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ABSTRACT

Non-intrusive load monitoring is a method that disaggregates the overall energy consumption of a building to
estimate the electric power usage and operating status of each appliance individually. Prior studies have mostly
concentrated on the identification of high-power appliances like HVAC systems while overlooking the existence of
low-power appliances. Low-power consumer appliances have comparable power consumption patterns, which can
complicate the detection task and can be mistaken as noise. This research tackles the problem of classification of
low-power appliances and uses turn-on current transients to extract novel features and develop unique appliance
signatures. A hybrid feature extraction method based on mono-fractal and multi-fractal analysis is proposed
for identifying low-power appliances. Fractal dimension, Hurst exponent, multifractal spectrum and the Hölder
exponents of switching current transient signals are extracted to develop various ‘turn-on’ appliance signatures
for classification. Four classifiers, i.e., deep neural network, support vector machine, decision trees, and K-nearest
neighbours have been optimized using Bayesian optimization and trained using the extracted features. The
simulated results showed that the proposed method consistently outperforms state-of-the-art feature extraction
methods across all optimized classifiers, achieving an accuracy of up to 96 % in classifying low-power appliances.
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1 Introduction

Monitoring the electrical system at individual load levels often enables condition-based diag-
nostics and forecasts that can minimize the impact of equipment malfunctions or system failures
[1]. Appliance-specific data empowers consumers to gain a better understanding of their energy
consumption, resulting in informed decisions and rational energy use. This awareness, supported by
appliance-specific feedback and potential load forecasting, can lead to tangible energy savings and
environmental impact [2].
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Nonintrusive Load Monitoring (NILM) is a low-cost solution to the load monitoring problem and
it provides the necessary information in real-time to formulate various energy management schemes
[3]. The NILM module consists of a single set of voltage and current sensors deployed at the main
power entry point. Information extracted from the composite current and voltage signals is used for
load disaggregation. While numerous techniques out there focus on high-power appliances, low-power
appliance disaggregation is often overlooked. They are particularly difficult to disaggregate due to
their nonlinearity and low power consumption. This research work attempts to solve the problem
of low-power appliance disaggregation. and focuses on an event-based NILM approach. A novel
feature extraction technique based on fractal analysis for the classification of low-power appliances is
proposed.

Fractal analysis is a powerful technique that mathematically defines patterns in apparently ran-
dom and complex figures [4]. Transients generated in electrical signals also exhibit fractal properties,
but this technique has not yet been extensively used in power systems. The signal analysis domain
is seeing quite a lot of fractal-related research, especially for medical diagnostics and wind turbine
damage diagnostics [5,6]. Fractal techniques are not yet applied for feature extraction in NILM and
will be done for the first time as part of this research.

The concept of NILM was first introduced by MIT researcher Hart in the 1980s [7]. It is
an inexpensive tool for achieving energy disaggregation within a building without the expense of
complicated hardware [8]. To classify or segregate the appliances, it is essential to first acquire
and comprehend the features of the appliances. These features can capture several categories of
appliance data, including patterns of turning on and off, voltage and current measurements, power
consumption (actual, reactive, and apparent), and temporal fluctuations. There exist diverse categories
of appliances, each possessing its unique power profile. Segregating two devices with significantly
distinct power profiles is a straightforward procedure. However, if multiple appliances have power
profiles that are roughly comparable, the process of segregation becomes challenging.

Earlier techniques of feature extraction focused on “steady-state” features like active and reactive
powers and V-I trajectories [7,9–11]. The main advantage of using steady-state power is that it is
easily and conveniently available. The main drawback of this approach is that it does not take into
account the nonlinear loads. Considering the limitations of steady-state analysis, many researchers
moved on to look for unique appliance signatures by analysing the transient state of loads. Electrical
appliances demonstrate distinctive transient behaviour depending on their unique physical properties.
Transient methods of analysis use different transformations to extract features from these transients
and develop specific load/appliance signatures. For each appliance, a unique transient is generated
when the appliance is switched ON/OFF [12]. This switching transient switching is more pronounced
in the current signal. Initially, the Fourier transform was used to extract the transient feature [13].
Similarly, numerous studies based their feature extraction study on the harmonic analysis of switching
transients [14,15]. The time-frequency analysis technique, wavelet transform and multiscale wavelet
packet tree proved to be much more effective than traditional harmonic analysis methods [16–18].

Several hybrid and unconventional techniques also exist in the literature with a range of per-
formance efficiencies [19–23]. The evolution of NILM techniques described above has been mostly
tested on energy-intensive appliances. Additionally, the classification of devices that have extremely
low power consumption is a challenge, as this minimal power level is typically considered as noise and
they exhibit roughly similar profiles [10,24,25].

Based on the above literature review, there is still a void in the NILM research space for an effective
feature extraction solution that works well with low-power appliance classification. Particularly, there
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is very little literature that deals with switching transient signals of low-power (less than 50 W)
appliances with non-linear characteristics. The challenges include the difficulty in characterizing
transient signals due to their short duration and wide frequency content. Existing methods such as
spectrogram and wavelet decomposition have limitations in discriminating near similar transients.
Additionally, the turn-on transient current of electrical appliances tends to decay to a steady state
that is different from the one preceding it. To address these challenges, this research work has made
the following research contributions:

1. Mono- and Multi-Fractal Analysis is used for appliance classification in NILM research.
2. The proposed fractal-based novel feature extraction method is compared with four other fea-

ture extraction methods, i.e., different variants of Scattering Transform and multi-level DWT.
3. The proposed mono- and multi-fractal analysis method outshined all other feature extraction

methods, achieving an accuracy of up to 96% with superior precision, recall, and F1-score
values of up to 97.3%.

4. Successfully used fractal analysis for low-power (less than 50 W) appliances.

The paper is organized as follows: Section 2 describes the mono- and multi-fractal methodology
used to extract novel features from appliance switching current transients; Section 3 outlines the
experimentation done including various test scenarios; Section 4 presents the result analysis and
discussion and finally Section 5 concludes the paper.

2 Methodology

The selection of a suitable mathematical technique for time series analysis is based on its adapt-
ability and practical applicability to real-world signals. Several real signals demonstrate nonlinear
power-law characteristics, which are dependent upon higher-order moments and scale. In certain
instances, the dynamic attributes of these processes exhibit multifractal as well as monofractal charac-
teristics. This paper proposes to use the Wavelet Leaders Multifractal Formalism (WLMF) method,
Higuchi’s method, and monofractal detrended fluctuation analysis (DFA) to extract multifractal and
monofractal features of current switching transient for automatic classification of low-power electrical
appliances.

2.1 Wavelet Leaders Multifractal Formalism

Fractal processes can be categorized into two types: Monofractal and multifractal [26]. A
monofractal process is homogeneous, signifying uniform scaling properties that can be characterized
by a single-scale indicator, such as fractal dimension or Hurst exponent, both locally and globally.
In contrast, multifractal processes decompose into numerous homogeneous fractal subsets. The
properties of these subsets can be characterized by a singularity spectrum and the Hölder exponents.
This multifractal nature distinguishes them from mono-fractal processes. This paper proposes the
adoption of both monofractal and multifractal features of current switching transients for the
automatic classification of low-power appliances. Devices with extremely low power consumption pose
a classification challenge, as this level of power is frequently misinterpreted as noise.

The Wavelet Leaders Multifractal Formalism (WLMF) method builds on wavelet coefficients
obtained through the DWT following the Mallat pyramid scheme [27]. Subsequent stages of the
algorithm include identifying coefficients known as wavelet leaders, calculating the structural function
and scaling exponents, and determining the multifractal spectrum D(h). Alternatively, the direct
determination of spectrum parameters can be achieved using log cumulants.
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Wavelet leaders are identified as space- or time-localized maxima of discrete wavelet coefficients.
To achieve time localization of the maxima, it is necessary to derive the wavelet coefficients utilising
a compactly supported wavelet. The Hölder exponents, which quantify the local regularity, are
computed from these maxima. The size of the set of Hölder exponents in the time series is referred
to as the singularity spectrum. Wavelet leaders are defined at any given scale as [27]:

Lx(j, k) = supλ′∈3λj,k
|dx(j, k)| (1)

where the time neighbourhood 3λj,k = λj,k−1 ∪ λj,k ∪ λj,k+1 and λj,k = [k2j, (k + 1)2j] and dx(j, k)

are the wavelet coefficients. The wavelet leaders serve as representatives of the Hölder exponents
h: Lx(j, k) ∼ 2jh.

The multi-resolution structure-function ZL(q, a) is defined as a spatial average of the q-th order
of the leaders, given as:

ZL(q, a) = 1
na

∑na

k=1
|Tx(a, k)|q � aζ(q), (2)

where a represents the scale, q signifies the moment, Tx denotes the wavelet leaders by scale, na is
the number of wavelet leaders at every scale, and ζ(q) represents the scaling exponent. The result of
expanding ζ(q) to a polynomial is:

ζ(q) = c1q + c2q2/2 + c3q3/6 + . . . (3)

The scaling exponent ζ(q) of the structure function’s Legendre transform serves as an upper limit
for the multifractal spectrum. Understanding the scaling exponent ζ(q) enables a direct estimation
of parameters for the multifractal spectrum D(h) using log-cumulants cp with orders p ≥ 1, derived
from a Taylor series expansion. The signal is considered monofractal when ζ(q) is a linear function. A
multifractal signal does not follow a linear pattern. In terms of scaling exponents, the first cumulant, c1,
represents linear behaviour, while the second and third cumulants, c2 and c3, respectively, denote non-
linearity. The multifractal spectrum D(h), derived by the Legendre transform of the scaling exponents,
where h is the Hölder exponent is given as:

D(h) = inf
q�=0

(1 + qh − ζ(q)) . (4)

2.2 Hurst Exponent Computation

The monofractal structure of a time series is characterized by the Hurst exponent HE, which
determines the rate at which the overall root-mean-square (RMS) of local fluctuations increases with
a growing segment sample size or scale. In detrended fluctuation analysis (DFA), the RMS fluctuation
is calculated for various segment sizes, and the scaling behaviour is expressed as a power-law relation
[28]. The exponent of this power-law relation is referred to as the Hurst exponent. It is a measure of
the long-range correlations or self-similarity in the time series.

Let Xt be the cumulative sum of a time series x1, x2, x3, . . . , xN:

Xt =
∑t

i=1
(x1 − 〈x〉) (5)

Next, create an approximate geometric progression A = {a1, a2, a3, . . . , ak}, such that, a1 ≈ 4,
ak ≈ N, and a1 < a2 < a3 < . . . < ak. Also, log a2 − log a1 ≈ log a3 − log a2 ≈ . . .. Split the sequence
Xt into subsequent segments of length a for each ‘a’ belonging to A. Calculate the regression (the
local trend) within each section. Considering Y1,a, Y2,a, Y3,a, . . . , YN,a as the resultant piecewise-linear
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approximation, the total fluctuation is the root mean square of the local fluctuation:

FT (a) =
√

1
N/a

∑N
a

i=1
FL (a, i)2 (6)

where FL is given as:

FL (a, i) =
√

1
a

∑ia+a

t=ia+1
(Xt − Yt,a)2 (7)

The value of HE then could be estimated from the slope of the regression line:

log(FT(a)) = log(C) + HE · log(a) (8)

A Hurst exponent HE above 1 visually corresponds to slower-evolving variations, indicating a
more persistent structure in monofractal and multifractal time series [28]. A signal exhibits a long-
range dependent (correlated) structure when the Hurst exponent falls within the interval of 0.5–1, and
it demonstrates an anti-correlated structure when the Hurst exponent is within the range of 0–0.5. In
the special case where the Hurst exponent is equal to 0.5, the time series exhibits an independent or
short-range dependent structure.

2.3 Higuchi’s Fractal Dimension Computation

Higuchi’s technique is used to estimate the fractal dimension of the start-up transient in the current
waveform [29]. The values of the appliance current can be taken as a time series i(1), i(2), . . . , i(N). A
new time series is constructed as follows:

ik
m =

{
i(m), i(m + k), i(m + 2k), . . . , x

(
m +

[
N − m

k

]
.k

)}
(9)

for m = 1, 2, . . . , k; where m is the initial time and k is the time interval. The total data points of the
series are represented by N. Therefore, k set of new current series is constructed. The average length
of each new time series is calculated as:

Bm (k) = 1
k

[(∑int[ N−m
k ]

a=1
|i (m + ak) − i(m + (a − 1) k|

)
Xnorm

]
(10)

where Xnorm is the normalization factor as given by:

Xnorm = N − 1

int
[

N−m
k

]
.k

(11)

The total average length of k series, B (k), is then calculated as:

B (k) = 1
k

[∑k

m=1
Bm(k)

]
(12)

If the series under consideration exhibits non-linear behaviour and has fractal-like properties,
then:

B (k) ∝ k−FD (13)
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where FD is the fractal dimension of the curve formed by the time series of the appliance current.
Taking logarithms on both sides, the following is obtained:

ln (B (k)) ∝ FD. ln (1/k) (14)

Graph of ln (B (k)) is plotted against ln
(

1
k

)
for k = 1, 2, . . . , kmax and the least squares method is

used to fit a straight line through the points. The slope of the fitted line FD is the fractal dimension of
the time series.

2.4 Mono- and Multi-Fractal Features Extraction

This paper proposes to extract fractal dimension FD, Hurst exponent HE, multifractal spectrum
D (h) and the Hölder exponents h of current switching transient signals. The total number of extracted
features is 24. To exemplify the capability of fractal analysis in elucidating signal structures that may
not be captured through traditional signal processing methodologies, the switching transients’ signals
of a Charger and a Compact Fluorescent Lamp (CFL) are specifically chosen, as depicted in Fig. 1a.
The signals’ second-order statistics are considerably comparable. Charger has a mean of 3.49e-4, a
variance of 3.20e-4, and an RMS value of 0.02 and CFL has a mean of 3.05e-4, a variance of 7.30e-5,
and an RMS value of 0.01, the values are almost identical.

Figure 1: (a) Current transient signals (b) PSD of signals (c) Multifractal spectrum and (d) Scaling
exponents

The power spectral density (PSD) estimates shown in Fig. 1b are also very similar. The power
spectrum provides information about the distribution of power across different frequencies in a signal.
The Welch PSD estimate is an improvement over the standard periodogram method, addressing
some of its limitations, particularly the variability in the spectral estimates. It divides the signal into
overlapping segments, computes the periodogram for each segment, and then averages the resulting
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periodograms to obtain a smoother and more reliable estimate of the power spectrum. Fractal analysis
reveals the substantial dissimilarity between these signals. The WLMF-based multifractal spectrum for
both signals is presented in Fig. 1c. This multifractal spectrum illustrates the distribution of scaling
exponents within a signal. The x-axis represents the range of Hölder exponents, which indicate the local
scaling properties of the system. The y-axis represents the multifractal spectrum D (h), indicating the
distribution of these local Hölder exponents. Examining the multifractal spectra in this context, the
CFL signal exhibits a cluster of Hölder exponents centred around 0.2. In contrast, the charger signal
showcases a cluster of Hölder exponents around 1.

Hölder exponents classify singularity strength by indicating their degree of differentiability. A
Holder exponent equal to or less than 0 signifies a discontinuity at that specific location. Conversely,
Holder exponents equal to or greater than 1 indicate differentiability at those locations. Holder values
falling between 0 and 1 signify continuity but not differentiability at specific locations, revealing how
closely the signal at that sample approaches differentiability. Holder exponents nearing 0 points to
signal locations with lower differentiability compared to those with exponents closer to 1, suggesting
a smoother signal at locations featuring higher local Holder exponents.

In Fig. 1d, the scaling exponents for both the charger and CFL signals are examined. Scaling
exponents characterize how the statistical moments of a signal change with scale. For the positive and
negative 1st-order statistical moments, the scaling exponents exhibit a linear relationship. This linearity
suggests monofractality in the current signals for these specific moments. However, when considering
moments from the 2nd order onwards, the scaling exponents deviate from linearity. This departure is
likened to the behaviour of a multifractal process, which is characterized by a nonlinear scaling law.
This observation suggests that the switching transient signals from the charger and CFL exhibit both
monofractal and multifractal features. Therefore, this characteristic of mono- and multi-fractality in
the transient signals is explored by extracting FD, HE, D (h), and h features in this research work.

3 Experimentation
3.1 Data Pre-Processing

This study employs the WHITED dataset as its primary data source. This dataset offers individual
appliance current and voltage information for 5 s concurrently measured at a sampling rate of 44.1 kHz
across eight distinct zones and under three distinct power supply standards [30]. To capture the
switching transient signals of each appliance effectively, a meticulous pre-processing of the data is
conducted. Given the research focus on the classification of low-power level devices, 10 appliances with
variable instances are selected, resulting in a dataset comprising 250 signal instances, each comprising
1800 datapoints, as outlined in Table 1. The selection criteria for these 10 types involve ensuring that
their power consumption remains below 50 W.

Table 1: Appliances power levels

Appliance Label Samples Power (W)

Charger Chager 70 7 to 28
Compact fluorescent lamp CFL 20 13.9
Game console GameC 30 13.7 to 33.9
Hi-Fi speaker Hi-Fi 10 41.6
Laser printer LP 10 18.1

(Continued)



514 CMC, 2024, vol.80, no.1

Table 1 (continued)

Appliance Label Samples Power (W)

Massager Mass 30 26.9 to 37.6
Mosquito repellent Mosquito 10 7.7
Power supply PS 40 9.5 to 47.5
Shoe warmer ShoeW 20 16.5 to 22.2
Washing machine WM 10 26.8

Fig. 2 illustrates the overall architecture of our proposed mono- and multi-fractal analysis-based
feature extracted method.

Figure 2: Proposed low power appliances classification methodology

For each switching current transient of low-power devices in the WHITED dataset, the current
transient is pre-processed, FD, HE, D (h), and h fractal features are extracted, four classifiers are
optimized using Bayesian optimization, and precision, recall, F1-score, and accuracy performance
metrics are used to test the performance of classification.

3.2 Simulation Scenarios and Performance Metrics for Comparison

To assess the efficacy of the proposed feature extraction methodology, the study conducts a series
of comprehensive comparative experiments. Different strategies are employed to select features derived
from Scattering Transform, multi-level DWT, and the proposed feature extraction method for low-
power NILM signals. The features matrix is determined through five distinct strategies, outlined briefly
below:

Scenario 1: considered both the first and second-order-path Scattering coefficients;

Scenario 2: considered only the first order-path Scattering coefficients;

Scenario 3: considered only the second order-path Scattering coefficients;
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Scenario 4: considered the percentages of energies corresponding to the details of 5-level wavelet
decomposition using the order 1 Daubechies wavelet.

Scenario 5: considered the proposed mono- and multi-fractal analysis features, i.e., fractal
dimension FD, Hurst exponent HE, multifractal spectrum D (h) and the Hölder exponents h.

The performance of all five strategies is assessed using the commonly employed evaluation indices:
Precision, recall, Fp-score, and accuracy. They are computed as follows:

Precision = TP
FP + TP

(15)

Recall = TP
FN + TP

(16)

Fp-score =
(
p2 + 1

) ∗ (precision ∗ recall)

p2 ∗ (precision + recall)
(17)

Accuracy = TP + TN
TP + TN + FP + FN

(18)

where TP represents true positives (the ON state of the appliance accurately predicted); FP represents
false positives (actual state: ON; predicted state OFF); FN represents false negatives (actual state:
OFF; predicted state ON) and TN (the OFF state of appliance accurately predicted); Furthermore,
the harmonic parameter denoted as p is set to 1. These performance metrics pertain to individual
appliances. The precision and recall indicators for all classification methods are calculated as the
average of the indexes of the appliances. Furthermore, for imbalanced datasets, the Area Under
the Curve (AUC) of the Receiver Operating Characteristic curve (ROC) can be a more reliable
performance measure compared to accuracy alone. Therefore, we additionally analyzed the AUC
to compare our classification models. The Receiver Operating Characteristic (ROC) is a visual
representation of the relationship between the true positive rate and the false positive rate at different
threshold values of the algorithm used for classification. The value of AUC can vary from 0 to 1,
with a value of 1.0 representing flawless classification and a value below 0.5 indicating quasi-random
guessing [31].

4 Results and Discussion

The performance of the proposed method (scenario 5) is tested using four optimized classifiers,
i.e., deep neural network (DNN), SVM, decision trees, and KNN. Fig. 3 shows the progress of training
for all the classifiers using the proposed feature extraction method until 30 iterations. In each case, all
the classifiers are optimized using Bayesian optimization. Min classification error is used to optimize
the hyperparameters of all the classifiers. The ‘min-observed’ classification criterion selects the best
point hyperparameters. For the KNN classifier, the minimum observed error is 0.139 and the best
point hyperparameters are achieved from the 9th iteration. For Decision Trees, the minimum observed
error is 0.179 and the best point hyperparameters are achieved from the 11th iteration. Similarly,
the minimum observed error for the SVM classifier is 0.128 and the best point hyperparameters are
achieved from the 18th iteration. For the last DNN classifier, the minimum observed error is 0.125
and the best point hyperparameters are achieved from the 15th iteration.
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Figure 3: Training progress of all classifiers when optimized using Bayesian optimization

The results of the Bayesian optimization with the proposed feature extraction method are shown
in Table 2. The optimization technique targeted crucial classifier hyperparameters to thoroughly
test the feature extraction method’s performance under different configurations. For the DNN,
the optimization focused on the number of layers, regularization strength, activation function, and
the number of neurons in each layer. The regularization strength parameter governs the impact of
regularization on DNN. Larger values of regularization strength enforce more substantial penalties on
large weights, deterring the model from excessive complexity and alleviating overfitting [32]. Striking
the right balance is crucial, as excessive regularization may lead to underfitting, while insufficient
regularization can result in overfitting. The non-linear activation function allows the learning of
complex patterns. The resulting configuration comprised a network with three layers, a regularization
strength of 5.96e-6, and specific neuron counts for each layer (9, 147, and 14 neurons in the first,
second, and third layers, respectively). The computationally efficient Rectified Linear Unit (ReLU)
activation function solves the vanishing gradient problem observed in sigmoid and tanh activation
functions. It sets negative input values to zero, which promotes sparsity and helps the model learn
faster and more effectively [33].

The SVM optimization model focuses on optimizing the multiclass technique, box constraint
level, kernel scale, and kernel function. The selection of a multiclass technique is crucial in deciding its
strategy for dealing with classification problems that involve more than two classes. The box constraint
parameter plays a crucial role in striking a balance between accurately classifying training points and
achieving a smooth decision boundary. The kernel scale parameter assumes significance in shaping the
decision boundary by dictating the extent of influence wielded by each data point. Manipulating the
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kernel scale introduces variations in the boundary’s flexibility. The optimized configuration consists
of a one-vs-one multiclass method, a box constraint level of 888.463, a kernel scale of 5.36, and a
Gaussian kernel function. In one-vs-one, each class is treated as a binary classification problem against
the rest. Additionally, data standardization was deemed beneficial for this SVM setup.

Table 2: Bayesian optimization results for proposed feature extraction method

DNN SVM KNN Decision trees
Hyperparameter Value Hyperparameter Value Hyperparameter Value Hyperparameter Value

No. of layers 3 Multiclass
method

One-vs-One No. of
neighbours

1 Max no. of splits 52

Regularization
strength

5.96e-6 Box constraint
level

888.463 Distance metric Correlation Split criterion Max
deviance
reduction

First layer
neurons

9 Kernel scale 5.36 Distance weight Inverse

Second layer
neurons

147 Kernel function Gaussian Standardize data True

Third layer
neurons

14 Standardize data True

Activation
Function

ReLU

The KNN classifier was optimized by adjusting the number of neighbours, selecting an appropri-
ate distance metric, and assigning weights to the distances. The number of neighbours indicates the
degree to which nearby data points have an impact on the classification of a given point. The distance
metric is used to calculate the distance between data points in the KNN algorithm, which determines
the level of similarity or dissimilarity. In addition, the distance weight assigns different weights to
surrounding points based on their distance from the query point. The complexity of this situation is
essential in controlling the importance of each neighbour’s input in determining the final classification
result. The optimized configuration dictated one neighbour, a correlation-based distance metric, and
inverse distance weighting.

In the case of Decision Trees, the optimization targeted the maximum number of splits and the
split criterion. This maximum number of splits establishes an upper limit on the depth of the decision
tree. By limiting the maximum number of splits, the algorithm avoids creating an excessively deep tree,
which could lead to overfitting the training data

Moreover, the split criterion determines the metric used to evaluate the quality of a split at each
node. The resulting configuration included a maximum of 52 splits and the use of the “Max Deviance
Reduction” criterion. Standardization of data was identified as advantageous for this Decision Trees
setup. Table 3 shows the precision, recall, and F1-score of all the electrical appliances for all the
optimized classifiers using the proposed feature extraction method.
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Table 3: Optimized classifiers’ performance with the proposed feature extraction method

Optimized DNN Optimized SVM Optimized KNN Optimized decision trees

Label Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Charger 1 1 1 1 0.857 0.923 0.923 0.857 0.889 0.909 0.714 0.80
CFL 1 1 1 1 1 1 1 0.75 0.857 1 1 1
GameC 1 1 1 1 1 1 1 1 1 0.833 0.833 0.833
Hi-Fi 1 0.5 0.667 1 1 1 0.667 1 0.80 1 1 1
LP 1 1 1 1 1 1 1 1 1 0.667 1 0.80
Mass 857 1 0.923 0.667 1 0.80 0.75 1 0.857 0.50 0.833 0.625
Mosquito 1 1 1 1 1 1 1 1 1 1 1 1
PS 0.875 0.875 0.875 1 0.875 0.933 1 0.875 0.933 1 0.625 0.77
ShoeW 1 1 1 1 1 1 1 1 1 1 1 1
WM 1 1 1 1 1 1 1 1 1 0.667 1 0.80

Furthermore, Figs. 4a–4c demonstrate bar charts of precision, recall, and F1-score of all the
optimized classifier using the features extracted from the proposed multi- and mono-fractal analysis
method. The DNN classifier demonstrated exceptional performance, achieving good scores for
precision, recall, and F1-score for all appliances. For example, the Charger exhibited precision, recall,
and F1-score values of 1, indicative of ideal classification accuracy.

The SVM classifier also exhibited robust classification capabilities, yielding high precision and
recall for most appliances. Similarly, the KNN classifier performed commendably, demonstrating
good precision, recall, and F1-score values for various appliances The Decision Trees classifier
also displayed reliable performance, with consistently high scores in precision, recall, and F1-score
for multiple appliances. Nevertheless, appliances such as the Hi-Fi Speaker System and Massager
exhibited slightly lower F1-scores, indicating potential areas for further optimization using advanced
optimization techniques [34–36] or alternative classifier selection.

To provide a more holistic view, we complemented accuracy, F1-score, precision, and recall with
the AUC metric. The value of AUC can vary from 0 to 1, with a value of 1.0 representing flawless
classification and a value below 0.5 indicating quasi-random guessing. Table 4 gives the AUC values
of various appliances for each optimized classifier. It is evident from the results that the DNN model
and SVM have the highest overall performance with average AUC of 0.99 and 1.0, respectively. Then
come the decision tree and KNN classification models with average AUC of 0.95 and 0.96, respectively.
DNN, SVM, and KNN all achieved perfect AUC scores of 1 for several categories of appliances,
indicating their ability to perfectly distinguish between classes in those cases. Overall, the performance
of all the models was strong, with AUCs consistently surpassing 0.9 for the majority of appliances. This
indicates that all of them possess a strong capacity to differentiate between the various categories of
appliances. However, there were specific exceptions such as KNN for CFL with an AUC of 0.875,
which is still considered good but lower than the others. Similarly, the decision tree for PS with an
AUC of 0.7946, which is closer to the quasi-random guessing indicator of AUC = 0.5.

Considering all the discussed performance metrics, DNN was found to be the model that achieved
the best classification results. These variations in performance metrics across classifiers underscore
the importance of considering the specific characteristics of each appliance when choosing an optimal
classifier.
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(a) 
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(c) 

Figure 4: (a) Precision, (b) recall, and (c) F1-score using the proposed feature extraction method for
various classifiers
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Table 4: Comparison of optimized classifiers’ performance with AUC measures

Classifiers Charger CFL GameC Hi-Fi LP Mass Mosquito PS ShoeW WM

DNN 1 1 1 0.9896 1 1 1 0.9911 1 1
SVM 1 1 1 1 1 1 1 1 1 1
Decision tree 0.9742 1 0.9754 1 0.9896 0.9242 1 0.7946 1 0.9896
KNN 0.9147 0.875 1 0.9896 1 0.9773 1 0.9375 1 1

4.1 Comparison with State-of-the-Art Methods

Table 5 compares the proposed multi- and mono-fractal-based feature extraction method with
four other feature extraction methods described in sub-section 3.2 based on accuracy, precision, recall,
and F1-score. All the feature extraction methods were tested using the same data. The performance
has been compared for every optimized classifier, i.e., DNN, SVM, Decision Trees, KNN. Notably,
the proposed mono- and multi-fractal analysis method outshines all other feature extraction methods.

Table 5: Comparison with state-of-the-art features extraction methods

Classifier Feature extraction
method

Accuracy (%) Precision (%) Recall (%) F1-score (%)

Optimized ST all orders 82 80.07 83.57 81.78
DNN ST 1st order 88 92.74 90.36 91.54

ST 2nd order 70 73.0 69.64 71.28
Multi-level DWT 84 85.1 79.7 82.3
Proposed
multi-fractal
analysis

96 97.3 93.75 95.5

Optimized ST all orders 80 83.42 83.69 83.56
SVM ST 1st order 82 74.41 73.57 73.99

ST 2nd order 76 69.8 72.86 71.3
Multi-level DWT 78 70.91 71.25 71.1
Proposed
multi-fractal
analysis

94 96.67 97.32 97.0

Optimized ST all orders 82 81.68 78.57 80.1
decision trees ST 1st order 76 74.78 72.14 73.44

ST 2nd order 70 74.38 70.36 72.31
Multi-level DWT 72 69.92 64.7 67.21
Proposed
multi-fractal
analysis

82 85.76 90.05 87.85

(Continued)
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Table 5 (continued)

Classifier Feature extraction
method

Accuracy (%) Precision (%) Recall (%) F1-score (%)

Optimized ST all orders 92 91.67 90.0 90.83
KNN ST 1st order 92 88.81 90.0 89.4

ST 2nd order 82 82.46 81.8 82.12
Multi-level DWT 80 69.46 69.16 69.31
Proposed
multi-fractal
analysis

92 93.4 94.82 94.10

Using the optimized DNN classifier, the method employing ST coefficients of all orders achieves
an accuracy of 82% with similar levels of precision, recall, and F1-score. The approach focusing solely
on first-order ST coefficients demonstrates an improved accuracy at 88%, showing improvement in
capturing primary signal characteristics. However, the method considering second-order ST coeffi-
cients experiences a decrease in accuracy to 70%, indicating challenges in capturing more complex
patterns.

The multi-level DWT method attains an accuracy of 84%, offering a balanced trade-off between
precision and recall. Notably, the proposed mono- and multi-fractal analysis method outshines all
other feature extraction methods, achieving an impressive accuracy of 96% with superior precision,
recall, and F1-score values of 97.3%, 93.75%, and 95.5%, respectively.

Moving to the Support Vector Machine (SVM) classifier, the feature extraction methods display
consistent performance across various metrics. The ST coefficients of all orders method achieves a
low accuracy of 80%, with low precision, recall, and F1-score values. The ST coefficients of the first
order show a slight increase in accuracy to 82% but lower values of precision, recall, and F1-score.
Similarly, the second-order ST coefficients method records an even lower accuracy of 76% and similar
smaller values of other performance metrics. The multi-level DWT method attains an accuracy of
78%, displaying a balanced performance. Once again, the proposed multi-fractal analysis method
stands out, achieving a remarkable accuracy of 94%, emphasizing its effectiveness in optimizing SVM
classification.

Different feature extraction approaches demonstrate varied performances for the Decision Trees
classifier. The approach using ST coefficients of all orders as features produces a relatively low accuracy
of 82% while maintaining a balanced performance in terms of precision, recall, and F1-score. The
approach that uses only first-order ST coefficients achieves a marginally lower accuracy rate of
76% and considerably low precision and recall. The approach using second-order ST coefficients
demonstrates a precision of 70%, suggesting difficulties in capturing intricate patterns. The Multi-
level DWT approach produces a 72% accuracy and very low precision and recall values. The
suggested multi-fractal analysis method once again demonstrates exceptional performance, obtaining
an accuracy of 82% along with high precision, recall, and F1-score values, i.e., 85.76%, 90.05%, and
87.85%, respectively.

Lastly, in the evaluation of the KNN classifier, the feature extraction methods demonstrate robust
performances. The ST coefficients of all orders achieves an accuracy of 92%, maintaining a balance
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between precision, recall, and F1-score. The first-order ST coefficients method maintains consistent
accuracy at 92%, with balanced precision and recall. The second-order ST coefficients method records
an accuracy of 82%, showcasing a solid performance. The multi-level DWT method attains a low
accuracy level of 80% with poor precision, recall, and F1-score values. The proposed multi-fractal
analysis method once again stands out, achieving an accuracy of 92%, precision of 93.4%, recall
of 94.82%, and F1-score of 94.10, emphasizing its effectiveness in enhancing KNN classification
accuracy.

4.2 Discussion

The coefficients in scattering transform (ST) in the first three scenarios are determined analytically
and do not need to be learned. The ST also has time-shifting and small time-warping invariance,
reducing the need for precise temporal localization for classification. It has shown promising results
for classifying high-power level appliances such as vacuum cleaners [37] but its performance for low-
power level appliances is seldom studied. Furthermore, it may not perform well in scenarios with
small training datasets or limited labelled examples. Similarly, the 5-level DWT method of scenario 4
is seldom studied for low-power level appliances. The fifth scenario employs the proposed advanced
fractal analysis techniques for feature extraction.

In the proposed hybrid mono- and multi-fractal analysis method, the fractal dimension captures
the complexity of the signal, the Hurst exponent characterizes long-term dependencies, the multifractal
spectrum describes the distribution of singularities, and the Hölder exponents provide information
about local regularities. The hybrid approach integrated both mono- and multi-fractal features to
optimize classification accuracy. When employing only mono-fractal features, specifically the Hurst
exponent and Fractal dimension, the accuracy achieved was 64%. Similarly, employing only multi-
fractal analysis resulted in an accuracy of 84%. However, the combination of these features proved
highly effective with an accuracy of up to 96%. The synergistic combination of mono- and multi-
fractal features evidently enhanced the overall classification performance, showcasing the robustness
of the hybrid method in achieving superior accuracy compared to individual feature sets.

In general, the suggested method exhibited exceptional efficacy in categorizing low-power level
appliances, a task that is frequently problematic for alternative algorithms that may erroneously
classify such signals as background noise. It can manage the intricacy and lack of linearity that is
inherent in low-power appliance signatures. The versatility of fractal-based techniques in handling
signals with different levels of complexity enables an efficient differentiation between noise and real
appliance patterns in the low-power range. It is intrinsically well-suited to deal with the lack of density
in signals, emphasizing important features and enabling the reduction of dimensions. This is especially
beneficial in situations with weak signals, as extraneous data might obscure the real characteristics of
the devices. The utilization of a hierarchical representation provided by fractal analysis enhances the
effectiveness of the procedure. On the contrary, other methods, such as ST coefficients or multi-level
DWT have struggled to adapt to the intricacies of low-power appliance signals. Their representations
have failed to adequately distinguish between noise and genuine appliance signatures in the low-power
range.

For the comparative assessment of computational efficiency, the performance of the proposed
multi-fractal and mono-fractal analysis methods is evaluated against established state-of-the-art
techniques as shown in Table 6. The total execution time for the proposed multi-fractal analysis
amounted to 1.364 s, featuring a minimal self-time of 0.008 s, with the predominant computational
load attributed to child functions time, specifically 1.36 s. Conversely, the proposed mono-fractal
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analysis demonstrated a total execution time of 3.456 s, with a noteworthy self-time of 1.442 s, implying
a substantial portion of the algorithm’s execution dedicated to internal computations. In comparison
to the proposed methods, the multi-level DWT and ST analysis of all orders exhibited considerably
higher total execution times of 153.84 and 81.41 s, respectively.

Table 6: Comparison of computational time of proposed method with state-of-the-art

Total execution time (s) Self-time (s) Child functions time (s)

Proposed multi-fractal analysis 1.364 0.008 1.36
Proposed mono-fractal analysis 3.456 1.442 2.01
Multi-level DWT 153.84 153.04 0.80
ST all orders 81.41 1.165 80.25

The multi-level DWT predominantly consumed time within the algorithm itself (153.04 s),
while ST analysis distributed its computational load more evenly between self-time (1.165 s) and
child functions’ time (80.25 s). This analysis underscores the efficiency of the proposed multi- and
mono-fractal analysis, particularly in optimizing child functions time, highlighting its potential as a
competitive alternative to existing methodologies.

Furthermore, the WHITED dataset contains appliance data from various regions across the
world. For instance, the start-up transients of the charger are collected from three different regions
of the world. The performance of the proposed algorithms suggests that fractal analysis can capture
unique features from start-up transients of low-power nonlinear appliances regardless of their under-
lying circuit connection with the power mains. However, isolation of the switching transients plays an
important role in the implementation of this methodology and event detection is very critical as this
step directly determines the upper limit of the identification performance. Furthermore, this method
needs to be tested for multi-switching of appliances and that is to be included as part of future work
of this project.

5 Conclusion

This research work addresses a significant gap in NILM research by proposing a novel hybrid
feature extraction method based on mono-fractal and multi-fractal approaches. While prior studies
have focused on high-power appliances, our work specifically targets the challenging domain of
low-power appliances, where distinguishing between devices with similar power profiles poses a
considerable obstacle. The utilization of fractal dimension, Hurst exponent, multifractal spectrum,
and Hölder exponents in the analysis of switching current transient signals has proven to be a robust
approach, achieving superior performance compared to state-of-the-art methods. The comprehensive
evaluation using precision, recall, F1-score, and accuracy consistently demonstrates the superiority of
our mono- and multi-fractal analysis, achieving an outstanding accuracy of up to 96%.

This work not only advances the understanding of low-power appliance identification but
also introduces a valuable methodology for feature extraction in NILM research. The successful
application of fractal analysis in this context enhances the accuracy and efficiency of NILM, paving
the way for more effective energy management strategies and increased awareness among consumers.
These findings underscore the potential of fractal-based approaches in improving the performance of
appliance recognition algorithms.
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For future work, we plan to test this algorithm on aggregated measurements and develop a
complete NILM solution that fuses various methods of appliance signature development to encompass
low and medium-power appliances as well as energy-intensive appliances.
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