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ABSTRACT

Nuclear magnetic resonance imaging of breasts often presents complex backgrounds. Breast tumors exhibit varying
sizes, uneven intensity, and indistinct boundaries. These characteristics can lead to challenges such as low accuracy
and incorrect segmentation during tumor segmentation. Thus, we propose a two-stage breast tumor segmentation
method leveraging multi-scale features and boundary attention mechanisms. Initially, the breast region of interest
is extracted to isolate the breast area from surrounding tissues and organs. Subsequently, we devise a fusion
network incorporating multi-scale features and boundary attention mechanisms for breast tumor segmentation. We
incorporate multi-scale parallel dilated convolution modules into the network, enhancing its capability to segment
tumors of various sizes through multi-scale convolution and novel fusion techniques. Additionally, attention
and boundary detection modules are included to augment the network’s capacity to locate tumors by capturing
nonlocal dependencies in both spatial and channel domains. Furthermore, a hybrid loss function with boundary
weight is employed to address sample class imbalance issues and enhance the network’s boundary maintenance
capability through additional loss. The method was evaluated using breast data from 207 patients at Ruijin Hospital,
resulting in a 6.64% increase in Dice similarity coefficient compared to the benchmark U-Net. Experimental results
demonstrate the superiority of the method over other segmentation techniques, with fewer model parameters.
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1 Introduction

In 2022, breast cancer became the most diagnosed cancer among women in the United States,
with 4.05 million cases [1]. This malignancy not only affects physical health but also imposes significant
psychological stress globally. According to the National Cancer Center, female breast cancer represents
11.2% of global incidence and 9.2% of global mortality, placing China at the forefront of this
challenge [2].
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Among various diagnostic techniques, DCE-MRI stands out for its superior image quality
without radiation exposure, utilizing the microvascular system in diseased and normal tissues. This
contrasts with traditional methods such as molybdenum targets, ultrasound, and X-ray, which often
provide lower resolution [3]. Therefore, the Chinese Anti-Cancer Association’s guidelines for the
diagnosis and treatment of breast cancer put forward that MRI images should be used as a routine
examination method for breast cancer imaging to find suspicious diseased areas in the breast [4].

The increasing prevalence of breast cancer necessitates that radiologists review a substantial
volume of complex images daily, a task demanding intricate knowledge and susceptible to missed
detections due to fatigue. Although some semi-automatic segmentation methods exist, their complex-
ity restricts their clinical utility, highlighting the necessity for reliable, fully automated segmentation
algorithms. These advancements are essential not only for clinical accuracy but also for the progression
of scientific research. In particular, convolutional neural network (CNN)-based methods for breast
tumor segmentation have minimized the requirement for manual intervention. Nevertheless, the
intricate backgrounds in MRI images and the simplistic nature of numerous network architectures
impede effective training and result in suboptimal segmentation accuracy [5].

This paper presents a two-stage deep neural network model that utilizes multi-scale features and
a boundary attention mechanism for breast tumor region segmentation in DCE-MRI. This paper
significantly advances the field in four critical aspects:

1) Two stages segmentation: Initially, the breast region of interest (BROI) is identified, followed
by detailed segmentation using a multi-scale attention fusion network. This approach ensures precise
segmentation from coarse to fine details, utilizing both the BROI and MRI images as dual inputs.

2) Multi-scale parallel dilated convolution fusion module (MSP-DC): Our model includes a fusion
module that uses varied dilation rates to capture features at multiple scales, coupled with a unique
feature fusion technique to handle tumors of different sizes more effectively.

3) Boundary-attention hybrid decoding module (BAHD): This module focuses on the tumor
region, optimizing boundary delineation and enhancing feature relevance, thereby improving segmen-
tation accuracy.

4) Mixed weight boundary loss function: Comprising Dice coefficients, binary cross-entropy loss,
and additional boundary loss (BCELoss), this function addresses the challenges posed by irregular
tumor shapes, class imbalance, and indistinct boundaries.

2 Related Work

In recent years, limited methods have emerged for segmenting breast tumors in DCE-MRI. At
present, the primary methods for segmenting breast tumors can be broadly categorized into five
groups: the threshold-based method [6], the region-based method [7], the contour model-based method
[8], the traditional machine learning method [9] and deep learning method [10], among which the latter
two methods have obvious advantages in segmentation effect.

With the extensive utilization of machine learning in image segmentation tasks, Chen et al. [11]
used fuzzy C-means to segment tumors, which requires manually drawing the region of interest as
an initialization step. Maicas et al. [12] proposed a global breast mass segmentation method utilizing
depth semantic segmentation, which firstly used a neural network to generate prior shapes, input the
last figures into a random forest classifier, and finally generated breast masses. McClymont et al. [13]
developed an automatic breast tumor segmentation method based on Mean Shift clustering and graph
cuts on a multimodal breast MRI dataset. Arjmand et al. [14] achieved breast tumor segmentation by
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screening tumor features with high intensity characteristics and employing the K-means clustering
method. These methods often overlook the potential heterogeneity between artificially engineered
features and subsequent learning models by treating feature extraction and model training as separate
tasks.

Deep learning algorithms have significantly progressed in recent years with improved algorithm
computing power and data scale. Long et al. [15] introduced a fully convolutional network (FCN)
capable of processing inputs of variable sizes and producing corresponding-sized outputs, achieving
end-to-end segmentation tasks. Ronneberger et al. [16] expanded upon the FCN architecture by
introducing the U-Net model. The contraction-expansion technique captures contextual information
and achieves precise target localization, yielding favorable outcomes in medical image segmentation.
Adoui et al. [17] applied networks derived from SegNet and U-Net for breast DCE-MRI image
segmentation individually. However, the segmentation results exhibited low accuracy owing to the
constraints of a limited dataset and a singular network structure. Zhang et al. [18] introduced a
hierarchical learning method for breast tumor segmentation. First, the complete convolution network
was employed to extract the breast region. Then, two other FCN models were trained to acquire and
enhance the initial segmentation results. Still, this method could not effectively segment the tumors
related to hematoma and minimal tumors.

In addition, in the research of segmentation methods in other fields of medical images, to improve
the precision of pixel-level prediction, many researchers add attention mechanism [19], boundary
detection [20], and multi-scale context information [21] to the network, thus enhancing the feature
representation of pixel-level prediction. Valanarasu et al. [22] introduced UNeXt, a network incorpo-
rating a Convolutional Multilayer Perceptron (MLP). The model implements a tokenized MLP block
for improved characterization and projection of convolutional features. Shao et al. [23] introduced
multi-scale axial attention (MAC) and proposed MCANet, enhancing global information extraction
by utilizing dual-cross attention between two parallel axial attentions. This method demonstrates
promising results in brain lesion segmentation tasks, showing high accuracy and robustness. Those
methods have improved the segmentation accuracy compared with other methods. Sun et al. [24]
improved model segmentation performance by integrating transformer into the U-shaped neural
network architecture. They employed an asymmetrical structure, combining local and global modules,
to introduce a lightweight U-shaped cascade fusion network (LUCF-Net). This model demonstrated
outstanding segmentation results on multi-organ datasets in CT format and MRI cardiac datasets.
Ruan et al. [25] introduced the Vision Mamba U-Net (VM-UNet), a novel U-shaped architecture
employing State Space Models for efficient medical image segmentation. Demonstrating strong
performance on skin lesion segmentation datasets, this model lays the groundwork for enhancing the
efficiency of future SSM-based systems. While previous studies have investigated the utilization of
multi-scale features or attention mechanisms for medical image processing, especially in tumor seg-
mentation, existing models often lack efficient integration of multi-scale contextual information and
accurate boundary detection. This inadequacy frequently results in an increase in model parameters,
rendering training and convergence more challenging. This paper introduces a multi-scale boundary
attention fusion network designed for breast tumor segmentation. It enhances the network’s ability
to extract features at different scales by employing a multi-scale parallel dilated convolution fusion
module. Furthermore, the boundary attention mixing module enhances the network’s capability to
preserve tumor boundaries, thereby facilitating precise segmentation of breast tumors.
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3 Methods

This paper introduces a two-stage deep neural network utilizing multi-scale features and boundary
attention mechanism to realize accurate segmentation of DCE-MRI breast tumors, as shown in Fig. 1.
The original image undergoes preprocessing, and the resulting image is then fed into the Breast
Segmentation Network (BSN). This network outputs the Region of Interest (ROI) that specifically
targets the breast. Concurrently, both the Breast Region of Interest (BROI) and Magnetic Resonance
Imaging (MRI) images serve as inputs to the Breast Tumor Segmentation Network (BTSN). This
network employs a combination of multi-scale hole convolution and a boundary attention mechanism
to achieve precise tumor segmentation.

Figure 1: DCE-MRI breast tumor segmentation method

3.1 Breast Region of Interest Segmentation

The background of MRI imaging is complex, and there are tissues, such as the heart, chest wall,
muscle, and fat, that seriously affect and interfere with the accurate automatic segmentation of breast
tumors. Therefore, a rough breast region (BROI) is extracted, and the tissues and organs other than the
breast region are removed, which is beneficial to accurately segmenting breast tumors in the next stage.
U-Net [16] is used as the breast region segmentation network. MRI images are used as the network’s
input, and the BROI size 512 × 512 is the output.

The shielding strategy of BROI is divided into hard shielding and soft shielding. The hard shielding
strategy uses the BROI directly as the region of interest of the input image so that most tissues and
organs can be removed directly, as shown in Fig. 2a. Qin et al. [26] used this masking strategy in
the process of breast tumor segmentation. Another hard masking method uses BROI to remove the
tumor information of non-breast regions from the breast tumor segmentation, which results in the
post-processing stage, as shown in Fig. 2b. While these two hard shielding methods are effective in
eliminating complex backgrounds, the inaccuracies in the Breast Region of Interest (BROI) and the
presence of tumors at the breast’s boundary can result in the loss of tumor information along these
edges. This can lead to irrecoverable errors in the segmentation process. This paper adopts a soft
shielding strategy to realize BROI-guided tumor segmentation. BROI and MRI images form two
channels as the network’s input, which removes complex backgrounds and organs while preserving
the tumor details present in the original MRI image, as shown in Fig. 2c.
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Figure 2: Shielding strategy of BROI

3.2 Breast Tumor Segmentation

Although background and organs are excluded by BROI, there is still considerable confusing
information within the breast area. Therefore, this paper introduces a multi-scale boundary atten-
tion fusion network (MBA-Net). As depicted in Fig. 3, the network utilizes an encoding-decoding
architecture and transmits low-level feature information via skip connections. The network takes two
channels composed of BROI and MRI images as input. The encoding phase comprises five feature
extraction layers and four down-sampling layers. Each layer conducts feature extraction using multi-
scale parallel dilated convolution (MSP-DC) and employs a step-by-step superposition method to
fuse and transfer feature information. The decoding phase consists of five feature fusion layers and
four up-sampling rounds. Each layer integrates the up-sampled feature map with the low-level feature
map from the encoding phase, under the guidance of the dual-domain attention module. Moreover,
the boundary detection module (BD) is utilized to identify the boundaries of the fused feature map,
thereby generating an additional boundary loss for further refinement. The network decoder utilizes
bilinear up-sampling to restore the resolution and channel count of the feature map. The network
continuously updates using the boundary mixed loss function and generates the tumor segmentation
map as output.

Figure 3: Structure diagram of breast tumor segmentation network
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3.2.1 Multi-Scale Parallel Dilated Convolution Module

Multi-scale context information aids the network in extracting features from objects of varying
sizes within the image. This paper introduces the multi-scale parallel dilated convolution module
(MSP-DC) displayed in Fig. 4.

Figure 4: Multi-scale parallel dilated convolution module

The MSP-DC module also uses a convolution module with a kernel size of 1 × 1 to decrease
the input channel count, enabling the extraction of features from different receptive fields within the
same layer. This approach not only reduces the number of parameters generated during model training
but also ensures the model remains lightweight. Channel concatenation is executed on features derived
from the parallel convolutional and average pooling layers. Before concatenation, the features acquired
from the four branches are outlined as follows:

X
1
= X ∗ C1×1 ∗ Dr=1 (1)

X
2
= X ∗ C1×1 ∗ Dr=2 (2)

X
3
= X ∗ C1×1 ∗ Dr=3 (3)

X4 = Fb

(
1

H × W

∑H

i=1

∑W

j=1
X (i, j)

)
(4)

where X is the input feature, X1, X2, X3, and X4 respectively represent the features extracted from the
four branches, C1×1 represents the ordinary convolution with a kernel size of 1 × 1, and Dr=1, Dr=2 and
Dr=3 are the dilated convolution using a specific kernel size of 3 × 3, a dilation rate of r = 1, r = 2 and
r = 3 respectively, ∗ is the convolution operation, X1, X2, X3 result from applying 1 × 1 convolution to
X , followed by dilated convolutions with different dilation rate, respectively. Fb (x) stands for bilinear
interpolation.

This paper adds a fusion method of adding feature elements step by step before channel fusion.
The features obtained from the dilated convolution, with a specified dilation rate, are summed pixel-
wise towards the right. Finally, the global average pooling branch contains features extracted from
dilated convolutional layers with different hole rates, thereby enhancing the convolutional layer’s
ability to extract tumor features of different sizes. After the features are fused in this way, the features
of each branch are Y1 = {X1, X1 + X2, X1 + X2 + X3, X1 + X2 + X3 + X4}. Combine the features of the
four branches using channel concatenation and fuse them with the initial input feature information
through a regular convolution with a kernel size of 1 × 1 to obtain the output feature map Y .
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3.2.2 Boundary-Attention Hybrid Decoding Module

To effectively integrate the high-level features obtained from the up-sampling with the low-level
features of the coding part, this paper proposes an attention-boundary detection hybrid decoding
module, as shown in Fig. 5. The boundary-attention hybrid decoding module (BAHD) comprises
dual-domain attention guidance (DAG), a 3 × 3 kernel size convolutional block, and a boundary
detection module (BD). The dual-domain attention module leverages the feature map obtained
through up-sampling and from the encoder’s output as inputs. This approach is designed to capture
the interrelation of information across both the channel and spatial domains within the feature map.
The boundary detection module acts on each decoding layer independently and enhances the network
segmentation effect by obtaining additional boundary loss.

Figure 5: Boundary-attention hybrid decoding module

The dual-domain attention guidance module encompasses both channel attention [19] and spatial
attention [19], illustrated in Fig. 6a. Spatial attention and channel attention are interconnected in
series. The channel attention module depicted in Fig. 6b is formulated as follows:

M_c(F) = s (mlp (AvgPool (F)) + mlp (MaxPool (F))) (5)

where F represents the input feature map, AvgPool and MaxPool denote average pooling and max
pooling respectively, mlp indicates a neural network consisting of two convolutional layers and the
PReLU activation function, s represents the sigmoid activation function, and M_c is the final feature
map with channel weights.

The input feature map F (H × W × C) goes through global maximum pooling and average
pooling, resulting in two 1×1×C feature maps. Afterward, they proceed to a two-layer neural network
(MLP). The features outputted by the MLP are aggregated, then the sigmoid activation function is
applied to produce the ultimate channel weight feature map M_c. Eventually, M_c is fused with the
input feature map F to generate the input features essential for the spatial attention module.

The spatial attention module is shown in Fig. 6c, along with the following formula:

M_s (F) = σ
(
f 7×7 ([AvgPool (F ′); MaxPool (F ′)])

)
(6)

where F ′ represents the feature map outputted by the channel attention module, AvgPool and MaxPool
respectively denote average pooling and max pooling, f 7×7 represents the 7 × 7 convolution operation,
σ represents the sigmoid activation function, and M_s represents the final feature map with spatial
weights.

This module map is obtained from the output feature map of the channel attention module. The
process begins with applying a global maximum pooling and average pooling based on the feature
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map’s channel dimensions, resulting in two H × W × 1 feature maps. Subsequently, these feature
maps are merged by their channels. Then, following a 7 × 7 convolution operation, the dimension is
decreased, resulting in a feature map with a single channel. Afterward, the sigmoid activation function
is utilized to generate the spatial weight feature map M_s. Subsequently, the feature map is combined
with the input features of the module to obtain the ultimate features, which serve as the input for the
3 × 3 convolution block.

Figure 6: Dual-domain attention structure diagram

Due to the overlapping of tumors with dense breast tissue in the breast region, issues such as
blurred boundaries and inaccurate segmentation may occur in the segmentation results. To enhance
the ability to preserve tumor boundaries and better utilize the tumor edge and spatial cues in the output
feature maps fused with low-level and high-level detail information at the decoding end, this paper
designs a Boundary Detection (BD) unit. This unit performs 3 × 3 convolutional compression after
weighting the feature maps with spatial attention on each layer channel. It extracts tumor boundaries
and does not participate in the transmission of inter-feature information. This is done in order to
compute additional boundary loss, which improves network segmentation performance. To optimize
the boundary of breast tumor segmentation, the boundary testing module (BD) proposed in this paper
is added to the decoding part of the model to detect the boundary of the feature map obtained from
each layer of the decoding part. Fig. 7 is a schematic diagram of the BD module of the i-th layer
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decoder, which is used to detect the breast tumor boundary of the i-th layer decoder. This module
utilizes the output feature map from the i-th layer decoder as its input and generates the boundary
map and segmentation outcome of the breast tumor. Initially, a 1 × 1 kernel size convolution layer
processes the input feature map F (i) to derive a fresh single-channel feature map Fg (i). Then, use
the maximum pooling layer (step size = 1, padding = 1, kernel size = 3 × 3) to implement the image
erosion operation on the feature map Fg (i) and divide the boundary pixels of the tumor area in the
feature map of Fg (i). Move one, subtract the moving result from Fg (i) to obtain the boundary map E
of the breast tumor, and add Fg (i) to the tumor boundary map E to obtain the segmentation result of
the breast tumor.

Figure 7: Structure diagram of boundary detection

3.2.3 Boundary Mixed Weight Loss Function

As shown in Fig. 5, we have added a boundary detection module at each layer of the network
decoding end. Therefore, four boundary graphs and four segmentation results of breast tumors will
be generated at the decoding end of the network. In addition, the network will also generate the final
segmentation results of breast tumors. Therefore, the network adopts a mixed loss function involving
the segmentation loss function and an extra boundary loss function as its overall loss function. The
formula is as follows:

Ltotal = α · Lf
seg + β ·

layer∑
i=1

(
Li

seg + Li
boundory

)
(7)

where Lf
seg is the loss function of the final tumor segmentation result, and layer represents the count

of decoding layers within the network. This parameter is set to four in this network. Li
seg and Li

boundory

represent the enhanced segmentation loss and extra boundary loss generated by the BD module in the
i-th layer. The hyperparameters and β are used to balance Lf

seg, Li
seg, and Li

boundory to make the total loss
change stable, and their values are set to α = 0.8 and β = 0.2 through experiments.

Lf
seg combines the Dice coefficient loss function and binary cross entropy loss (BCELoss) to

calculate the difference between the network prediction result and the real value. The specific formula
of Lf

seg is as follows:

Lf
seg = 1 − 2

∑Np
j=1 (P)j × (G)j∑Np

j=1 (P)
2
j + ∑Np

j=1 (G)
2
j

− 1
Np

Np∑
j=1

(P)j log (G)j (8)

where P is the predicted breast tumors segmentation result, Np is the number of pixels in P, and G is
the real label of the sample.
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Li
seg uses the Dice coefficient loss function to calculate the difference between the predicted

enhanced segmentation result of the i-th layer at the network decoder and the true value. The specific
formula of Li

seg is as follows:

Li
seg = 1 − 2

∑NF
j=1 (Fi)j × (G)j∑NF

j=1 (Fi)
2
j + ∑NF

j=1 (G)
2
j

(9)

where Fi represents the segmentation result of breast tumor predicted by the i-th layer at the decoding
end, and G represents the real label of the sample, NF is the number of pixels in Fi, and (Fi)j is the j-th
pixel in Fi; (G)j is the j-th pixel in G.

Li
boundory uses the mean square error loss (MSELoss) function to calculate the boundary loss of the

i-th layer breast tumor boundary map at the decoder end of the network. The specific formula of
Li

boundory is as follows:

Li
boundory =

Nb∑
j=1

{(
Bi

)
j
− (GB)j

}2

(10)

where Bi represents the breast tumor boundary result predicted at the i-th layer of the decoder, Nb is
the number of pixels in Bi, GB represents the tumor boundary of the real label of the sample, which is
extracted from the real label by the BD module.

4 Experimental Results and Analysis
4.1 Data Set and Preprocessing

The DCE-MRI image data used in this experiment is a self-built clinical data set from Ruijin
Hospital, affiliated with Shanghai Jiaotong University School of Medicine, with 207 cases. By default,
the image defaults to the transverse direction, and the image size is 512 × 512. The tumor area is
marked by three doctors with more than 15 years of experience. The label of the breast ROI area is
manually marked by professionals with the help of ITK-SNAP software. We divided 220 images into
training, verification, and test sets, with a ratio of 6:2:2 for each set. The model was evaluated using a
five-fold cross-validation method. During the training process, the training set is flipped, rotated, and
mirrored for data enhancement, and the data is normalized and standardized.

4.2 Parameter Configuration

The server used in this study is equipped with Intel (R) Xeon (R) Silver 4216 CPU @ 2.10 GHz (2
CPU, 16 cores, 32 threads, 128 GB memory); the GPU is configured as GeForce RTX3070. Pytorch1.5
deep learning framework and Python3.6 programming language are used, and multiple GPUs are
trained in parallel. In the experiment, the Adam optimizer is used for gradient descent, and the
parameters are set as β1 = 0.9, β2 = 0.999, ε = 1e − 8, and the learning rate is lr = 0.0005. The
batch size is 8, and the model’s maximum iteration limit is 60.

4.3 Experimental Content

4.3.1 Divisible Price Index

To intuitively reflect the difference between our proposed network and the contrasting network,
this paper will adopt the following classic medical image segmentation evaluation indicators: Dice
Similarity Coefficient (DSC), Intersection of Union (IOU), Precision, Recall, Accuracy (ACC) and
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the distance index is Hausdorff Distance (HD).

DSC = 2TP
2TP + FN + FP

(11)

IOU = TP
TP + FP + FN

(12)

Precision = TP
TP + FP

(13)

Recall = TP
TP + FN

(14)

ACC = TP + TN
TP + FP + TN + FN

(15)

HD (X , Y) = max

{
max

x∈X
min

y∈Y
d (x, y)

max
y∈Y

min
x∈X

d (y, x)

}
(16)

4.3.2 Experimental Results and Analysis of Breast BROI Segmentation

At the initial stage of the model, U-Net is utilized to segment the breast region of interest, and the
segmentation results are presented in Table 1. The Dice coefficient achieved on the test set is 0.9428,
indicating the accurate extraction of the breast region of interest by the network. Additionally, Fig. 8
illustrates the specific results of BROI segmentation. The three rows depict the MRI images of three
cases containing breast tumors, the labels of the BROI regions manually marked by professionals, and
the BROI regions predicted by the U-Net network. The red area in Fig. 8 effectively covers the breast
region of interest and extends to both ends of the chest, ensuring comprehensive coverage of the breast
area and minimizing the risk of omission. Simultaneously, the model can accurately extract the BROI
even when dealing with a small breast area.

Table 1: Segmentation index of the breast region of interest

Method Dice% IOU% Precision% Recall%

U-Net 94.28 89.34 95.62 93.15

This paper validates the effectiveness of the adopted soft shielding method and the BROI-
guided tumor segmentation strategy through experimental results, as presented in Table 2. The table
reveals that when BROI is applied using a hard masking method, both the DSC and IoU of the
tumor segmentation results exhibit a decrease, even lower than the network without utilizing BROI.
Conversely, the segmentation results using the soft shielding strategy guided by BROI outperform
other methods across all metrics, with significant improvements in precision and recall. This is because
utilizing the BROI-guided soft shielding strategy to eliminate complex backgrounds and organs
reduces the network’s sensitivity to high-intensity regions within the chest cavity. This enables the
network to focus on the breast area while retaining all information in the tumor area of the input image.
Moreover, it preserves the spatial position of the tumor within the entire image, enabling subsequent
attention modules to enhance the network’s capability for global tumor localization by capturing long-
range non-local dependencies in the spatial domain. The incorporation of BROI significantly reduces
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false positives and negatives, demonstrating the superiority of the two-stage network over single-stage
segmentation networks in addressing class imbalance and poor image contrast. Furthermore, the
coarse-to-fine segmentation strategy notably enhances the network’s performance in segmentation
tasks.

Figure 8: Segmentation results of the breast region of interest

Table 2: Evaluation indexes of breast tumor segmentation ablation experiment

Method BROI Shielding mode Dice% IOU% Precision% Recall%

Hard
shielding

Soft
shielding

MBA-Net 79.57 ± 3.4 69.56 ± 4.2 81.67 ± 2.6 81.83 ± 4.7
MBA-Net � � 78.91 ± 4.1 68.31 ± 3.7 80.49 ± 3.0 80.98 ± 2.9
MBA-Net � � 80.67 ± 2.3 71.00 ± 2.9 82.97 ± 2.2 82.49 ± 3.0

4.3.3 Experimental Results and Analysis of Breast Tumor Segmentation and Ablation

An ablation experiment was conducted in this paper to validate the proposed model structure.
The basic network framework for the ablation experiments was U-Net. It was utilized to individually
evaluate the effectiveness of the multi-scale parallel dilated convolution module (MSP-DC), dual-
domain attention guidance module (DAG), and the boundary detection module (BD). These modules
were sequentially added to the basic network, and the evaluation metrics of the model are presented
in Table 3. The segmentation result of an example is depicted in Fig. 9.

It can be seen from Table 3 that MSP-DC Block is added to the network, in which Dice rises
from 0.7403 to 0.7597, and IOU rises from 0.6364 to 0.6545. Combined with the third column of the
segmentation example Fig. 9, it can be found that adding the MSP-DC Block makes the segmented
tumor area more accurate, especially for small tumors. The problem of over-segmentation is reduced.
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This is due to the multi-scale convolution layers in the MSP-DC module that enhance the model’s
feature extraction capabilities at different scales by varying the size of the receptive fields. The features
are then fused and transmitted through a progressively stacked fusion approach, thereby improving the
network’s segmentation performance. Additionally, the incorporation of the MSP-DC Block reduces
the model’s parameters by half, rendering the model lighter. After adding DAG Black to the network’s
decoding section, as seen from Table 3, Dice and IOU increased by 0.0245 and 0.0207, respectively.
Observing the fifth column of Fig. 9, the area of breast tumor segmentation results has increased, and
at the same time, more tumor details have been obtained in local manifestations. This indicates that
by incorporating the DAG attention mechanism, the network focuses on enhancing tumor features
while suppressing non-tumor features, thereby improving the global localization and local detail of
tumor segmentation results. After adding the boundary detection module and additional boundary
loss, the structure is our final tumor segmentation model. As seen from Table 3, all the indexes have
been improved, and the precision has increased by 0.0292. As shown in the sixth column of Fig. 9,
the segmentation effect is closer to the gold standard after incorporating the BD module. This is
because the network enhances its ability to extract local tumor edges and information by incorporating
a boundary loss function, making the segmentation boundaries clearer and producing more precise
and accurate segmentation results.

Table 3: Comparative experimental results of breast tumor segmentation

Method MSP-DC DAG BD Parameters Dice% IOU% Precision% Recall%

U-Net 65.95 M 74.03 ± 2.9 63.64 ± 3.4 78.29 ± 4.8 80.44 ± 4.9
U-Net � 35.02 M 75.97 ± 3.3 65.45 ± 3.6 79.20 ± 4.1 81.09 ± 3.7
U-Net � � 35.69 M 78.12 ± 2.7 67.52 ± 3.2 80.05 ± 2.9 81.16 ± 3.7
U-Net � � � 35.69 M 80.67 ± 2.3 71.00 ± 2.9 82.97 ± 2.2 82.49 ± 3.0

Figure 9: Experimental results of breast tumor segmentation ablation: (a) original drawing; (b) gold
standard; (c) U-Net; (d) add MSP-DC module; (e) add DAG module; (f) add BD module

The loss and Dice curves of the ablation experimental model are shown in Fig. 10. After 40
iterations, the model’s loss and Dice curves tend to be stable. As can be seen from the graphs, The
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MBA-Net model has higher segmentation accuracy in both the training set and the verification set.
Fig. 11 is a graph of the mixed loss function, including segmentation and boundary enhancement loss.
From the figure, it can be seen that the segmentation loss and boundary loss gradually decrease and
finally tend to be stable.

Figure 10: Graph of dice and loss of breast tumor segmentation ablation experiment: (a) train dice;
(b) train loss; (c) val dice; (d) val loss

4.3.4 Comparative Experimental Results and Analysis of Different Networks

This paper conducts a comparative analysis of the proposed MBA-Net model against mainstream
segmentation models such as U-Net, SegNet, U-Net++, Attention-Unet, Deeplab3+, and FPN,
with detailed metrics for each model displayed in Table 4. On this dataset, the MBA-Net model
outperformed all other models across all evaluation metrics. Significantly, in comparison to the
benchmark U-Net, the MBA-Net model achieved a Dice score improvement of 0.0763 and an IOU
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increase of 0.0835, with the smallest average difference across all metrics. This underscores that the
MBA-Net model is more stable than the baseline U-Net and demonstrates superior performance in
breast tumor segmentation.

Figure 11: Graph of the mixed loss function

Table 4: Comparative experimental results of breast tumor segmentation

Method Dice% IOU% Precision% Recall% Accuracy% HD Parameters
SegNet [27] 71.12 ± 4.8 60.26 ± 3.7 76.59 ± 3.4 75.88 ± 3.6 99.88 ± 0.1 38.96 ± 6.0 112.44 M
U-Net [16] 73.04 ± 3.3 62.65 ± 3.7 79.40 ± 2.3 77.72 ± 2.7 99.78 ± 0.2 39.28 ± 7.0 65.95 M
UNet++ [28] 73.32 ± 3.1 62.80 ± 3.6 78.85 ± 3.5 78.26 ± 3.1 99.87 ± 0.1 40.16 ± 11 139.85 M
AU-Net [10] 73.64 ± 2.9 63.21 ± 2.6 80.67 ± 2.9 76.97 ± 4.1 99.88 ± 0.1 39.59 ± 9.3 133.19 M
Deeplab3+ [29] 75.54 ± 3.8 65.06 ± 4.3 81.06 ± 1.3 78.36 ± 4.2 99.91 ± 0.1 24.52 ± 5.3 208.87 M
FPN [30] 76.55 ± 2.8 66.06 ± 3.2 78.89 ± 1.8 79.78 ± 2.5 99.89 ± 0.1 14.07 ± 2.4 339.09 M
UTB-Net+DS [26] 77.92 ± 3.9 66.10 ± 3.8 77.53 ± 4.1 81.13 ± 3.4 99.20 ± 0.2 26.52 ± 3.6 23.7 M
MSRDANet [31] 78.39 ± 2.7 64.10 ± 3.5 81.56 ± 1.5 75.73 ± 4.5 99.78 ± 0.1 33.34 ± 4.2 26.67 M
Ours 80.67 ± 2.3 71.00 ± 2.9 82.97 ± 2.2 82.49 ± 3.0 99.91 ± 0.1 12.11 ± 1.4 35.69 M

Fig. 12 depicts breast tumor instance segmentation diagrams of 6 cases using seven mainstream
segmentation models. In column 1, false positives of non-mammary regions are observed in rows d,
f, and g. However, this issue is less prominent in the segmentation results produced by our proposed
model. This suggests that the BROI identified in the initial phase effectively reduces the network’s
focus on areas beyond the breast, thereby mitigating the influence of surrounding chest tissues and
organs on breast tumor detection. Consequently, this approach effectively mitigates the emergence
of false positives outside the breast region, thereby enhancing the accuracy of tumor segmentation.
For tumors of varying sizes, such as those depicted in the second and third columns of Fig. 12, the
SegNet, U-Net, U-Net++, and Attention-Unet networks (corresponding to rows c, d, e, and f) fail
to accurately locate the tumor position, especially when segmenting smaller tumors. In the case of
larger tumors, these networks predict a small tumor area, resulting in a significant problem of missed
segmentation. Incorporating multi-scale information into the network, the Deeplab3+ and FPN
networks (corresponding to rows g and h) exhibit an increase in the segmented area for larger tumors.
However, the tumor area remains incompletely segmented. Our model’s segmentation result closely
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aligns with the gold standard. This improvement arises from refining the information fusion mode
while incorporating multi-scale data, enabling the network to accurately locate the tumor position
globally and capture more detailed local information. This approach enhances the segmentation
results, making them more comprehensive and precise.

Figure 12: Comparison results between the MBA-Net model and the mainstream model: (a) original
images; (b) GT images; (c) SegNet; (d) U-Net; (e) U-Net++; (f) Attention-Unet; (g) Deeplab3+
(h) FPN; (i) ours



CMC, 2024, vol.80, no.1 1559

Columns 3, 4, and 5 in Fig. 12 depict conventional tumor images. It is evident that, apart from the
segmentation results of the MBA-Net model, the segmentation results of other networks exhibit issues
such as rough boundaries, over-segmentation, and under-segmentation. For instance, the segmentation
results of the FPN network in the h-row exhibit a significantly larger area than the gold standard,
resulting in over-segmentation. The segmentation results of U-Net++ in the c row and Attention-
Unet in the f row are incomplete and contain defects, resulting in low accuracy in tumor segmentation.
However, the segmentation results of MBA-Net in the i-th row surpass those of other networks,
exhibiting superior performance in terms of tumor shape and edge accuracy. Analyzing Fig. 9 of
ablation experiment segmentation results and Fig. 12 of comparative experiment segmentation results,
as evident from the results, the MBA-Net model exhibits exceptional performance in global tumor
region localization, processing local detail information, and recognizing edge information, with
segmentation precision superior to that of other network models. Furthermore, in the comparative
experimental analysis, when confronted with breast tumors of varying shapes, high contrast, and
blurred boundaries, MBA-Net models accurately segment breast tumors while preserving more image
information, demonstrating the robustness and high accuracy of our MBA-Net model. This is
attributed to the MSP-DC module we employ, which enhances the model’s capability to extract features
at different scales by adjusting the size of the receptive field and fusing feature information through a
progressively stacked approach. Moreover, the BAHD module enables the network to prioritize tumor
features from both spatial and channel dimensions and enhances the boundary information of the
tumor, thereby enhancing the network’s segmentation performance.

5 Conclusion

To tackle the challenge of automatic segmentation of DCE-MRI breast tumor images against
complex backgrounds, this paper presents a two-stage deep neural network model that leverages multi-
scale features and boundary attention mechanisms. Initially, the first stage of the U-Net network
achieves rough segmentation of breast regions. Subsequently, guided by BROI, the MBA-Net model is
introduced to achieve precise automatic segmentation of breast tumors. In the decoder, dual-domain
attention and boundary detection modules are integrated, along with additional boundary loss in the
network’s loss function. The experimental results demonstrate that our MBA-Net model has been
rigorously tested against several leading segmentation networks and exhibits excellent performance,
albeit on a limited dataset. Specifically, our experimental results show that MBA-Net achieves a Dice
coefficient of 80.67%, demonstrating superior performance compared to other existing networks, and
outperforms them in other evaluation metrics and instance segmentation effects. Moreover, our model
accurately extracts smaller tumor regions, thereby enhancing overall segmentation performance.
Furthermore, our experimental results also demonstrate that the MBA-Net model excels in global
tumor region localization, processing local detail information, and recognizing edge information.
Meanwhile, the model parameter count is only 35.69 M, indicating that despite achieving improved
segmentation results, there is no significant increase in parameter count. Therefore, the comprehensive
experimental results indicate that our proposed MBA-Net model demonstrates significant effective-
ness and superiority in breast tumor segmentation tasks. Despite its success, further enhancements
and a broader evaluation across multi-site datasets are required to confirm the effectiveness and
adaptability of the network.

Future work will involve establishing a 3D model of breast tumor segmentation, further improving
the accuracy of tumor segmentation, and laying a foundation for building an algorithm framework
that integrates the automatic segmentation of breast tumors, classification of benign and malignant
molecular subtypes, and prediction of recurrence risk.
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