
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.051816

ARTICLE

Efficient Clustering Network Based on Matrix Factorization

Jieren Cheng1,3, Jimei Li1,3,*, Faqiang Zeng1,3, Zhicong Tao1,3 and Yue Yang2,3

1School of Computer Science and Technology, Hainan University, Haikou, 570228, China
2School of Cyberspace Security, Hainan University, Haikou, 570228, China
3Hainan Blockchain Technology Engineering Research Center, Haikou, 570228, China

*Corresponding Author: Jimei Li. Email: 22220854000328@hainanu.edu.cn

Received: 15 March 2024 Accepted: 21 May 2024 Published: 18 July 2024

ABSTRACT

Contrastive learning is a significant research direction in the field of deep learning. However, existing data
augmentation methods often lead to issues such as semantic drift in generated views while the complexity of model
pre-training limits further improvement in the performance of existing methods. To address these challenges,
we propose the Efficient Clustering Network based on Matrix Factorization (ECN-MF). Specifically, we design
a batched low-rank Singular Value Decomposition (SVD) algorithm for data augmentation to eliminate redundant
information and uncover major patterns of variation and key information in the data. Additionally, we design a
Mutual Information-Enhanced Clustering Module (MI-ECM) to accelerate the training process by leveraging a
simple architecture to bring samples from the same cluster closer while pushing samples from other clusters apart.
Extensive experiments on six datasets demonstrate that ECN-MF exhibits more effective performance compared
to state-of-the-art algorithms.

KEYWORDS
Contrastive learning; clustering; matrix factorization

1 Introduction

Due to the potent representation learning capabilities of graph data, Graph Neural Networks
(GNNs) have successfully permeated various domains, encompassing node classification [1], graph
classification [2], time series analysis, knowledge graphs, and clustering [3]. Within the diverse
landscape of graph learning, deep graph clustering [4] emerges as a fundamental yet challenging
unsupervised task, marking a recent focal point of research interest. The exploration of deep graph
clustering methods encompasses various learning mechanisms. Generative methods leverage gener-
ative models to characterize the distribution of graph data, achieving effective clustering of graphs
[5–9]. Adversarial methods [10,11] introduce the concept of adversarial training, enhancing clustering
performance through the interplay between a generator and a discriminator. Contrastive methods
[12–16], on the other hand, propel the development of deep graph clustering by learning the similarity
and dissimilarity between samples. Our method falls into the category of multi-view [17] contrastive
learning, aligning with the latter approach.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.051816
https://www.techscience.com/doi/10.32604/cmc.2024.051816
mailto:22220854000328@hainanu.edu.cn

282 CMC, 2024, vol.80, no.1

Existing methods generate augmented views of the same nodes through graph augmentation.
However, existing studies [18,19] indicate: 1) Due to the inherent characteristics of contrastive learning,
sensitivity to noise and incorrect labels can lead to semantic drift and indistinguishable positive
samples when inappropriate data augmentation techniques such as edge removal, noise addition,
diffusion [13], or masking are used. 2) Due to the computational cost of matrix factorization itself,
existing methods still face limitations in handling large sparse datasets. 3) Model pre-training typically
requires extensive data for optimal performance. Fine-tuning pre-trained models necessitates large-
scale labeled data, which may not be suitable for tasks with limited annotated data. Moreover, due to
differences between tasks, transferring pre-trained models to specific tasks can be more complex and
challenging.

To address the aforementioned issues, we propose an Efficient Clustering Network based on
Matrix Factorization (ECN-MF). The main idea behind this approach is to design a batched low-rank
Singular Value Decomposition algorithm and a Mutual Information-Enhanced Clustering Guidance
Module. This aims to extract crucial information from the data while better preserving the original
information in the embedded data, reducing information loss, and improving the model’s generative
capabilities. Specifically, in terms of data augmentation, we introduce a batched low-rank Singular
Value Decomposition algorithm that decomposes the attribute matrix of large datasets into smaller
modules. This allows better exploration of major variation patterns and important information in
sparse and large datasets. In the network architecture, we employ a pseudo-siamese neural network
with the same structure but without parameter sharing. This enables the model to better capture unique
information from each view, thereby enhancing clustering performance. Additionally, we design a
Mutual Information-Enhanced Clustering Guidance Module to ensure better preservation of original
data information, reducing information loss, and enhancing the model’s generative capabilities. It
brings samples from the same cluster closer while pushing samples from other clusters apart, further
improving clustering performance. The main contributions of this work are summarized as follows:

1. We propose an Efficient Clustering Network based on Matrix Factorization (ECN-MF), which
does not require pre-training, thus alleviating the challenges of model pre-training and complex
model transfer.

2. We propose a batched low-rank Singular Value Decomposition (SVD) algorithm to address the
resource-intensive nature of the SVD algorithm in large sparse datasets. This method not only
avoids losing important information during data augmentation but also effectively extracts
latent information from the data.

3. We designed a Mutual Information-Enhanced Clustering Module (MI-ECM). It enhances the
discriminative capability of the network while ensuring better retention of the original data
information in the embedded data.

4. Experimental results demonstrate that our proposed method outperforms existing methods in
handling challenges such as large sparse datasets and model transfer complexity.

The remaining sections of this paper are organized as follows. Section 2 reviews relevant literature
on matrix factorization and contrastive deep graph clustering. In Section 3, we provide detailed
explanations of the symbols used, the batched low-rank Singular Value Decomposition algorithm, our
network structure, and the Mutual Information-Enhanced Clustering Guidance Module. Section 4
presents the results of our method tested on five datasets. Finally, Section 5 concludes the paper.

CMC, 2024, vol.80, no.1 283

2 Related Work
2.1 Matrix Factorization

Matrix factorization (decomposition) is the process of breaking down a matrix into the product of
several matrices. This can involve techniques such as triangular factorization, full rank factorization,
orthogonal triangle decomposition, Jordan decomposition, and Singular Value Decomposition. In
our case, we primarily utilize Singular Value Decomposition to process data. Singular Value Decom-
position allows for the representation of a relatively complex matrix as the product of smaller and
simpler matrices. These smaller matrices describe the essential characteristics of the original matrix.
Singular Value Decomposition is applicable to any matrix, making it adaptable to the features of
current attribute information. It finds applications in various fields such as signal processing, statistics,
natural language processing, and more. In recommendation systems, Singular Value Decomposition
is widely applied in collaborative filtering and matrix completion algorithms. Through Singular Value
Decomposition, a user-item rating matrix can be reduced to a low-dimensional latent factor matrix,
extracting latent features of users and items for recommendation purposes.

Singular Value Decomposition has significant potential value in processing raw data. The singular
values decrease exponentially with rank, with early singular values much larger than later ones, as
shown in Fig. 1. By applying low-rank Singular Value Decomposition to the data, we can capture the
essential features of the data, enhance data representation, and improve the performance of multi-view
clustering. Based on this, we have optimized and improved the Singular Value Decomposition method
to be suitable for large datasets, providing higher computational efficiency and scalability.

Figure 1: (a): Singular values exhibit exponential decay with rank, where the initial singular values are
significantly larger than the subsequent ones. (b): All information of X is encoded in all singular values
until k. The majority of information is encoded in the first singular vector returned by Singular Value
Decomposition

2.2 Contrastive Deep Graph Clustering

In recent years, contrastive learning has achieved remarkable success in the fields of images [20–
23] and graphics [24–26], inspiring extensive research on contrastive deep graph clustering methods

284 CMC, 2024, vol.80, no.1

[12–16]. The clustering performance of these methods is primarily influenced by three key factors: data
augmentation, network architecture, and the handling of positive and negative sample pairs. Taking
these factors into account, we summarize the distinctions between our proposed ECN-MF and other
contrastive deep graph clustering methods.

2.2.1 Data Augmentation

Data augmentation techniques are pivotal in the realm of deep graph-contrastive clustering.
Current methods, such as edge removal, diffusion, masking, and noise addition, introduce varying
degrees of perturbation to the original data. While these approaches help mitigate over-smoothing
during iterative training of graph neural networks, they carry the risk of losing crucial information.
Inappropriate data augmentation may lead to semantic drift and indistinguishable positive samples,
resulting in suboptimal clustering performance. For instance, reference [13] utilizes diffusion matrices
as augmented graphs, while Self-supervised contrastive attributed graph clustering (SCAGC) perturbs
graph structure by randomly adding or removing edges. Reference [15] and SCAGC enhance node
attributes through attribute perturbation. However, reference [27] has highlighted the risk of semantic
drift with improper data augmentation. To address this challenge, we propose a novel enhancement
approach. Unlike existing methods, ECN-MF leverages batch low-rank Singular Value Decompo-
sition methods to extract crucial attribute information, filter out noisy data, and construct two
augmented views of the same node without compromising the original structure.

2.2.2 Network Architecture

In terms of network architecture, SCAGC, reference [28] uses a shared Graph Convolutional
Networks (GCNs) encoder to encode nodes. However, conventional GCNs encoders entangle transfor-
mation and aggregation operations during the training process, resulting in high time costs. To address
this issue, we employ two separate Multilayer Perceptrons (MLPs) to encode the node attributes of the
two views. These two MLPs have the same architecture but do not share parameters, ensuring that the
node embeddings for the two views contain different semantic information.

2.2.3 Handling of Positive and Negative Sample Pairs

In contrastive methods, the handling of positive and negative sample pairs is crucial. Contrastive
methods bring positive samples together while pushing negative samples apart. Therefore, the quality
of positive and negative sample pairs significantly influences the performance of contrastive methods.
Specifically, reference [13] generates negative samples by randomly shuffling features and designs the
InfoMax loss to maximize cross-view mutual information. Reference [12] distinguishes between similar
and dissimilar nodes using cross-entropy loss. Subsequently, SCAGC randomly selects samples from
different clusters to improve the quality of negative samples. They also design a contrastive clustering
loss to maximize the consistency between representations from the same cluster. Both references [14]
and [16] utilize the infoNCE loss to attract positive sample pairs and separate negative sample pairs.
While their approaches have shown effectiveness, they still depend on a well-pretrained model to
choose high-quality positive and negative samples. To address this issue, we propose a MI-ECM to
bring samples from the same cluster closer while pushing samples from different clusters apart, thereby
enhancing the discriminative ability of sample pairs.

CMC, 2024, vol.80, no.1 285

3 Method

In this section, we introduce a novel Efficient Clustering Algorithm based on Matrix Factorization
(ECN-MF). The aim is to enhance clustering performance by leveraging matrix factorization in a way
that captures unique information from each view with-out disrupting the original structure. The overall
framework of ECN-MF is illustrated in Fig. 2. In the following sections, we will provide a detailed
explanation of the pro-posed ECN-MF.

Figure 2: Schematic diagram of the Efficient Clustering Network based on Matrix Factorization. The
network consists of three main parts: the batched low-rank Singular Value Decomposition (SVD) on
the left, the pseudo-siamese neural network in the middle, and the Mutual Information-Enhanced
Clustering Guidance Module on the right. Here, A is the normalized adjacency matrix, X is the
attribute matrix, and Xr is its corresponding low-rank attribute matrix. E1 and E2 represent the first and
second encoders, Z(L) and Z(L)

r represent the embedding information of the first and second encoders.
Q is the probability matrix, and P is the target distribution

3.1 Notations and Problem Definition

In an undirected graph G = {X, A}, let V = {v1, v2, . . . , vN} be a set containing N nodes with K
classes, and E be the set of edges. X ∈ RN×D represents the attribute matrix, and A ∈ RN×N represents
the original adjacency matrix. The degree matrix is denoted as D = diag (d1, d2, . . . , dN) ∈ RN×N, where
di = �(vi ,vj)∈εaij. Normalizing the original adjacency matrix A to A ∈ RN×N is achieved by computing
D(−1)

(A + I), where I ∈ RN×N is the identity matrix. Table 1 summarizes these symbols.

Table 1: Description of the used notations

Notation Meaning

X ∈ RN×D Attribute matrix
Xr ∈ RN×D Low-rank attribute matrix
A ∈ RN×N Original adjacency matrix

(Continued)

286 CMC, 2024, vol.80, no.1

Table 1 (continued)

Notation Meaning

A ∈ RN×N Normalized adjacent matrix
I ∈ RN×N Identity matrix
D ∈ RN×N Degree matrix
Z ∈ RN×d Graph embedding
Q ∈ RN×K Probability Distribution

3.2 Batch Low-Rank Singular Value Decomposition Algorithm

Recent studies have demonstrated the significant effectiveness of Singular Value Decomposition
in handling sparse matrices and dimensionality reduction. Inspired by their success, we introduce
the Singular Value Decomposition algorithm, treating attribute information as an independent
preprocessing step before training. This approach allows for the effective extraction of latent and
essential information from the data while filtering out noise present in the attributes. The method
is as follows:

Specifically, given a matrix A ∈ Rm×n, low-rank Singular Value Decomposition decomposes it into
the product of three matrices, where m and n can be any integers:

A = USVT (1)

Here, U ∈ Rm×r is the left singular vector matrix, containing the structural information of the
original data, where r represents the rank of the low-rank. S ∈ Rm×r is the diagonal matrix containing
singular values, typically arranged in descending order, representing the importance of the data. VT ∈
Rr×n is the right singular vector matrix, containing the feature information of the original data.

Singular Value Decomposition can be applied to decompose any matrix, making it adaptable to
the characteristics of current attribute information. We will rewrite Eq. (1) as follows:

Xr = UrSrV
T
r (2)

Here, Xr ∈ RN×D represents the low-rank attribute matrix, Ur is the low-rank left singular vector
matrix, Sr is the low-rank diagonal matrix, and Vr is the low-rank right singular vector matrix, where
VT

r is the transpose of Vr.

To adapt to the Singular Value Decomposition in the case of large data, we partition the dataset
X = {x1, x2, . . . , xN} into M batches, where each batch batchi consists of B samples, and B is a positive
integer, i.e.:

batchi = {
xi·B+1, xi·B+2, . . . , x(i+1)B

}
(3)

Here, B represents the number of samples included in batchi.

The objective of centralization is to set the mean of the data in each batch to zero. Assuming batchi

contains B samples with a mean of μi, centralization is applied to each batch batchi, resulting in the
centered batch batchcentered

i . This process can be mathematically represented as follows:

batchcentered
i = batchi − μi = {

xi·B+1 − μi, xi·B+2 − μi, . . . , x(i+1)B − μi

}
(4)

CMC, 2024, vol.80, no.1 287

Here, xi·B+2 represents the 2-th sample in batchi, and μi is the mean of batchi. Performing Singular
Value Decomposition on each batchcentered

i yields different low-rank matrices ui, si, vi :

ui∼i+r, si∼i+r, vi∼i+r = SVD
(
batchcentered

i

)
(5)

Here, SVD represents the Singular Value Decomposition algorithm.

We concatenate all low-rank matrices ui, si, vi from each batchcentered
i to form matrices Ur, Sr, Vr:

Ur = {u1, u2, . . . , ui∗r}
Sr = {s1, s2, . . . , si∗r} (6)

Vr = {v1, v2, . . . , vi∗r}
We perform a descending order sorting on Sr and select the top r values. In other words, we

individually sort the real numbers of singular values in descending order and choose the top r
singular values. The purpose is to emphasize the significance of singular values, allowing the primary
information of attribute matrix X to be represented by a reduced number of singular values or vectors.
The aforementioned learning process can be articulated as follows:

Slow = descendingsort (Sr) (7)

Slow_r = TOP (Slow, r)

Next, we will obtain the corresponding vectors of Vr based on the indices selected indices of the
singular values Slow_r and form Vlow_r according to Eq. (8):

Vlow_r = f (x) =
{

vi, Slow_r,i match vi

0, others
(8)

Finally, we reconstruct the low-rank attribute matrix Xr using Ur, Slow_r, Vlow_r according to Eq. (9).

Xr = UrSlow_rV
T
low_r (9)

3.3 Pseudo-Siamese Neural Network

In this section, we embed the nodes of both the original and enhanced data into a latent space
and design a pseudo-siamese neural network with an encoder that shares the same architecture but
has non-shared learnable parameters.

Residual connections allow information to propagate between network layers, aiding in mitigating
the vanishing gradient problem, accelerating the training process, and enhancing model performance.
In this work, the representations learned by the l-th layer of GCNs can be obtained through the
following convolution operation:

Z(l) = ∅

(
AZl−1Wl−1

v1 + Zl−1
)

(10)

Z(l)
r = ∅

(
AZl−1

r Wl−1
v2 + Zl−1

r

)
Here, ∅ is the activation function of the fully connected layer, such as Relu [29] or the Sigmoid

function. Zl−1 and Zl−1
r represent the embeddings of two views, and Wl−1

v1 and Wl−1
v2 are the weight

matrices corresponding to the encoder’s l-th layer. Additionally, we denote Z(0) as the original data X
and Z(0)

r as the enhanced data Xr. As shown in Eq. (10), the representations Zl−1 and Zl−1
r will traverse

288 CMC, 2024, vol.80, no.1

the normalized adjacency matrix A to obtain new representations Z(l) and Z(l)
r . It is important to note

that the input to the first layer of GCNs consists of the original data X and the enhanced data Xr:

Z(1) = ∅

(
AXW1

v1

)
(11)

Z(1)

r = ∅

(
AXrW

1
v2

)
We denote the embeddings output by the last layer of GCNs as Z(L) and ZL

r .

3.4 Mutual Information-Enhanced Clustering Module

To minimize redundancy in embeddings and effectively preserve more discriminative features, we
initially optimize the embeddings between cross-view samples using Mean Squared Error (MSE) loss.
This ensures that the learned representations are not influenced by irrelevant information, thereby
guaranteeing the quality of the latent space for subsequent clustering tasks. The formula is as follows:

LMSE = 1
n

∑n

i=1

(
Z(L) − ZL

r

)2
(12)

Here, Z(L) and ZL
r represent the embeddings of the last layer of the graph convolutional network.

Next, we merge the embeddings from the two views for each node as follows:

Z = 1
2

(
Z(L) + ZL

r

)
(13)

Here, Z ∈ RN×d represents the node embeddings for clustering.

Finally, by inputting Z into a one-layer Multi-Layer Perceptron (MLP) with a softmax activation
function, we convert it into a K-dimensional clustering space, where K represents the number of
clusters. The learning process can be expressed as:

Q = softmax (Z) (14)

where Q ∈ RN×K represents the probability matrix indicating the probability of all N nodes belonging
to K clusters. We can view Q as a probability distribution.

Following the acquisition of the clustering probability distribution Q, we refine the data repre-
sentation by focusing on learning high-confidence data, aiming to strengthen the cohesion within the
clustering. Specifically, we aim to reinforce the intra-cluster cohesion by emphasizing representations
that are closer to the cluster centers. Therefore, we compute the target distribution P as follows:

Pij = Q2
ij/f j∑

j′ Q2
ij′/f j′

(15)

Here, fj = ∑
i Qij is the soft clustering frequency. In the target distribution P, each assignment in

Q is squared and normalized to give higher confidence to the assignments. This leads to the following
objective function:

LKL(P||Q) =
∑

x
log

P(x)

Q(x)
(16)

CMC, 2024, vol.80, no.1 289

Minimizing the KL divergence loss between the Q and P distributions enables the GCNs
module to enhance its ability to learn representations for clustering tasks. This ensures that the data
representations around cluster centers become more compact.

In order to aggregate samples within the same cluster while simultaneously separating them from
samples in other clusters, we choose to periodically update the top τ probability samples from different
clusters. This process enhances the cohesion of positive samples within clusters and improves the
discriminative ability of sample pairs, i.e.,

I
(
xi,j is among the top τ elements

) =
{

1, if qi,j is among the top τ elements
0, otherwise

(17)

Here, I(xi,j is among the top τ elements) = 1 indicates that sample xi is most likely to belong to
cluster cj, and the label for this sample is recorded as ykey. The number of key samples in each cluster is
Nk, and the total number of key samples is C · Nk, enhancing the cohesion of positive samples within
clusters.

We use the obtained pseudo-labels ykey to constrain the model’s results, i.e.,

LBCE(ykey, ŷ) = − 1
C · Nk

∑C ·Nk

i=1

(
ykey

i log
(
ŷi

) + (
1 − ykey

i

)
log(1 − ŷi)

)
(18)

Here, ykey is the label of the key sample, and ŷ is the model’s clustering result.

In summary, the overall loss calculation for ECN-MF is as follows:

L = αLMSE + βLKL + LBCE (19)

Here, α and β are hyperparameters.

The detailed learning procedure of ECN-MF is shown in Algorithm 1.

Algorithm 1: Efficient Clustering Network Based on Matrix Factorization

Input: Batch size M; Undirected graphs: G = (X, A); Iteration number I; Cluster number K; low-rank
r; High confidence ratio τ ; and updating frequency update.

Initialize: model parameters θ ; Batches number B
for i = 1 → M do

Calculate the matrix batchi for each batch using Eq. (3);
Calculate matrix batchcentered

i by Eq. (4);
Calculate ui, si and vi by Eq. (5);

end
Calculate Ur, Sr and Vr by Eq. (6);
Calculate Slow, Slow_r by Eq. (7);
Calculate Vlow_r and Xr by Eqs. (8) and (9), respectively;
for j = 1 → I do

Update embedded information ZL, ZL
r by Eq. (10);

Calculate LMSE by Eq. (12);
Update embedded information Z by Eq. (13);
if i % update == 0 then

Update high confidence nodes by Eq. (17);
(Continued)

290 CMC, 2024, vol.80, no.1

Algorithm 1 (continued)
end
Calculate Q and P by Eqs. (14) and (15), respectively;
Calculate LBCE

(
ykey, ŷ

)
and LKL (P, Q) by Eqs. (18) and (16), respectively;

Update the whole network by minimizing L in Eq. (19);
end
Output: The mode results C.

4 Experiments
4.1 Dataset

We proposed ECN-MF, which was evaluated on six datasets, including CORA [12] CITESEER
[12], European Air Traffic (EAT) [30], United States Air Traffic (UAT) [30], Amazon Photo (AMAP),
and Amazon Computer (AMAC). Table 2 provides a brief description of these datasets.

Table 2: Summary of datasets

Dataset Type Sample Edges Dimension Class

CORA Graph 2708 10556 1433 7
CITESEER Graph 3327 9928 3703 6
EAT Graph 399 11988 203 4
UAT Graph 1190 27198 239 4
AMAP Graph 7650 238162 745 8
AMAC Graph 13752 491722 767 10

4.2 Experiment Setup

All experimental results were obtained on a high-performance server equipped with an NVIDIA
3090 GPU, 64 GB RAM, and the PyTorch deep learning platform.

4.2.1 Training Procedure

Our network is trained by minimizing the loss in Eq. (19) using the Adam optimizer for 1000
iterations until convergence. After optimization, we directly apply Eqs. (13) and (14) to cluster the
node embeddings of the two views and report the final convergence results for four metrics. Following
all compared methods and to mitigate the adverse effects of randomness, we repeat the experiments
10 times and report the averages along with the corresponding standard deviations.

4.2.2 Parameter Settings

For the sake of fairness, regarding MCGC [14], we only executed their source code on the graph
datasets listed in Table 2. For other baselines, we reproduced the results by adopting the source code
with the original settings. In our proposed method, the learning rate of the optimizer is set to 1e-4
for CORA/CITESEER/EAT/AMAP/AMAC and 1e-3 for UAT. The rank r of the attribute matrix is
set to 40 for CORA, 50 for CITESEER/EAT, 95 for UAT, 20 for AMAP, and 70 for AMAC. Our

CMC, 2024, vol.80, no.1 291

encoder consists of two layers of linear MLPs, with dimensions set to 900 for CITESEER, 600 for
CORA/EAT/UAT/AMAC, and 800 for AMAP.

4.2.3 Metrics

To validate the superiority of our ECN-MF compared to the baselines, we employed four
widely used metrics to evaluate clustering performance, namely Accuracy (ACC), Normalized Mutual
Information (NMI), Average Rand Index (ARI), and macro F1-score (F1) [31–33].

4.3 Performance Comparison

To demonstrate the superiority of our proposed ECN-MF, we compared ECN-MF with 13
base- lines. Specifically, a classification method, graphMAE2 [34], is considered. Five deep clustering
methods, including AE [35], DEC [36] SSGC [37], SDCN [5], and SAGSC [38], utilize autoencoders
for node encoding, followed by clustering on the learned embeddings. Two hard sample mining
methods, GDCL [39], and ProGCL [40], are employed. Additionally, five deep graph clustering
methods for comparison: MCGC [14], MVGRL [13], AFGRL [27], AutoSSL [41] and SCDGN [42],
are incorporated. These methods are designed with contrastive strategies to enhance the discriminative
capability of samples.

Table 3 reports the clustering performance of all compared methods on six benchmarks. From
these results, we can derive four key observations: 1) Our ECN-MF outperforms other deep clus-
tering methods, attributed to the benefits of contrastive learning in implicitly capturing supervisory
information. 2) Compared to contrastive methods, our approach demonstrates superior performance,
leveraging an information-enhanced clustering guidance module to better preserve the original data
information in the embedded data. It ensures better retention of information and improves the
discriminative capability of sample pairs by bringing samples from the same cluster closer and pushing
away those from different clusters. 3) Our method achieves the best performance on CITESEER,
showcasing the effectiveness of utilizing Singular Value Decomposition to capture latent important
information of samples, particularly advantageous in handling sparse matrices. 4) Favorable results on
AMAP and AMAC highlight the effectiveness of our batched low-rank singular value decomposition
algorithm in handling large datasets. In summary, our method outperforms most others on six datasets
with four metrics, validating the effectiveness of our proposed approach in addressing unreasonable
data preprocessing and handling positive and negative sample pairs.

292 CMC, 2024, vol.80, no.1

T
ab

le
3:

C
lu

st
er

in
g

pe
rf

or
m

an
ce

on
th

e
si

x
da

ta
se

ts
(a

ve
ra

ge
±

st
an

da
rd

de
vi

at
io

n)
.

R
ed

an
d

bl
ue

va
lu

es
re

pr
es

en
t

th
e

be
st

an
d

se
co

nd
-b

es
t

re
su

lt
s,

re
sp

ec
ti

ve
ly

.O
O

M
in

di
ca

te
s

O
ut

-O
f-

M
em

or
y

du
ri

ng
tr

ai
ni

ng
M

et
ho

d
M

et
ri

c
C

la
ss

if
ic

at
io

n
C

la
ss

ic
al

de
ep

gr
ap

h
cl

us
te

ri
ng

H
ar

d
sa

m
pl

e
C

on
tr

as
ti

ve
de

ep
gr

ap
h

cl
us

te
ri

ng
O

ur
s

gr
ap

hM
A

E
2

A
E

D
E

C
SS

G
C

SD
C

N
SA

G
SC

G
D

C
L

P
ro

G
C

L
M

C
G

C
M

V
G

R
L

A
F

G
R

L
A

ut
oS

SL
SC

D
G

N

C
O

R
A

A
C

C
33

.8
8±

3.
26

49
.3

8±
0.

91
46

.5
0±

0.
26

69
.2

8±
3.

70
35

.6
0±

2.
83

66
.5

8±
0.

13
70

.8
3±

0.
47

57
.1

3±
1.

23
42

.8
5±

1.
13

70
.4

7±
3.

70
26

.2
5±

1.
24

63
.8

1±
0.

57
71

.1
8±

0.
64

71
.5

7±
0.

64
N

M
I

12
.6

8±
2.

65
25

.6
5±

0.
65

23
.5

4±
0.

34
54

.3
2±

1.
92

14
.2

8±
1.

91
50

.8
0±

0.
17

56
.6

0±
0.

36
41

.0
2±

1.
34

24
.1

1±
1.

00
55

.5
7±

1.
54

12
.3

6±
1.

54
47

.6
2±

0.
45

55
.2

7±
0.

59
54

.7
5±

1.
21

A
R

I
08

.9
0±

1.
67

21
.6

3±
0.

58
15

.1
3±

0.
42

46
.2

7±
4.

01
07

.7
8±

3.
24

40
.6

4±
0.

29
48

.0
5±

0.
72

30
.7

1±
2.

70
14

.3
3±

1.
26

48
.7

0±
3.

94
14

.3
2±

1.
87

38
.9

2±
0.

77
49

.1
8±

1.
38

48
.6

2±
1.

25
F

1
32

.0
5±

4.
01

43
.7

1±
1.

05
39

.2
3±

0.
17

64
.7

0±
5.

53
24

.3
7±

1.
04

63
.6

4±
0.

12
52

.8
8±

0.
97

45
.6

8±
1.

29
35

.1
6±

0.
91

67
.1

5±
1.

86
30

.2
0±

1.
15

56
.4

2±
0.

21
69

.5
9±

0.
54

64
.4

5±
1.

03

C
IT

E
SE

E
R

A
C

C
31

.4
8 ±

4.
02

57
.0

8±
0.

13
55

.8
9±

0.
20

68
.9

7±
0.

34
65

.9
6±

0.
31

66
.5

8±
0.

13
66

.3
9±

0.
65

65
.9

2±
0.

80
64

.7
6±

0.
07

62
.8

3±
1.

59
31

.4
5±

0.
54

66
.7

6±
0.

67
63

.4
3±

0.
18

71
.8

0±
1.

23
N

M
I

07
.8

0±
2.

77
27

.6
4±

0.
08

28
.3

4±
0.

30
42

.8
1±

0.
20

38
.7

1±
0.

32
40

.4
2±

0.
09

39
.5

2±
0.

38
39

.5
9±

0.
39

39
.1

1±
0.

06
40

.6
9±

0.
93

15
.1

7±
0.

47
40

.6
7±

0.
84

41
.5

0±
0.

32
45

.0
7±

1.
15

A
R

I
05

.9
7±

2.
39

29
.3

1±
0.

14
28

.1
2±

0.
36

44
.4

2±
0.

32
40

.1
7±

0.
43

41
.2

6±
0.

09
41

.0
7±

0.
96

36
.1

6±
1.

11
37

.5
4±

0.
12

34
.1

8±
1.

73
14

.3
2±

0.
78

38
.7

3±
0.

55
41

.4
7±

0.
50

46
.6

3±
2.

15
F

1
30

.2
0±

4.
62

53
.8

0±
0.

11
52

.6
2±

0.
17

64
.4

9±
0.

27
63

.6
2±

0.
24

62
.4

7±
0.

05
61

.1
2±

0.
70

57
.8

9±
1.

98
59

.6
4±

0.
05

59
.5

4±
2.

17
30

.2
0±

0.
71

58
.2

2±
0.

68
59

.3
4±

0.
85

64
.5

3±
1.

89

E
A

T

A
C

C
34

.4
9±

1.
16

38
.8

5±
2.

32
36

.4
7±

1.
60

32
.4

1±
0.

45
39

.0
7±

1.
51

46
.3

2±
0.

25
33

.4
6±

0.
18

43
.3

6±
0.

87
32

.5
8±

0.
29

32
.8

8±
0.

71
37

.4
2±

1.
24

31
.3

3±
0.

52
32

.3
3±

0.
00

51
.8

7±
0.

95
N

M
I

06
.4

2±
0.

38
06

.9
2±

2.
80

04
.9

6±
1.

74
04

.6
5±

0.
21

08
.8

3±
2.

54
26

.6
0±

0.
48

13
.2

2±
0.

33
23

.9
3±

0.
45

07
.0

4±
0.

56
11

.7
2±

1.
08

11
.4

4±
1.

41
07

.6
3±

0.
85

05
.8

0±
0.

00
24

.0
5±

1.
67

A
R

I
04

.2
4±

0.
49

05
.1

1±
2.

65
03

.6
0±

1.
87

01
.5

3±
0.

04
06

.3
1±

1.
95

24
.0

0±
0.

53
04

.3
1±

0.
29

15
.0

3±
0.

98
01

.3
3±

0.
14

04
.6

8±
1.

30
06

.5
7±

1.
73

02
.1

3±
0.

67
02

.5
5±

0.
00

22
.7

5±
1.

03
F

1
32

.8
7±

1.
59

38
.7

5±
2.

25
34

.8
4±

1.
28

26
.4

9±
0.

66
33

.4
2±

3.
10

38
.9

3±
0.

12
25

.0
2±

0.
21

42
.5

4±
0.

45
27

.0
3±

0.
16

25
.3

5±
0.

75
30

.5
3±

1.
47

21
.8

2±
0.

98
25

.1
1±

0.
00

50
.6

4±
2.

63

U
A

T

A
C

C
34

.5
1 ±

1.
18

46
.8

2±
1.

14
45

.6
1±

1.
84

36
.7

4±
0.

81
52

.2
5±

1.
91

42
.9

4±
0.

57
48

.7
0±

0.
06

45
.3

8±
0.

58
41

.9
3±

0.
56

44
.1

6±
1.

38
41

.5
0±

0.
25

42
.5

2±
0.

64
44

.8
6±

1.
62

52
.0

1±
0.

96
N

M
I

06
.4

3±
0.

37
17

.1
8±

1.
60

16
.6

3±
2.

39
08

.0
4±

0.
18

21
.6

1±
1.

26
18

.3
0±

0.
16

25
.1

0±
0.

01
22

.0
4±

2.
23

16
.6

4±
0.

41
21

.5
3±

0.
94

17
.3

3±
0.

54
17

.8
6±

0.
22

12
.9

0±
0.

45
24

.7
3±

1.
24

A
R

I
04

.2
5±

0.
49

13
.5

9±
2.

02
13

.1
4±

1.
97

05
.1

2±
0.

27
21

.6
3±

1.
49

13
.4

0±
0.

36
21

.7
6±

0.
01

14
.7

4±
1.

99
12

.2
1±

0.
13

17
.1

2±
1.

46
13

.6
2±

0.
57

13
.1

3±
0.

71
11

.8
0±

0.
77

23
.7

8±
1.

59
F

1
32

.9
0±

1.
61

45
.6

6±
1.

49
44

.2
2±

1.
51

29
.5

0±
1.

57
45

.5
9±

3.
54

38
.0

6±
1.

26
45

.6
9±

0.
08

39
.3

0±
1.

82
35

.7
8±

0.
38

39
.4

4±
2.

19
36

.5
2±

0.
89

34
.9

4±
0.

87
41

.3
3±

1.
82

43
.9

3±
1.

79

A
M

A
P

A
C

C
34

.4
9 ±

1.
16

48
.2

5±
0.

08
47

.2
2±

0.
08

60
.2

3±
0.

19
53

.4
4±

0.
81

57
.8

0±
0.

27
43

.7
5±

0.
78

51
.5

3±
0.

38

O
O

M

41
.0

7±
3.

12
75

.5
1±

0.
77

54
.5

5±
0.

97
70

.5
5±

0.
03

76
.8

8±
0.

80
N

M
I

06
.4

3±
0.

37
38

.7
6±

0.
30

37
.3

5±
0.

05
60

.3
7±

0.
15

44
.8

5±
0.

83
53

.6
0±

0.
41

37
.3

2±
0.

28
39

.5
6±

0.
39

30
.2

8±
3.

94
64

.0
5±

0.
15

48
.5

6±
0.

71
64

.0
2±

0.
04

68
.2

1±
1.

10
A

R
I

04
.2

5±
0.

49
20

.8
0±

0.
47

18
.5

9±
0.

04
35

.9
9±

0.
47

31
.2

1±
1.

23
30

.9
0±

0.
03

21
.5

7±
0.

51
34

.1
8±

0.
89

18
.7

7±
2.

34
54

.4
5±

0.
48

26
.8

7±
0.

34
53

.0
2±

0.
03

58
.9

8±
1.

38
F

1
32

.8
7±

1.
59

47
.8

7±
0.

20
46

.7
1±

0.
12

52
.7

9±
0.

01
50

.6
6±

1.
49

57
.6

3±
0.

06
38

.3
7±

0.
29

31
.9

7±
0.

44
32

.8
8±

5.
50

69
.9

9±
0.

34
54

.4
7±

0.
83

63
.9

3±
0.

04
71

.5
8±

0.
31

A
M

A
C

A
C

C
35

.7
6 ±

1.
30

21
.6

7±
0.

51
19

.0
3±

0
52

.2
2±

0.
01

43
.0

4±
4.

09
43

.8
9±

0.
01

O
O

M
O

O
M

O
O

M
O

O
M

O
O

M
O

O
M

51
.6

4±
0.

04
54

.1
2±

0.
72

N
M

I
05

.7
4±

0.
65

03
.2

1±
0.

79
02

.8
2±

0
52

.5
5±

0.
02

23
.3

0±
6.

60
38

.9
2±

0.
01

40
.9

0±
0.

01
35

.5
9±

0.
98

A
R

I
04

.1
8±

0.
75

−2
.0

6±
0.

96
−1

.2
6±

0
32

.3
0±

0.
03

17
.4

0±
7.

49
16

.8
3±

0.
02

29
.6

9±
0.

04
33

.2
1±

1.
25

F
1

32
.6

9±
0.

83
12

.1
6±

0.
78

10
.8

4±
0

39
.7

8±
0.

01
20

.9
5±

3.
70

45
.2

9±
0.

04
51

.1
2±

0.
02

32
.9

9±
0.

49

CMC, 2024, vol.80, no.1 293

4.4 Time Complexity Analysis

Firstly, we perform Singular Value Decomposition on attributes, and the time complexity of cal-
culating the low-rank process to obtain the reconstructed attribute Xr in Fig. 2 is O (batch × BD × r),
where r is the rank size, B is the batch size, and D is the dimension. Subsequently, during the training
phase, we employ a two-layer residual graph convolutional neural network (GCN) model. The time
complexity for computing the two views is O (2NDd + 4Ndd), where d is the dimension of the graph
convolutional neural network, N is the number of samples, and D is the dimension of the original
samples. The time complexity for calculating the mean square error loss function is O (Nd), and N
is the number of samples. The time complexity for high confidence selection is O (NK), where K is
the number of clusters, and N is the number of samples. The time complexity for computing the
target distribution is O (NK), where N is the number of samples. The time complexity for the KL
divergence loss function is O (NK), and the time complexity for the cross-entropy loss function is
O (NK), where N is the number of samples. Therefore, the overall time complexity of our algorithm is
O (batch × BDr + NDd + Ndd + NK + Nd).

4.5 Ablation Studies

In this section, we first experimentally validate the effectiveness of our proposed data augmen-
tation method and periodic update strategy, as shown in Table 4. For simplicity, we denote the Batch
low-rank Singular Value Decomposition as B and the periodic update as P. Note that in order to replace
the B operation, we use a mask to generate different views of the same node, with a mask rate of 0.5.
“(w/o)B & P” represents not using the batch low-rank Singular Value Decomposition operation and
periodic update, while B + P indicates the usage of both. Table 4 displays the convergence results after
running 1000 epochs. Based on the observed results, we conclude that the performance would degrade
without B and P, indicating that these two strategies contribute significantly to the performance
improvement.

Table 4: The ablation study of the proposed Batch Low-Rank Singular Value Decomposition Opera-
tion (B) and periodic update (P) on the five datasets

CORA CITESEER EAT UAT AMAP

ACC
(w/o)B & P 50.36 58.97 32.83 44.28 30.95
B + P 72.08 71.89 52.13 52.35 76.03

NMI
(w/o)B & P 37.54 32.60 08.05 17.82 15.99
B + P 54.67 45.86 25.66 25.06 64.63

ARI
(w/o)B & P 24.12 28.84 02.93 13.65 09.08
B + P 49.17 47.83 22.17 21.10 55.95

F1
(w/o)B & P 52.40 55.31 26.13 40.87 18.28
B + P 64.33 64.48 52.05 44.17 67.67

In Fig. 3, we visualize the accuracy throughout the entire training process until convergence
using a line chart. The graph demonstrates that our model exhibits robust performance. Overall, the
experimental results validate the effectiveness of B and P.

294 CMC, 2024, vol.80, no.1

Figure 3: Accuracy analysis of the proposed batched low-rank Singular Value Decomposition (B) and
periodic update (P) on the five datasets is presented. The red line represents the use of batched low-
rank Singular Value Decomposition operation and periodic updates, while the blue line represents
the absence of batched low-rank Singular Value Decomposition operation and periodic updates. This
comparative experiment demonstrates the effectiveness of our proposed method

4.6 Hyperparameter Analysis

In this section, we will analyze the hyperparameters r, α, and β to demonstrate their impact on
the dataset. For the rank r, we set the range of values from 10 to 100, and for α and β, we set the range
of values from 0.1 to 1.

4.6.1 Analysis of Hyperparameter r

Fig. 4 depicts the performance variation of ECN-MF across the range of r from 10 to 100.
Key observations include: 1) Appropriately setting the hyperparameter r can effectively enhance
clustering performance. Without adjusting other data settings and only modifying the rank, the
model achieves the highest accuracy of 73.13% on CITESEER, 73.61% on CORA, 54.39% on EAT,
and 52.94% on UAT. 2) The performance of the hyperparameter r remains relatively stable over a
wide range, particularly excelling on sparse datasets such as CITESEER and UAT. 3) Examining
the trend in average accuracy, we observe fluctuations and declines in clustering accuracy as the
rank increases, particularly on datasets like CORA and EAT. This fluctuation is attributed to the
diverse characteristics of the datasets; as the rank increases, the low-rank operation might extract more
low-correlation information. 4) ECN-MF requires setting an appropriate rank based on the specific
features of the dataset. Nonetheless, the experimental results indicate that the range of rank values can
be relatively small, reducing the model’s time complexity even with a smaller rank.

CMC, 2024, vol.80, no.1 295

Figure 4: The trend chart of clustering accuracy with varying r on four datasets demonstrates that
appropriately setting a low rank reduces the model’s time complexity while effectively enhancing
clustering performance

4.6.2 Analysis of Hyperparameters α and β

Fig. 5 illustrates the variation in clustering performance of ECN-MF on the CITESEER dataset
across the range of α and β from 0.1 to 1. When modifying only α without adjusting the other
parameters, the model achieves a maximum accuracy of 72.25% on CITESEER. Similarly, when
modifying only β without adjusting the other parameters, the model achieves a maximum accuracy of
72.22% on CITESEER. It can be observed from the graph that our model is not sensitive to the values
of α and β, and both can yield good results.

Figure 5: The trend chart of clustering accuracy with varying α and β on the CITESEER dataset,
where the horizontal axis represents the values of α and β, and the vertical axis represents the values
of the corresponding four evaluation metrics

4.7 Visualization Analysis

To visually showcase the superiority of ECN-MF, we employ the t-SNE algorithm (Maaten and
Hinton 2008) to visualize the distribution of the learned clustering embeddings Z in a two-dimensional
space. As shown in Fig. 6, ECN-MF can better reveal the intrinsic clustering structure among the data.

296 CMC, 2024, vol.80, no.1

Figure 6: 2D visualization of the five datasets. The first row corresponds to the original data, while the
second row corresponds to the distribution of ECN-MF. The visualization of partial samples reflects
the effectiveness of our method

5 Conclusion

This paper introduces an Efficient Clustering Network based on Matrix Factorization (ECN-
MF) to alleviate the negative impact of inappropriate data augmentation and enhance the quality of
positive samples. By simplifying the network structure, introducing novel data augmentation methods,
and designing a mutual information-enhanced clustering guidance module, ECN-MF improves its
capability to handle sparse and large datasets. It brings samples from the same cluster closer while
pushing samples from different clusters apart. The results of this study demonstrate the effectiveness
and superiority of ECN-MF in addressing the challenges of preprocessing deep graph clustering tasks
and handling positive and negative sample pairs. The paper uses hyperparameters to define the rank
of the Singular Value Decomposition without special treatment of hard samples. In the future, we
hope to explore new avenues of research, including: 1) employing adaptive rank selection for data,
accommodating a broader range of datasets; 2) focusing more on challenging samples to enhance
data mining and processing capabilities; 3) optimizing loss functions tailored for Singular Value
Decomposition and challenging samples to improve clustering performance.

Acknowledgement: The authors would like to acknowledge the valuable feedback provided by the
reviewers.

Funding Statement: This work was supported by the Key Research and Development Program of
Hainan Province (Grant Nos. ZDYF2023GXJS163, ZDYF2024GXJS014), National Natural Science
Foundation of China (NSFC) (Grant Nos. 62162022, 62162024), the Major Science and Technol-
ogy Project of Hainan Province (Grant No. ZDKJ2020012), Hainan Provincial Natural Science
Foundation of China (Grant No. 620MS021), Youth Foundation Project of Hainan Natural Science
Foundation (621QN211), Innovative Research Project for Graduate Students in Hainan Province
(Grant Nos. Qhys2023-96, Qhys2023-95).

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design: J. Li; analysis and interpretation of results: J. Li, F. Zeng; draft manuscript preparation: J.
Cheng, J. Li, F. Zeng; data collection: Z. Tao, Y. Yang. All authors reviewed the results and approved
the final version of the manuscript.

CMC, 2024, vol.80, no.1 297

Availability of Data and Materials: After the publication of the paper, the code will be made public on
the author’s GitHub.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] K. Berahmand, M. Mohammadi, R. Sheikhpour, Y. Li, and Y. Xu, “WSNMF: Weighted symmetric

nonnegative matrix factorization for attributed graph clustering,” Neurocomputing, vol. 566, no. 2, pp.
127041, 2024. doi: 10.1016/j.neucom.2023.127041.

[2] K. Berahmand, Y. Li, and Y. Xu, “A deep semi-supervised community detection based on point-wise
mutual information,” IEEE Trans. Comput. Soc. Syst., pp. 1–13, 2023.

[3] E. Pan and Z. Kang, “Multi-view contrastive graph clustering,” Adv. Neural Inf. Process Syst., vol. 34, pp.
2148–2159, 2021.

[4] C. Wang, S. Pan, R. Hu, G. D. Long, J. Jiang and C. Zhang, “Attributed graph clustering: A deep attentional
embedding approach,” in Proc. Twenty-Eighth Int. Joint Conf. Artif. Intell., Macao, China, 2019, pp. 3670–
3676.

[5] D. Bo, X. Wang, C. Shi, M. Zhu, E. Lu and P. Cui, “Structural deep clustering network,” in Proc. web conf.
2020, Taipei, Taiwan, 2020, pp. 1400–1410.

[6] W. Tu et al., “Deep fusion clustering network,” in Proc. AAAI Conf. Artif. Intell., Vancouver, Canada, 2021,
vol. 35, pp. 9978–9987. doi: 10.1609/aaai.v35i11.17198.

[7] Z. Peng, H. Liu, Y. Jia, and J. Hou, “Attention-driven graph clustering network,” in Proc. 29th ACM Int.
Conf. Multimed., Sichuan, China, 2021, pp. 935–943.

[8] J. Park, M. Lee, H. J. Chang, K. Lee, and J. Y. Choi, “Symmetric graph convolutional autoencoder for
unsupervised graph representation learning,” in Proc. IEEE/CVF Int. Conf. Comput. Vision, Paris, France,
2019, pp. 6519–6528.

[9] J. Cheng, Q. Wang, Z. Tao, D. Xie, and Q. Gao, “Multi-view attribute graph convolution networks
for clustering,” in Proc. Twenty-Ninth Int. Conf. Int. Joint Conf. Artif. Int., Yokohama, Japan, 2021,
pp. 2973–2979.

[10] S. Pan, R. Hu, S. Fung, G. Long, J. Jiang and C. Zhang, “Learning graph embedding with adversarial train-
ing methods,” IEEE Trans. Cybern., vol. 50, no. 6, pp. 2475–2487, 2019. doi: 10.1109/TCYB.2019.2932096.

[11] Z. Tao, H. Liu, J. Li, Z. Wang, and Y. Fu, “Adversarial graph embedding for ensemble clustering,” in Proc.
28th Int. Joint Conf. Artif. Intell., Macao, China, 2019, pp. 3562–3568.

[12] G. Cui, J. Zhou, C. Yang, and Z. Liu, “Adaptive graph encoder for attributed graph embedding,” in Proc.
26th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., California, USA, 2020, pp. 976–985.

[13] K. Hassani and A. H. Khasahmadi, “Contrastive multi-view representation learning on graphs,” in Int.
Conf. Mach. Learn., Vienna, Austria, 2020, pp. 4116–4126.

[14] W. Xia, S. Wang, M. Yang, Q. Gao, J. Han and X. Gao, “Multi-view graph embedding clustering network:
Joint self-supervision and block diagonal representation,” Neural Netw., vol. 145, no. 11, pp. 1–9, 2022. doi:
10.1016/j.neunet.2021.10.006.

[15] Y. Liu et al., “Deep graph clustering via dual correlation reduction,” in Proc. AAAI Con. Artif. Intell.,
Vancouver, Canada, 2022, vol. 36, pp. 7603–7611.

[16] L. Liu, Z. Kang, J. Ruan, and X. He, “Multilayer graph contrastive clustering network,” Inf. Sci., vol. 613,
pp. 256–267, 2022. doi: 10.1016/j.ins.2022.09.042.

[17] Y. Yang and H. Wang, “Multi-view clustering: A survey, big data mining and analytics,” Big Data Min.
Anal., vol. 1, no. 2, pp. 83–107, 2018.

[18] X. Cai, C. Huang, L. Xia, and X. Ren, “LightGCL: Simple yet effective graph contrastive learning for
recommendation,” in Eleventh Int. Conf. Learn. Rep., 2022, pp. 1–15.

https://doi.org/10.1016/j.neucom.2023.127041
https://doi.org/10.1609/aaai.v35i11.17198
https://doi.org/10.1109/TCYB.2019.2932096
https://doi.org/10.1016/j.neunet.2021.10.006
https://doi.org/10.1016/j.ins.2022.09.042

298 CMC, 2024, vol.80, no.1

[19] G. A. Khan, J. Hu, T. Li, B. Diallo, and H. Wang, “Multi-view data clustering via non-negative matrix
factorization with manifold regularization,” Int. J. Mach. Learn. Cybern., vol. 13, no. 3, pp. 1–13, 2022.
doi: 10.1007/s13042-021-01307-7.

[20] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of visual
representations,” in Int. Conf. Mach. Learn., Vienna, Austria, 2020, pp. 1597–1607.

[21] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny, “Barlow twins: Self-supervised learning via
redundancy reduction,” in Int. Conf. Mach. Learn., 2021, pp. 12310–12320.

[22] H. Zhong et al., “Graph contrastive clustering,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021, pp.
9224–9233.

[23] X. Yang, X. Hu, S. Zhou, X. Liu, and E. Zhu, “Interpolation-based contrastive learning for few-label
semi-supervised learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 2, pp. 2054–2065, 2022. doi:
10.1109/TNNLS.2022.3186512.

[24] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang and Y. Shen, “Graph contrastive learning with augmentations,”
Adv. Neural Inf. Process Syst., vol. 33, pp. 5812–5823, 2020.

[25] J. Xia, L. Wu, J. Chen, B. Hu, and S. Z. Li, “SimGRACE: A simple framework for graph contrastive learning
without data augmentation,” in Proc. ACM Web Conf. 2022, Barcelona, Spain, 2022, pp. 1070–1079.

[26] P. Bielak, T. Kajdanowicz, and N. V. Chawla, “Graph barlow twins: A self-supervised representa-
tion learning framework for graphs,” Knowl. Based Syst., vol. 256, no. 4, pp. 109631, 2022. doi:
10.1016/j.knosys.2022.109631.

[27] N. Lee, J. Lee, and C. Park, “Augmentation-free self-supervised learning on graphs,” Proc. AAAI Conf.
Artif. Intell., vol. 36, no. 7, pp. 7372–7380, 2022. doi: 10.1609/aaai.v36i7.20700.

[28] L. Gong, S. Zhou, W. Tu, and X. Liu, “Attributed graph clustering with dual redundancy reduction,” in
IJCAI , 2022, pp. 1–7.

[29] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in Proc. 27th
Int. Conf. Mach. Learn. (ICML-10), Haifa, Israel, 2010, pp. 807–814.

[30] N. Mrabah, M. Bouguessa, M. F. Touati, and R. Ksantini, “Rethinking graph auto-encoder models for
attributed graph clustering,” IEEE Trans. Knowl. Data Eng., pp. 1–31, 2022.

[31] S. Zhou, et al., “Multiple kernel clustering with neighbor-kernel subspace segmentation,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 31, no. 4, pp. 1351–1362, 2019. doi: 10.1109/TNNLS.2019.2919900.

[32] S. Wang et al., “Fast parameter-free multi-view subspace clustering with consensus anchor guidance,” IEEE
Trans. Image Process., vol. 31, no. 4, pp. 556–568, 2021. doi: 10.1109/TIP.2021.3131941.

[33] S. Wang, X. Liu, L. Liu, S. Zhou, and E. Zhu, “Late fusion multiple kernel clustering with proxy graph
refinement,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 8, pp. 4359–4370, 2021.

[34] Z. Hou et al., “GraphMAE2: A decoding-enhanced masked self-supervised graph learner,” in Proc. ACM
Web Conf. 2023, Austin, Texas, USA, 2023, pp. 737–746.

[35] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong, “Towards K-means-friendly spaces: Simultaneous deep
learning and clustering,” in Int. Conf. Mach. Learn., Sydney, Australia, 2017, pp. 3861–3870.

[36] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for clustering analysis,” in Int. Conf.
Mach. Learn., New York, USA, 2016, pp. 478–487.

[37] H. Zhu and P. Koniusz, “Simple spectral graph convolution,” in Int. Conf. Learn. Rep., 2020, pp. 1–15.
[38] C. Fettal, L. Labiod, and M. Nadif, “Scalable attributed-graph subspace clustering,” Proc. AAAI Conf.

Artif. Intell., vol. 37, no. 6, pp. 1–9, 2023. doi: 10.1609/aaai.v37i6.25918.
[39] H. Zhao, X. Yang, Z. Wang, E. Yang, and C. Deng, “Graph debiased contrastive learning with joint

representation clustering,” in Proc. Thirtieth Int. Joint Conf. Artif. Intell., 2021, pp. 3434–3440.
[40] J. Xia, L. Wu, G. Wang, J. Chen, and S. Li, “ProGCL: Rethinking hard negative mining in graph contrastive

learning,” in Int. Conf. Mach. Learn., Maryland, USA, 2022, pp. 24332–24346.
[41] W. Jin, X. Liu, X. Zhao, Y. Ma, N. Shah and J. Tang, “Automated self-supervised learning for graphs,” in

10th Int. Conf. Learn. Rep. (ICLR 2022), 2022.
[42] Y. Ma and K. Zhan, “Self-contrastive graph diffusion network,” in Proc. 31st ACM Int. Conf. Multimed.,

Ottawa, Canada, 2023, pp. 3857–3865.

https://doi.org/10.1007/s13042-021-01307-7
https://doi.org/10.1109/TNNLS.2022.3186512
https://doi.org/10.1016/j.knosys.2022.109631
https://doi.org/10.1609/aaai.v36i7.20700
https://doi.org/10.1109/TNNLS.2019.2919900
https://doi.org/10.1109/TIP.2021.3131941
https://doi.org/10.1609/aaai.v37i6.25918

	Efficient Clustering Network Based on Matrix Factorization
	1 Introduction
	2 Related Work
	3 Method
	4 Experiments
	5 Conclusion
	References

