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ABSTRACT

Mobile technology is developing significantly. Mobile phone technologies have been integrated into the healthcare
industry to help medical practitioners. Typically, computer vision models focus on image detection and classi-
fication issues. MobileNetV2 is a computer vision model that performs well on mobile devices, but it requires
cloud services to process biometric image information and provide predictions to users. This leads to increased
latency. Processing biometrics image datasets on mobile devices will make the prediction faster, but mobiles
are resource-restricted devices in terms of storage, power, and computational speed. Hence, a model that is
small in size, efficient, and has good prediction quality for biometrics image classification problems is required.
Quantizing pre-trained CNN (PCNN) MobileNetV2 architecture combined with a Support Vector Machine (SVM)
compacts the model representation and reduces the computational cost and memory requirement. This proposed
novel approach combines quantized pre-trained CNN (PCNN) MobileNetV2 architecture with a Support Vector
Machine (SVM) to represent models efficiently with low computational cost and memory. Our contributions
include evaluating three CNN models for ocular disease identification in transfer learning and deep feature plus
SVM approaches, showing the superiority of deep features from MobileNetV2 and SVM classification models,
comparing traditional methods, exploring six ocular diseases and normal classification with 20,111 images post-
data augmentation, and reducing the number of trainable models. The model is trained on ocular disorder retinal
fundus image datasets according to the severity of six age-related macular degeneration (AMD), one of the most
common eye illnesses, Cataract, Diabetes, Glaucoma, Hypertension, and Myopia with one class Normal. From the
experiment outcomes, it is observed that the suggested MobileNetV2-SVM model size is compressed. The testing
accuracy for MobileNetV2-SVM, InceptionV3, and MobileNetV2 is 90.11%, 86.88%, and 89.76% respectively while
MobileNetV2-SVM, InceptionV3, and MobileNetV2 accuracy are observed to be 92.59%, 83.38%, and 90.16%,
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respectively. The proposed novel technique can be used to classify all biometric medical image datasets on mobile
devices.
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1 Introduction

Numerous applications, including image classification, object identification, and segmentation,
have seen considerable advancements because of the deep learning (DL) model [1,2]. DL-based
methods have been effectively translated into mobile phones for precise user authentication thanks
to the revolution in mobile technology and the increasing use of biometric technologies, deeply linked
auto-encoders [3]. Among other DL-based techniques, convolutional neural networks (CNN) and
deep sparse filtering-based feature representation [4] have both been suggested for user identification
using biometrics in mobile settings [5]. The study aims to use deep transfer learning, which is most
typically used to evaluate visual imagery in camera-based mobile biometrics. Various hidden layers
comprise a conventional CNN-based model consisting of input nodes and output neurons, among
others. Among these hidden layers are polling layers, network normalization, convolutional layers,
and fully linked levels of the CNN-based model. Existing CNN models, 1.2 million photos from the
ImageNet collection, were used to train algorithms like VGG [6] and ResNet [7], employing transfer
learning, and have been repurposed to gather features and authenticate mobile users [8].

Transfer learning is the process of transferring knowledge from one task to another. By applying
the learned feature layers from the startup of one job to a pre-trained CNN, transfer learning may be
used for CNNs. In most of these studies [5,9,10], training and validation are conducted on the same
participants when doing restricted validation or recognition. Classifiers relying on softmax, sparsity,
or machine learning are used for decision-making. Hence, the network can be tailored for specific
dataset issues. Similarly, prior studies have never investigated the computational costs of projected
mobile device application models [11]. For example, pre-trained models, like VGG, are too large and
need too many operations to be used effectively on a mobile device.

Model size and computing cost are essential for frequent and real-time mobile device biometric
authentication. This vast model may use that memory with a high computational price, running more
slowly than a small model with a low computational cost. For the best user experience, anything that
can be used frequently, like unlocking a phone, is necessary. These features are required for learnable
layers like convolutional and connected layers. With more parameters in the learnable layers, the model
grows in size. Additionally, multiply-add (MAdd) operations form the foundation for operations like
convolution and matrix multiplication in learnable layers.

The challenges associated with ocular disorder identification include the need for accurate
and timely diagnosis of various eye conditions such as age-related macular degeneration (AMD),
Cataracts, Diabetes, Glaucoma, Hypertension, Myopia, and Normal, which require specialized
expertise and equipment. Additionally, the interpretation of retinal fundus images for disease identi-
fication can be complex and subjective, often requiring extensive training and experience. The clinical
motivation driving our research lies in addressing these challenges by developing a robust and efficient
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deep-learning model for the identification of ocular disorders from retinal images. By leveraging
advanced machine learning techniques, we aim to provide healthcare practitioners with a reliable tool
for early detection and classification of eye conditions, facilitating timely intervention and treatment
decisions. This research endeavor ultimately seeks to improve patient outcomes and reduce the burden
on healthcare systems by enabling more efficient and accurate diagnosis of ocular disorders.

This study will present a mobile-based ocular disorder identification method using retinal images
and assess its usefulness for mobile biometric user verification. Additionally, we demonstrate and
benchmark our original, compact DL-based model, indicating that it performs similarly to other DL-
based models while using a smaller model size and less computational cost.

Therefore, the study contributions are as follows:

a) The study evaluates the performance of 3 CNN models for ocular disease identification in
transfer learning and deep feature plus SVM approach.

b) The statistical analysis results show that the deep features of MobileNetV2 and SVM classifi-
cation models are superior to others.

c) A comparative analysis uses all classification models based on CNN and traditional methods.
d) The study is conducted on six octal diseases and a normal with a dataset of 20,111 after data

augmentation.
e) The proposed model requires fewer trainable parameters due to using pre-trained weights

across all layers of the MobileNetV2 architecture. This enhances its suitability for implemen-
tation on devices with limited resources, such as mobile devices.

f) Our proposed model’s end-to-end training and deployment eliminates the need for distinct
feature extraction and classification phases, which are present in conventional machine learning
approaches.

2 Related Works

Several research studies have been conducted in computer vision, image processing, classification,
and disease detection [12]. Some researchers have researched in some areas, such as the role of a
transcriptional factor in attenuating a specific medical condition [13] and object detection [14–16].
Researchers [17] developed a method for estimating and tracking surgical instrument posture. In this
study, we have discussed some related works in the ocular eye disease detection field in this section.

Li et al. [18] employed the DL approach to fine-tune the ImageNet-pre-trained VGG-16 sys-
tem and examined its effectiveness on a test dataset. The receiver-operating characteristic (ROC),
predictive accuracy, sensitivity, and specificity were then determined. The findings from experiments
demonstrated that the suggested technique exhibited outstanding outcomes in detecting macular OCT
photographs, with an estimated accuracy of 98.6%, a sensitivity of 97.8%, a specificity of 99.4%, and
an ROC of 100%.

Pin et al. [19] investigated a practical DL framework that recognizes three main optical conditions:
diabetic retinopathy (DR), AMD, and glaucoma (GLC). The procedure recommended consists of
two stages. First, a new approach involving a preliminary qualitative assessment in the algorithm
for classification to separate low-quality images and the technique’s efficiency is recommended. The
transfer learning approach is also implemented to train different CNN algorithms that naturally
discover multiple attributes in the digital retinal image and then employ those traits to diagnose eye
disorders.
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Khan et al. [20] sought to build a DL strategy capable of predicting structural characteristics from
fundus photographs and identifying the most effective approach for building models for this endeavor.
Within March 2020 and March 2021, data was gathered from a group of individuals undertaking the
DR examination. Building on the DenseNet201 structure, two distinct techniques were developed for
every single one of 12 systemic medical attributes: one using TL with data obtained from ImageNet
and a different approach with 35,126 fundus photographs. One thousand two hundred seventy-seven
fundus photographs have been employed to develop AI algorithms in this study.

Guo et al. [21] projected the use of a lightweight DL strategy called MobileNetV2 and TL to
differentiate four prevalent eye disorders, including Glaucoma, Maculopathy, Pathological Myopia,
and Retinitis Pigmentosa, from typical conditions employing barely noticeable training samples. To
make the framework further explicable, the researchers additionally use an imaging method that
emphasizes regions with the most robust connections with the condition’s classifications. The stressed
area selected by the technique may provide clues to additional fundus photograph research. Five
separate evaluations of their experiments indicate that the approach obtains an overall accuracy of
96.2%, a sensitivity of 90.4%, and a specificity of 97.6% on the test data, outperforming the two
additional DL-powered strategies concerning accuracy and effectiveness.

Cen et al. [22] established DL strategies for identifying several typically identifiable fundus
conditions and disorders (39 classes) utilizing 249,620 fundus photographs annotated with 275,543
annotations from different databases. The recommended DL methodologies obtained an intensity-
weighted typical F1-score of 0.923, sensitivity of 0.978, specificity of 0.996, and ROC of 0.9984
for multiple labels in the primary evaluation dataset. They attained the requirements of retina
professionals on average.

Devi et al. [23] suggested a TL methodology with data augmentation approaches and Gaussian-
blur, circle-crop preprocessing procedures to recognize each phase of DR utilizing ResNet50 with
topmost tiers.

Chen et al. [24] proposed a computer-based classification of retinal surface conditions using highly
interconnected CNN architecture and mobile device imagery. They acquire normal and abnormal
medical pictures using multiple mobile phones and customize end-to-end tightly coupled CNN
utilizing a combination of units to discover a broader range of attributes, thus substantially decreasing
the algorithm’s dimension, the aggregate number of variables, and float computation. The testing
outcomes indicate that the approach the investigated suggested is efficient yet prospective for effective
screening for ocular surface abnormalities. More specifically, the recommended method for classifying
smartphone images utilizing extensive machine learning obtained an average automatic identification
accuracy of 90.6%.

In 2023, Sajid et al. [25] created a MobileNet architecture using transfer learning (TL) and dense
blocks to enhance the network’s performance in diagnosing HR eye-related diseases. The researchers
developed a compact method for diagnosing eye diseases connected to human resources, called
Mobile-HR, by combining a pre-trained model with dense blocks. The authors used a data augmenta-
tion strategy to expand the size of the training and test datasets. The results of the trials demonstrate
that the proposed method was surpassed in several instances. The Mobile-HR system showed a 99%
accuracy and an F1-score of 0.99 across several datasets. An experienced ophthalmologist validated
the findings. The findings suggest that the Mobile-HR CADx model achieves favourable outcomes
and surpasses state-of-the-art HR systems in accuracy.

Wahab Sait [26] sought to create a low-resource deep-learning (DL)-based DR-severity assessment
system. The model used picture preprocessing to reduce fundus image noise and artefacts. Yolo V7
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feature extraction was recommended. It provided feature sets. The author selected attributes using a
customized quantum marine predator algorithm (QMPA). The hyperparameter-optimized MobileNet
V3 model predicted severity levels from photos. The author used APTOS and EyePacs datasets to
generalize the model. EyePacs has 35,100 fundus pictures, whereas APTOS has 5590. The suggested
model has an accuracy of 98.0 and 98.4 and an F1-score of 93.7 and 93.1 in the APTOS and EyePacs
datasets, respectively. The DR model used fewer parameters, FLOPs, learning rate, and training time
to learn fundus picture key patterns.

El Harti et al. [27] suggested a hybrid method integrating four machine-learning models with a
traditional neural network to categorize these eye diseases. Our method extracts features using the
ImageNet dataset’s pre-trained VGG16 model. The retrieved characteristics are then fed into the ML
models. Ocular recognition, retinal datasets, the Indian Diabetic Retinopathy Image Dataset, and
other freely accessible Kaggle databases were used to conduct this study.

To overcome these issues, Jeny et al. [28] developed an automated deep learning-based ensemble
technique to identify and categorize eye disorders using fundus pictures. The ensemble technique
suggests a 20-layer CNN-based model with activation, optimization, and loss functions. Preprocessing
uses contrast-limited adaptive histogram equalization (CLAHE) and Gaussian filter to improve
picture clarity and reduce noise. Training overfitting is avoided using augmentation procedures. Three
pre-trained CNN models—VGG16, DenseNet201, and ResNet50—are used to evaluate the proposed
CNN model. Experimental findings show that the ensemble strategy outperforms current state-of-the-
art approaches in the ODIR dataset.

Thiagarajan et al. [29] suggested an intelligent system to aid healthcare workers in this endeavour
to make it more efficient. To detect eye diseases, this research indicates a system that uses trained
Neural Networks to classify retinal fundus pictures (RFI). In testing, ODDS attains a 93% accuracy
rate with good precision, recall, and F1-scores for all classes using an EfficientNetB3 model with
a dataset of 5600 pictures across five categories. Community screening programs, particularly in
underserved regions, may benefit from this approach; however, to make it more reliable and accessible,
more data augmentation and investigation into smartphone integration are recommended.

Table 1 summarizes the related works and demonstrates the limitations of the studies that
motivated this present study.

Table 1: Summary of related works

Authors Year Methods Limitations

Li et al. [18] 2019 VGG16 They only tested a single test dataset
and did not access their technique
with existing techniques.

Pin et al. [19] 2022 TL techniques with
many CNN approaches

The investigators only considered
three distinct eye disorders, limiting
the generalization to other eye
defects.

(Continued)
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Table 1 (continued)

Authors Year Methods Limitations

Khan et al. [20] 2022 DenseNet201 They only considered forecasting
structural attributes from fundus
scans, limiting the suggested
approach’s applicability to other
areas of ophthalmology. They did
not perform a comparative analysis
with existing studies.

Guo et al. [21] 2021 MobileNetV2 Here, the scholars only investigated
four eye conditions, limiting the
approach’s generalization to other
eye diseases.

Cen et al. [22] 2021 Many DL approaches The study considered recognizing
particular fundus diseases, which
limited its generalization to other
domains of ophthalmology, and
they did not evaluate the present
research and existing ones.

Devi et al. [23] 2022 ResNet50 The investigator researched to
recognize every phase of DR,
limiting its applicability to other
ears of ophthalmology.

Chen et al. [24] 2021 CNN technique with
mobile devices

The authors only offered to
categorize retinal surface conditions,
limiting its applicability to other
ears of ophthalmology.

Sajid et al. [25] 2023 MobileNet with
transfer learning

Lack of discussion on potential
biases in dataset selection.

Wahab Sait [26] 2023 Yolo V7, quantum
marine predator
algorithm (QMPA),
MobileNetV3

There is limited discussion on the
scalability and generalizability of the
proposed model beyond the datasets
used.

El Harti et al. [27] 2024 VGG16 model, four
machine-learning
models

Insufficient details on the
integration process of different ML
models and potential challenges in
model fusion.

Jeny et al. [28] 2023 20-layer CNN-based
model, contrast-limited
adaptive histogram
equalization (CLAHE)
and gaussian filter

Limited discussion on
computational resources required
for training and inference of the
proposed ensemble model.

(Continued)
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Table 1 (continued)

Authors Year Methods Limitations

Thiagarajan et al. [29] 2023 EfficientNetB3 and
neural network

Lack of comparison with alternative
ensemble techniques or single-model
approaches to evaluate relative
performance advantage.

The presented related works illustrate numerous research that use deep learning (DL) algorithms
to diagnose eye problems, each with constraints such as lack of generalization, data inefficiencies,
interpretability difficulties, challenges in real-world deployment, and ethical implications. The research
concentrates on particular eye disorders, demonstrating good accuracy but lacking general relevance
and scalability due to dataset constraints. Therefore, the motivation for additional research includes
developing DL models that generalize well across diverse conditions, increasing data efficiency through
transfer learning and data augmentation techniques, improving interpretability and explainability,
refining models for real-world deployment, and addressing ethical concerns such as bias and privacy
issues in healthcare AI applications.

Hence, we decided to solve the problem of data inefficiencies and data imbalances. The study
suggested a model that combined the use of a mobile pre-trained model, which was hybridized with a
machine learning technique SVM for the classification process. The study involved the use of transfer
learning and data augmentation to enhance data efficiency. The study also used a dataset with seven
classes against the related works: four, three, etc. The effectiveness of the proposed approach was also
evaluated using measures like accuracy, specificity, recall, F1-score, etc.

The rationale for employing mobileNetV2 PCNN is that it is intriguing for mobile and embedded
vision services owing to its lightweight design, high accuracy, and swift rapidity. SVM was utilized
with MobileNetV2 since it offers enhanced accuracy, more effective handling of small datasets, more
accurate comprehensibility, and decreased computation time, making it suitable for mobile phone and
tablet implementation with only a few resources.

3 Materials and Methods
3.1 Dataset

The effectiveness of DL-based techniques depends on the availability of a valid and appropriate
dataset. The research in question makes use of the ODIR5K dataset. The ocular disease dataset
consists of 6392 images. The information was collected from the Kaggle repository. It comprises
seven classes of ocular diseases, which include AMD with 266 photographs, cataract with 293 photos,
diabetes with 1608 images, glaucoma with 284 illustrations, hypertension with 128 images, myopia with
232 images and Normal (without any ocular diseases) with 2873 images.

Considering the unbalanced data from these eight classifications, 6392 photos of ocular disorders
were added to the Kaggle library to address the class imbalance problem. The images were then
enhanced using various data augmentation methods like horizontal flipping, resizing, network shift-
ing, width shift, and rotation that were transformed to 20,111. The class imbalance issue was addressed
in the dataset using 2873 images across all classes. All of the images of the ocular classes were randomly
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chosen from the entire collection of images. Fig. 1 presents samples of ocular eye diseases, and Table 2
provides class information.

Figure 1: Samples of ocular eye diseases

Table 2: Summary of the ocular disorder dataset

Classes Before augmentation After augmentation

AMD 266 2873
Cataract 293 2873
Diabetes 1608 2873
Glaucoma 284 2873
Hypertension 128 2873
Myopia 232 2873
Normal 2873 2873
Total 6392 20,111

3.2 Image Preprocessing

Image preprocessing is used for all input images of the ocular condition to get more consistent
findings with better characteristics. A large-scale picture dataset was needed for the PCNN approach’s
recurrent training requirements to avoid the risk of over-fitting. The original ocular disorder dataset
contains all images in various sizes, including 1956 × 1934, 2592 × 1728, 1444 × 1444, and others.
Hence, the dataset is resized to 224 × 224. The model performance will drastically reduce, and the
processing time will increase.
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3.2.1 Image Augmentation

With the help of the Keras library’s Python image data generation method, various picture
augmentation techniques have been used in training sets to combat overfitting and boost the dataset’s
heterogeneity [30]. The scale transformation was performed using a lower computing cost, and pixel
values were of the same range. Therefore, using the (1/255) value parameter, each pixel’s value ranged
from 0 to 1. By utilizing rotations, photos were turned to a particular angle revolution. Hence, 40
pixels were picked. The dimension shift ranging transition was used to set the width change to 0.2,
and images can be spontaneously moved to the right or left. The training images were vertically shifted
with a setting of 0.02 for the altitude shifting range variable. One dimension of the picture is constant
using the shear transformation technique, while the other axis is strained at a 0.2 shear viewpoint.

A value greater than 1.0 image was zoomed in using the zoom range option to do the random
zoom transformation, and if it was less than 1.0, they were zoomed out. Hence, the image was enlarged
using a 0.2 zoom range. The image was horizontally flipped using the flip command. The zoom range
was set to 0.5–1.0 using brightness transformation if 1.0 represents the brightest possible light and 0.0
represents no light, and the horizontal flip setting was set to true. Because channel shift transformation
uses a 10-channel shift range, a value chosen from the provided range is applied randomly to alter the
channel values and then reflect fill mode, as shown in Table 3.

Table 3: Image augmentation approaches

Approach Setting

Rotation_range 40
Width_shift 0.2
Height_shift_range 0.2
Shear_range 0.2
Zoom_range 0.2
Horizontal_flip True
Channel_shift_range 10
Fill_mode Reflect

3.2.2 Training, Validation, and Testing

The dataset for ocular disorders was separated into three stages: training, confirmation, and
assessment components. The introduced MobileNetV2-SVM model’s performance was assessed using
the validation and test datasets, while the training set was used to train the PCNN models. Therefore,
the authors divided the dataset into training, testing, and validation, with weights of 80%, 10%, and
10%. The 10% of the dataset for the test set was present across the board (20,111). The remaining
dataset (18,100) was applied to the models’ learning, and 10% of the validation set was used. To train
the MobileNetV2-SVM model, the dataset was used. In addition, 16,290, 1811, and 2012 images were
employed for the ocular dataset training, validation, and testing, respectively.

3.3 Deep Transfer Learning Methods

TL Once DCNNs in 2012, TL became the foundation of state-of-the-art (SOTA) object identifi-
cation models by recycling and perfecting visual information gained in DCNNs (CV) [31,32]. Most



148 CMC, 2024, vol.80, no.1

DL-based models tested CNNs trained on the vast ImageNet are used in this work [33]. 1.2 million
training photos make up this dataset, which is typical for large-scale image categorization.

• InceptionV3

There are 42 layers in the Inception module that [34] has proposed. InceptionV3 is the third
version of Google Brain’s Convolution layer suggested, comprising 159 layers. The primary goal of
the Inception module is to merge tiny kernels with large kernels to learn multi-scale models, simplify
computation, and use fewer parameters overall.

• MobileNetV2

A CNN design for mobile devices called MobileNetV2 was proposed by [35] in 2018. Its initial
design also included facial, developed and validated using Google’s internal datasets for feature
identification [36]. In addition, they balance inference time and performance for popular benchmarks
like ImageNet by introducing linear constraints and inversion residuals, and they obtain cutting-edge
results, COCO [37], and VOC [38]. Three hundred million MACs and 3.47 million parameters make
up our version of MobileNetV2.

• Xception

Francois Chollet expanded the Inception architecture by introducing the Xception architecture
[39]. This design comprises a linear stacking of depth-wise separated convolution layers with feedback
connections. The depthwise separable convolution attempts to lower memory and computational costs.
All 14 modules in Xception’s 36 convolutional layers have linear residual relationships except for the
first and last modules—the detachable separate the learning of stream and space-wise characteristics
convolution in Xception. The residual connection developed by authors in [40] also provides a
sequencing network approach for dealing with vanishing gradients and symbolic constraints. This
approach connection uses a summing operation rather than a concatenation to render an initial layer’s
result accessible as data to a subsequent layer.

3.4 The Proposed Model

The custom model is based on MobileNetV2 and SVM architectures. The MobileNetV2 was
used as a feature extractor to process the ocular biometric disorder datasets. Next, the deep features
returned were classified using a Support Vector Machine. The proposed model has only 34,374,727
total parameters. Our suggested model has the fewest variables of the other three PCNN models.
Fig. 2 shows the architectural diagram for the proposed MobileNetV2-SVM with their layers. First,
the ocular dataset is uploaded or input, after which the MobileNetV2-SVM model is used for training,
and the classification result is then output, as seen in Fig. 2.

Four transfer learning techniques are put forth in this work to classify images of ocular diseases.
The pre-trained CNN models are fed the image using the first technique, which then uses the outputs
from various layers to extract image features. Once these features have been classified, the SVM
classification method is used. The second strategy alters the classification layer of the current designs
and trains the neural network’s filter weights. Finally, the pre-trained CNN is used to initialize the filter
settings in each layer except for the final classification stage, whose parameters are set using Gaussian-
distributed random integers. Table 4 shows the parameters for training, validating, and testing the
suggested approach. Fig. 3 shows the proposed approach flow diagram. Integrating MobileNetV2
and SVM capabilities can result in a robust, cost-effective, reliable classification framework, as shown
in Fig. 3.
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Figure 2: MobileNetV2-SVM architecture

Table 4: Hyperparameter for proposed model

MobileNetV2 SVM

a) Input size 224 × 224 × 3
b) Depth multiplier: This is set between 0 and 1
c) Number of classes: 7
d) Learning rate: 0.001
e) Optimal: Adam

a) Kernel type: In this, we used linear
higher dimensional feature space

b) C parameter: used to penalize
misclassifications during training

c) Gamma parameter: In this study, RBF
kernel was used

The research methodically chooses techniques by taking into account various crucial factors,
including the limitations of mobile devices in medical imaging, the need for efficient computations that
do not compromise precision, and the indispensability of dependable performance across a wide range
of biometric image datasets. The selection of MobileNetV2 as the foundational CNN architecture is
based on its lightweight, which is accomplished via depthwise separable convolutions. This guarantees
smooth functionality on mobile platforms without compromising the ability to differentiate. The clas-
sification capabilities of MobileNetV2 are improved by integrating a Support Vector Machine (SVM),
which capitalizes on the SVM’s ability to generate high-dimensional decision boundaries. By leveraging
the feature extraction capabilities of MobileNetV2 and the decision-making capabilities of SVM,
this integration strikes a harmonious equilibrium among computational efficiency, discriminatory
capability, and interpretability. In essence, this astute decision is the foundation for the effectiveness
and adaptability of the MobileNet-SVM method suggested for classifying biometric images on mobile
devices; it effectively tackles the obstacles of mobile medical imaging.

The suggested technique incorporates the Quantizing pre-trained CNN (PCNN) MobileNetV2
and a Support Vector Machine (SVM) into our deep transfer learning architecture. MobileNetV2 was
chosen for its efficiency in mobile-based applications, which uses depthwise separable convolutions to
minimize computational complexity while retaining feature extraction capacity. Quantization methods
are used to reduce model size and computing overhead to improve efficiency further. The SVM model,
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a popular classification technique, enhances MobileNetV2 by creating high-dimensional decision
limits for reliable classification. The SVM is equipped with a radial basis function (RBF) kernel and
tweaked using parameters such as C (regularization parameter) and gamma (kernel coefficient). These
parameters are carefully calibrated to ensure peak performance in eye disease detection activities
on mobile devices. By merging PCNN MobileNetV2 with SVM, the proposed model provides
interoperability with mobile platforms while improving suitability for real-time classification. This
integration is a cornerstone, allowing for the quick and reliable diagnosis of ocular illnesses across
various mobile imaging datasets.

Figure 3: Proposed MobileNetV2 with SVM framework

The proposed method flow diagram is also presented in Fig. 4. The following procedure
demonstrates how this can be accomplished:

Step One: Import the dataset of ocular fundus images into the system.

Step Two: Perform preprocessing duties on the dataset, such as normalization.

Step Three: Apply the MobileNetV2 method to extract features from the input images.

Step Four: Fine-tune MobileNetV2 to improve system performance.

Fifth Step: The output of MobileNetV2 is a set of feature vectors.

Sixth Step: The feature vectors are then sent to an SVM classifier trained on the features obtained
to acquire knowledge of the decision boundary between various data classes.

Step Seven: During inference, new images are first processed by the MobileNetV2 method to
extract features, and then the SVM classifier is used to predict the class labels of the input image.
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Figure 4: Proposed method flow diagram

3.5 Fine Tuning

When fine-tuning, we suggested training the filter weights of the most recent few layers and fixing
the filter parameters from earlier layers. There are two factors at play in this learning adaptation.
To begin with, the dataset used for transfer learning is modest compared to ImageNet, where the
pre-trained models were developed. Therefore, fine-tuning the entire neural network may not be the
best action given the tiny dataset and limited data. Secondly, the shallow portion of CNN designs
typically learns filters that correlate to more generic visual properties, including edges and corners.
They are acknowledged as fixed characteristics for photographs from many application domains. The
parameter used to implement the proposed model is shown in Table 5.
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Table 5: Parameters used for the implementation

Parameters Values

The proposed model MobileNetV2-SVM
Transfer type Freezing the top layers of the pre-trained model
Loss function CategoricalCrossentropy
Batch size 64
Generate layers All
algorithm for learning Adam
Learning rate Default alpha rate
Function of activation Relu & softmax
Epochs 10

3.6 The Performance Evaluation Metrics for the Proposed Models

The proposed technique was assessed following the training procedure on the testing dataset.
Various performance metrics, such as accuracy, recall, precision, F1-score, and ROC-AUC score,
were used to test the proposed architecture’s performance. The following is a detailed analysis of the
performance metrics used in this study [41]. Here are the definitions and equations for the performance
metrics: TP signifies the True Positives, TN represents the True Negatives, FN signifies False Negatives,
and FP signifies the False Positives.

• Accuracy
According to Eq. (1), classification accuracy is calculated as the number of precise forecasts per

accurate estimate.

Accuracy = TP + TN
TP + TN + FP + FN

(1)

• Precision
This indicator shows the proportion of data instances that the model correctly predicts to be

typical. Divide the overall number of true positives by the whole number of true positives plus false
positives, and it is calculated. It is computable mathematically by (2):

Precision = TP
TP + FP

(2)

• Recall
Another crucial metric is recall; this represents how the input samples were divided into the classes

that the algorithm correctly predicted. Recall eligibility is decided by (3):

Recall = TP
TP + FN

(3)
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• F1-score

A popular statistic that combines recall and precision measurements is the F1-score. The F1-score
is determined by (4):

F1 − score = 2 ∗ (Precision ∗ Recall)
(Precision + Recall)

(4)

• AUC score and ROC Curve

A reliable method that balances sensitivity and specificity is using ROC curves, which are based
on TP and FP rates.

4 Results and Discussion

On Jupiter Notebook, an experiment using the proposed MobileNetV2-SVM architecture was
conducted. The proposed model used the Python programming language, the open-source Keras
tools, and the Tensor-Flow platform to develop the MobileNetV2-SVM approach. It uses the Adam
optimizer for training with a CategoricalCrossentropy loss function and a preset learning rate. The
computational details used to implement the suggested strategy involve utilizing a laptop system with
an intel CORE i7 vPro, 16 GB RAM, and 1Terabyte hard disk.

4.1 Performance of Proposed Model on the Ocular Disorders Database

To assess the effectiveness of the suggested model, various experiments were performed on the
recently released MobileNetV2-SVM framework. As can be seen in Table 6, the experiment employed
the Categorical Cross entropy loss function, the Adam optimizer, 64 batches, ten iterations, and the
default alpha rate. Table 6 displays the research findings introduced approach had 92%, 99%, 65%,
92%, 98%, 98%, and 84% accuracy for AMD, cataract, diabetes, glaucoma, hypertension, myopia,
and normal, respectively. Myopia did the best of all the ocular disorders, scoring 100% accuracy, 97%
recall, and 98% on the F1-score.

Table 6: Performance metrics of the proposed MobileNetV2-SVM on the ocular dataset

Classes Precision Recall F1-score

AMD 0.99 0.92 0.95
Cataract 0.98 0.99 0.98
Diabetes 0.79 0.67 0.73
Glaucoma 0.98 0.93 0.95
Hypertension 0.99 0.97 0.98
Myopia 1.00 0.97 0.98
Normal 0.66 0.85 0.74

Fig. 5 depicts the outcomes of the planned framework during training and validation for each
epoch for the accuracy and losses. The findings show that the training accuracy is high, and validation
grew speedily after the first epoch and stabilized after almost eight. However, after two epochs, training
and validation losses started to drop off quickly, and after four, they stabilized. When the training set
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was subjected to the data augmentation approaches, the findings indicated that the proposed technique
obtained superior classification scores on the ocular dataset.

Figure 5: (a) Accuracies and (b) loss graphs of the proposed MobileNetV2-SVM model

The confusion matrix is a proper DL technique that assesses a model’s precision, recall, accuracy,
and ROC curve. The categorization accuracy was measured graphically using a confusion matrix.
Darker hue denoted the MobileNetV2-SVM’s more accurate categorization of the correct class, while
lighter colour denoted erroneously recognized samples. In the confusion matrix, accurate forecasts
were shown diagonally, and inaccurate guesses were shown off-diagonally. The outcomes in Fig. 6
show that the current MobileNetV2-SVM architecture performed better when the ocular dataset
underwent data augmentation methods. It showed 263 AMD images out of 286; 271 Cataract images
out of 275; 184 Diabetes images out of 275; 270 Glaucoma images out of 290; 278 Hypertension images
out of 287; 292 Myopia images out of 300; and 255 Normal images out of 299 were accurately classified
by the MobileNetV2-SVM model. The introduced MobileNetV2-SVM model was generalized based
on the presented MobileNetV2-SVM system’s 90% overall accuracy and 10% inaccuracy.

Figure 6: MobileNetV2-SVM model confusion matrix
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The proposed model has 94.01% using area under the curve for the validation and test set classes,
and the MobileNetV2-SVM model demonstrated remarkable classification performance. The ROC
curve shown in Fig. 7 was used to gauge the effectiveness of the proposed model. Asthma, cataracts,
diabetes, glaucoma, hypertension, myopia, and normal are represented by classes 0, 1, 2, 3, 4, 5, and
6. Table 7 shows that, with an AUC value of 0.9401, the suggested MobileNetV2-SVM outperformed
the other three baseline PCNN approaches.

Figure 7: MobileNetV2-SVM ROC curve on ocular dataset

Table 7: AUC values for the proposed MobileNetV2-SVM and other models

Models AUC

MobileNetV2-SVM 0.9401
InceptionV3 0.8852
MobileNetV2 0.9354
Xception 0.9271

Various performance metrics were used on the proposed model with the data augmentation
techniques, and they performed remarkably well on the ocular disorders dataset. In the earlier
investigations, the duration of the training and validation phase execution is indicated in Table 6, which
is used to evaluate the effectiveness of the proposed model. Train the suggested model over ten epochs.
It took about 80 min. InceptionV3 and MobileNetV2 require significantly less computing time than
MobileNetV2-SVM. However, compared to other performance progress indicators like sensitivity,
specificity, and accuracy, MobileNetV2-SVM showed a higher prediction accuracy. As demonstrated
in Table 8, the computational time of the proposed MobileNetV2-SVM is respectably good, making it
possible to implement the technology to run over computationally lightweight devices (mobile devices).
By retaining the essential features required for the faster and more accurate classification of the dataset
for ocular disorders, the SVM module will help with more rapid convergence.

Early stopping was introduced in this study to allow the definition of many training epochs
arbitrarily, and the model’s training was terminated when the validation dataset performance stopped
advancing. In this study, the early stopping callback was set to specify performance measures on
which validation accuracy was monitored, and training stopped when the validation accuracy stopped
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improving. A decay called patience argument was added to the early stopping approach to have the
best model performance before training stops. The early stopping epochs tables are provided for each
model (See Table 9).

Table 8: The computational time of MobileNetV2-SVM and other approaches

Model Computational time

MobileNetV2-SVM 80 min
InceptionV3 215 min
MobileNetV2 83 min
Xception 387 min

Table 9: Early stopping approach epochs for each model implemented

Model Epochs

MobileNetV2-SVM 8
InceptionV3 10
MobileNetV2 7
Xception 8

4.2 Performance Evaluation with Some DTL Models

Table 9 shows the proposed MobileNetV2-SVM technique’s training, validation, and testing
accuracies, along with the other three baseline PCNN techniques that have been applied. For each
of the four PCNN approaches, the losses of training, validating, and testing procedures employed
in this study are also shown in the table. The proposed MobileNetV2-SVM performed better than
the other baseline techniques, as shown in Table 10, with training, validation, and testing accuracies
of 92.59%, 89.73%, and 90.11%, respectively. Regarding training, validation, and testing losses, the
suggested method also produced the best results, with values of 0.2535, 0.3056, and 0.3020.

Table 10: The performance evaluation of the proposed models

Models Training
accuracy

Validation
accuracy

Testing
accuracy

Training loss Validation
loss

Testing
loss

MobileNetV2-SVM 0.9259 0.8973 0.9011 0.2535 0.3056 0.3020
InceptionV3 0.8336 0.8752 0.8688 0.4169 0.3241 0.3392
MobileNetV2 0.9016 0.8912 0.8976 0.2545 0.3741 0.3674
Xception 0.9224 0.8835 0.8862 0.2540 0.4119 0.3927

4.3 Comparative Analysis with State-of-the-Arts

We compared the performance of the offered model with cutting-edge methods to represent the
generalization of the introduced methodology. It was found that the deep transfer learning system
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offered performed better than cutting-edge methods. When comparing the suggested strategy to
cutting-edge techniques, the misclassification varied a bit—comparing the efficiency of the developed
technique to other previously published classification strategies for ocular disorders allowed for
assessment. Table 9 displays the study findings and compares the suggested model to other recent
investigations, and the most accurate method was the one that was introduced.

The proposed MobileNetV2-SVM model performed better than the previous research, such as
research by authors in [42], which obtained 84.17% accuracy in classifying diabetes diseases on the
Pima Indian Diabetes. In [43], the authors used Gradient-weighted Class Activation Mapping on 2012
retinal photographs to detect hypertension diseases and obtained an accuracy of 60.94%. The authors
in [44] reported 90.0% accuracy using the InceptionV3 model on an OCT dataset to classify Myopia
diseases.

Similarly, authors in [45] used DL techniques, performed with 87.53% accuracy, and used the
Advanced Clinical Center for Myopia. The authors in [46] used ResNet18, ResNext50, EfficientNetB0,
and EfficientNetB4 for Myopia classification using 367 eyes of patients (Custom dataset) datasets and
had a 95% accuracy. We may state that the envisioned MobileNetV2-SVM model outperformed the
already-in-use approaches and attained accuracy values for training, validation, and testing of 92.59%,
89.73%, and 90.11%, respectively. It obtained the highest accuracy compared to other models, as shown
in Table 11.

Table 11: Comparative analysis with state-of-the-art models

Authors Method Disease Dataset Accuracy

Kumar et al. [42] Multi-layer feed
forward neural
networks (MLFNN)

Diabetes Pima Indian
diabetes

84.17%

Dai et al. [43] Gradient-weighted class
activation mapping

Hypertension 2012 retinal
photographs

60.94%

Choi et al. [44] InceptionV3 Myopia OCT images 90.0%
Du et al. [45] DL techniques Myopia Advanced clinical

center for myopia
87.53%

Park et al. [46] ResNet18, ResNext50,
EfficientNetB0,
EfficientNetB4

Myopia 367 eyes of patients
(Custom dataset)

95%

Proposed model MobileNetV2-SVM AMD, cataract,
diabetes, glaucoma,
hypertension,
myopia, and normal

Ocular dataset
from the Kaggle
repository

90.11%

5 Conclusion

One of the limitations of this work is the lack of sufficient computational resources, which
constrained the extent to which we could explore specific aspects of the research, including the number
of training epochs and the complexity of the model architecture. With little computing time, power,
or effort, the suggested model based on the MobileNetV2-SVM technique effectively classified and
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detected ocular disorder datasets. The results show promise, with an accuracy of 90.11% when tested
against other approaches using real-time photos from the Kaggle library. A mobile device with a stride2
mechanism can be used with the MobileNetV2-SVM architecture. The model is computationally
efficient; combining it with MobileNetV2 might improve forecast accuracy by preserving historical
timestamp data. The model would become more reliable by adding information about the present state
through weight optimization. It is compared with other widely used models, including InceptionV3,
MobileNetV2, Xception, and the base model. Based on the textured-based data shown in the results
and discussion section, it is evident that the suggested model has done better than other models in
classifying and assessing the progression of ocular illnesses. The model’s performance may be enhanced
much further by the SVM. When the planned model is used, it requires a lot of work to integrate either
model, which links the front end created with the help of the Android Studio/SSDLite/DeepLabv3+
and the business model created using Kaggle. However, there are now many issues that will need to
be fixed in subsequent work. When the model’s accuracy is tested against a set of images taken in
less-than-ideal lighting circumstances that are different from those used during testing, it is noticeably
reduced to just under 80%. Ultimately, the proposed technique supports rather than replaces current
disease-diagnosis methods. Visual inspection alone frequently poses problems to early identification,
and laboratory test results are always more reliable than diagnoses made only based on visual
symptoms. In prospect work, we will enlarge the range of ocular disorders research and use data from
other institutions to demonstrate the model’s external validity.

Further investigation into the proposed method could be fruitful in employing advanced tech-
niques such as attention mechanisms to enhance the model’s performance by enabling it to focus on
relevant features within the retinal images. Additionally, integrating eXplainable Artificial Intelligence
(XAI) techniques will allow us to provide deeper insights into the model’s decision-making process,
thereby improving its interpretability and trustworthiness in clinical settings. Furthermore, we would
test more architectures for detecting ocular disorders by training the pre-trained CNN models on new
datasets. In the future, the authors have proposed implementing the proposed model on another set of
datasets and doing a cross-dataset analysis assessment to confirm the study’s outcome. We also plan
to experiment to compare the results between before and after data augmentations.
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