanied by ReLU activation layers. In the mid-stage of the CAB, a
pooling operation is conducted to simplify the features and reduce computational complexity. Finally,
the output undergoes normalization via a Sigmoid function, ensuring the stability and effectiveness
of the extracted features. Therefore, this module not only enhances the model’s focus on channel
features but also improves the accuracy and fineness of feature extraction, playing a pivotal role in
our architecture.

After detailing each part of the pseudocode, we will proceed with a holistic discussion following its
content. As described earlier, the process starts with the smallest scale feature map, FM1. We first merge
the current feature map with the feedback feature returned from the previous iteration by processing
it through a CAB module. It is then merged with the larger scale module, FM2, using a concatenation
function (cat). Then FM2 passes through a CAB module and continues to merge with FM3, which
has been fused with feedback features. Finally, FM4 passes through a CAB module, resulting in the
final feature map of the current iteration. This feature map is not only used to provide feedback to the
feature map FD of the next iteration but it is also used for upsampling to produce a predictive result.
This iteration is run a total of four times, resulting in four predicted outcomes and the feedback feature
left over from the last iteration. Note that any operation involving fusion or concatenation (cat) may
require up-sampling to match feature dimensions. This step will not be discussed further and should
be implemented in the code.

At the end of the iterative process, the final feedback feature is no longer used for additional
feedback but is merged with the larger FM4 feature processed by the CAB module. This step marks
the generation of the final, fifth prediction result, which is achieved by up-sampling to provide a wider
view and higher resolution. We also use a graph fusion module in our feature fusion process [48].

After completing the cyclical refinement architecture, we obtained four prediction results from
different cycles of refinement, along with a final prediction processed by a graph fusion module.
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Each prediction accurately reflects the meticulous precision in feature extraction and fusion at each
refinement stage, ensuring high accuracy and robustness in the task. This innovative method has not
only enhanced the interaction between features of different scales but also significantly improved the
prediction accuracy in edge regions, thus achieving a significant breakthrough in the field of cloud
detection technology.

3.4 Optimization

Having summarized two key methodologies, we now turn to the optimization of these approaches.
In this section, we will explore how we have enhanced the effectiveness and efficiency of these
methodologies to maximize performance and results from their application. Our focus will be on
refining and fine-tuning these methodologies to achieve optimal outcomes in our respective areas of
study.

Therefore, to enhance the accuracy of the predictive images generated by the Pyramid Vision
Transformer (PVT) and cyclic refinement architecture, designing an effective loss function is crucial.
We employ the following loss function formula:

L = LwIoU + LwBCE (2)

In this formula, LwIoU is the weighted intersection over the union loss, while LwBCE is the weighted
binary cross entropy loss. The specific implementation details of these two types of loss functions are
not covered in this paper.

Clearly, by using PVT and the iterative refinement architecture, we have obtained five prediction
results of varying levels of detail. Therefore, for each of these five prediction maps, we need to calculate
Li, which is the final loss function:

Lfinal =
5∑

i=1

Li (3)

This concludes our methodological process. Through the Pyramid Vision Transformer (PVT), we
obtained feature maps at various scales. The cyclic refinement architecture then generated five final
predictive outcome maps. By employing a specially designed loss function, we continuously optimized
both the PVT and the cyclic refinement architecture to achieve superior prediction results, thereby
facilitating high-precision cloud detection.

4 Experiment
4.1 Dataset Overview

To validate the overall efficacy of our proposed algorithm across diverse scenes, comprehensive
experiments were conducted using the High-Resolution Cloud dataset (HRC_WHU) [33]. Table 2
provides a detailed overview of the HRC_WHU dataset, which consists of 150 high-resolution remote
sensing images covering extensive scenes in three channels (RGB). All images, including reference
masks, are provided in TIFF format, chosen during the initial collection phase to preserve data quality.
The images are 1280 × 720 pixels in resolution, with an average file size of approximately 2.55 MB.
Each category in the dataset is equally represented by 30 images, ensuring a balanced distribution for
comprehensive training and testing across various environmental contexts. We adhere to the dataset’s
default configuration, designating 120 images for training and 30 images for testing.
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Table 2: The statistics of the HRC_WHU dataset

Category Number of
images

% of total Average image
size

Image
resolution

Format

water 30 20% 2.52 MB 1280 × 720 tiff
vegetation 30 20% 2.50 MB 1280 × 720 tiff
urban 30 20% 2.58 MB 1280 × 720 tiff
snow 30 20% 2.54 MB 1280 × 720 tiff
barren 30 20% 2.60 MB 1280 × 720 tiff
train 120 80% 2.55 MB 1280 × 720 tiff
test 30 20% 2.57 MB 1280 × 720 tiff
Total 150 100% 2.55 MB – –

Above, Fig. 2 showcases a selection of sample images from the HRC_WHU dataset. Starting from
the cell positioned at the far right, the sequence includes categories such as barren, snow, urban,
and water environments. These images provide a clear understanding of the diverse environmental
conditions and the inherent challenges faced in the analysis of remote sensing imagery.

(a) barren (b) snow (c) urban (d) vegetation (e) water 

Figure 2: Sample images with various backgrounds from HRC_WHU dataset. (a) cloud image
and corresponding mask with barren terrains as background, (b) cloud image and corresponding
mask with snow/ice regions as background, (c) cloud image and corresponding mask with urban
environments as background, (d) cloud image and corresponding mask with vegetation-covered areas
as background, (e) cloud image and corresponding mask with water bodies as background

For each designated class, the imagery displayed in the first and third rows originates from satellite
or aerial sources, illustrating the natural appearance of the environments. In contrast, the second and
fourth rows feature binary segmentation masks corresponding to the original images. These masks
serve as the ground truth (GT) within the dataset, where white regions indicate pixels identified by
the model as belonging to the target class, and black regions represent either the background or pixels
classified under other categories.
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4.2 Experiment Details

In the development of our model, we utilized the PyTorch framework. The computational
experiments were conducted on a single NVIDIA GTX 4090 GPU during both the training and testing
phases. For data input, we retained the original resolution of the dataset images at 1920 × 720 pixels,
demonstrating our model’s ability to process high-resolution imagery.

For optimization, we chose AdamW [49], a variant of the Adam optimizer that includes a decou-
pled weight decay component, specifically addressing some challenges associated with Transformer-
based models. We initialized the learning rate at 0.0001 and implemented a dynamic learning rate
scheduling scheme. This schedule incorporates a decay factor of 0.1 every 20 epochs to gradually
reduce the learning rate and stabilize training. Our training regimen extended over 150 epochs with a
batch size of 8, allowing the model to be exposed to a wide variety of data samples and to generalize
effectively from the training dataset.

4.3 Metrics

To assess our model’s performance on the HRC_WHU dataset, we employed five standard metrics
commonly used in image segmentation: Mean Average Error (MAE), mean Intersection over Union
(mIoU), Pixel Accuracy (PA), and F1 score. Each metric provides a unique perspective on accuracy
and effectiveness, facilitating a balanced comparison with other models. MAE quantifies the average
prediction error, mIoU evaluates the accuracy of overlap between predicted and actual segments, and
PA measures the proportion of correctly categorized pixels. The F1 score assesses the model’s precision
and recall, respectively. Collectively, these metrics offer a comprehensive evaluation, enabling a precise
comparison of our model’s efficacy against others.

4.4 Quantitative Comparison

In this study, we conducted a comparative analysis between our proposed model and five other
models widely used in the field. The results are systematically presented in Table 3, which shows that
our model achieved state-of-the-art (SOTA) outcomes across all evaluated metrics selected for this
research.

Table 3: Quantitative comparison with five other models in five metrics

Method MAE mIoU PA F1

Res2Net 0.367 0.516 0.680 0.665
ResNet 0.363 0.527 0.697 0.678
ResNeXt 0.255 0.481 0.758 0.636
PVT 0.299 0.621 0.822 0.758
DeepLabV3 0.288 0.557 0.797 0.699
Ours 0.156 0.625 0.847 0.722

The neural network architectures evaluated in our experiments include Res2Net [50], ResNet [51],
ResNeXt [52], PVT [13], DeepLabV3 [53], and our proposed model, referred to as “Ours”. Our model
demonstrates superior performance across multiple evaluation metrics. It achieves the lowest MAE
of 0.156, the highest mIoU of 0.625, the highest PA of 0.847, and the highest F1 score of 0.722. In
comparison, the DeepLabV3 architecture achieves the second-best results in PA but scores lower in
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the F1 score relative to our model. The PVT architecture shows notable competitiveness with a mIoU
of 0.621 and an F1 score of 0.758, yet it exhibits weaker performance in PA when compared with our
model. Both the Res2Net and ResNet architectures yield similar outcomes, with minor discrepancies
in MAE and mIoU, and underperform in the other metrics. The ResNeXt model, despite achieving
the second-lowest MAE of 0.255, does not excel beyond our model in any other metric.

This evaluation underscores the effectiveness and superiority of our proposed methodology,
illustrating the robust performance and notable advantages our approach offers compared to existing
methods within the field.

4.5 Qualitative Comparison

For a graphical demonstration of our model’s superiority, we juxtaposed the predictive mapping
generated by our model against those produced by other methodologies, with the comparative results
illustrated in Fig. 3. This figure includes a selection of random samples from the test subset of the
original dataset. It features two images per category, resulting in a total of ten subfigures. The depicted
scenarios within these figures are notably complex, characterized by the absence of fixed shapes and
complicated further by snow/ice environments. This setting presents a significant challenge, as the
visual similarity between snow, ice, and clouds can complicate accurate cloud detection.

Figure 3: Qualitative comparison of twenties images in the test set. (a) the raw image from the dataset,
(b) the ground truth for the cloud masks, (c) the prediction maps generated by our method, (d–h) the
prediction maps generated by other methods



CMC, 2024, vol.80, no.1 673

We benchmark our model against several well-known architectures, including ResNet, Res2Net,
ResNeXt, DeepLabV3, and PVT, to evaluate its efficacy in cloud detection tasks. The comparative
analysis showed that in scenarios with barren backgrounds, as illustrated in the first four rows of our
results, conventional models struggled with identifying sporadic and small-scale cloud formations.
Conversely, our model demonstrated superior accuracy in identifying almost all cloud instances within
these images. In challenging environments with snow backgrounds, our model uniquely excelled in
detecting thin cloud formations, as evidenced in the third and fourth rows.

Despite these strengths, it is crucial to acknowledge the limitations observed under specific
conditions, notably in the sixth and tenth rows of our results, where the complex dynamics of cloud
formations and high-resolution processing demands posed significant challenges. The comparative
analysis also highlighted notable deficiencies in the benchmark models. Specifically, Res2Net and
ResNet were prone to over-segmentation, often dividing images into more segments than necessary.
ResNeXt and DeepLabV3 struggled with capturing detailed edge information, essential for precise
segmentation, while PVT had difficulties in correct shape delineation due to its limitations in
integrating local contextual information. These findings underscore the need for further advancements
in model design and training methodologies to address these challenges.

These results illuminate the nuanced performance landscape of cloud detection models and
underscore the potential of our network to advance the field.

It is worth noting that the lack of accuracy when confronted with scenes in complex terrain may be
due to the following reasons. Firstly, Remote sensing image quality is not high; due to the complexity
and diversity of the terrain, coupled with the changing climate of snow-covered mountains and other
places, there are often changes in light, more cloud cover, and other situations. Secondly, higher image
similarity and greater difficulty in distinguishing specific features; for example, in the snow-covered
mountain region, the color and texture characteristics of the surface covered by clouds and snow are
extremely similar, which undoubtedly strengthens the difficulty of distinguishing between clouds and
the surface. Lastly, low contrast; for example, on snow-covered mountains, due to the high reflectivity
of the snow-and ice-covered surface, it contrasts with the surrounding rocks or vegetation. This low
contrast makes it difficult to accurately distinguish clouds from snow-covered surfaces in images.

The following points can be considered regarding the direction of future research. Firstly, methods
based on single-time images: threshold segmentation using features of multi-spectral bands. Reduce
the effect of clouds by using the penetrating nature of infrared bands. Secondly, pre-processing such as
atmospheric correction is carried out to achieve the elimination of atmospheric scattering effects and
cloud cover, and ultimately improve the quality of remote sensing images. Lastly, data enhancement is
a common method to extend the training dataset and balance the distribution of samples of different
categories by using data enhancement techniques, improving the generalization and anti-interference
ability of the model.

4.6 Ablation Study

We employ a consistent evaluation protocol similar to the quantitative analysis for our ablation
study. The outcomes are succinctly summarized in Table 4, which organizes the experimental results
according to different model configurations. In this table, the rows represent various iterations of
our model, distinguished by the presence or absence of specific modules, and the first three columns
correspond to the components under scrutiny: CAB, CRA, and the choice of network backbone. The
table uses absence indicators for the Res2Net backbone, while a checkmark denotes the adoption of
the PVT as the backbone.
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Table 4: Ablation analysis of the validity of the three modules in our model

# CAB CRA Backbone MAE MIoU PA F1

1 � � – 0.180 0.620 0.833 0.687
2 � – – 0.169 0.576 0.833 0.687
3 – � � 0.183 0.588 0.821 0.705
4 – � – 0.196 0.497 0.807 0.653
5 � � � 0.156 0.625 0.847 0.748

The experimental configurations range from a complete model with all three modules to pared-
down versions where one or more modules have been omitted. Across all metrics assessed, the data
underscore the significant role of the introduced modules in enhancing the network’s performance.
This systematic removal and evaluation illustrate the integral function of each module, affirming their
collective importance in achieving enhanced capabilities of our network.

To assess the efficacy of our modules, we systematically remove them from the comprehensive
network. Table 4 depicts the outcomes, indicating various configurations of our model. The columns
labeled CAB, CRA, and backbone specify the presence of these modules in the network. Specifically,
CAB refers to the use of the CAB block, CRA denotes the iterative mechanism, and ‘backbone’
indicates the choice of network backbone, with the absence pointing to Res2Net and a checkmark
to PVT.

Configurations range from complete, with all modules intact, to partial, with one or more modules
removed. The rightmost columns, denoting different metrics, reflect the presence or absence of specific
modules. The results suggest that each module contributes significantly to the performance metrics.
The complete model configuration achieves the lowest MAE and the highest scores for MIoU, PA, and
F1, underscoring the combined efficacy of all three modules in improving the model’s performance.
Conversely, configurations lacking one or more modules generally show diminished performance,
yet with some exceptions, indicating the importance of each component in the model’s architecture.
Across all metrics, our findings consistently demonstrate the effectiveness of our modules in enhancing
performance.

5 Conclusions

In this study, we propose a novel method that integrates the Pyramid Vision Transformer (PVT)
with a cyclic refinement architecture, tailored specifically for cloud detection tasks. The conclusions
are outlined below:

1) Our unique combination leverages the PVT’s capability to capture multi-scale features and
enhances the resolution and quality of these features through the cyclic refinement architecture.
This approach significantly improves the segmentation of details in cloud detection, overcom-
ing common degradation issues. Testing on various datasets has demonstrated that our method
substantially outperforms several existing advanced models in detection performance.

2) This innovative method contributes significantly to the field of cloud detection, both theo-
retically and methodologically. It showcases the potential of combining PVT with a cyclic
refinement architecture, especially in terms of high-resolution feature extraction and detailed
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segmentation. Although this method has not been tested in other practical application sce-
narios yet, the theoretical and experimental results indicate a promising potential for future
applications in cloud detection and related fields. Moreover, this work opens new avenues for
future research, potentially fostering interdisciplinary innovation and development.

3) There are still some limitations in this study, such as reduced detection accuracy in complex
terrains. Future research could focus on improving detection accuracy in challenging environ-
ments.
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