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ABSTRACT

In the face of the effective popularity of the Internet of Things (IoT), but the frequent occurrence of cybersecurity
incidents, various cybersecurity protection means have been proposed and applied. Among them, Intrusion
Detection System (IDS) has been proven to be stable and efficient. However, traditional intrusion detection
methods have shortcomings such as low detection accuracy and inability to effectively identify malicious attacks. To
address the above problems, this paper fully considers the superiority of deep learning models in processing high-
dimensional data, and reasonable data type conversion methods can extract deep features and detect classification
using advanced computer vision techniques to improve classification accuracy. The Markov Transform Field (MTF)
method is used to convert 1D network traffic data into 2D images, and then the converted 2D images are filtered by
Unsharp Masking to enhance the image details by sharpening; to further improve the accuracy of data classification
and detection, unlike using the existing high-performance baseline image classification models, a soft-voting
integrated model, which integrates three deep learning models, MobileNet, VGGNet and ResNet, to finally obtain
an effective IoT intrusion detection architecture: the MUS model. Four types of experiments are conducted on the
publicly available intrusion detection dataset CICIDS2018 and the IoT network traffic dataset N_BaIoT, and the
results demonstrate that the accuracy of attack traffic detection is greatly improved, which is not only applicable to
the IoT intrusion detection environment, but also to different types of attacks and different network environments,
which confirms the effectiveness of the work done.
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1 Introduction

With the development of the Internet, computer technology [1] has penetrated into all aspects of
human production and life. From food, clothing, housing and transport to mobile payments, from
smart homes to drones, especially the emergence and popularity of IoT [2] has created a new situation
of interconnecting everything, becoming an indispensable bridge connecting the digital world and the
physical world. It collects, analyses and utilizes heterogeneous data through the interconnectivity of
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different devices to achieve seamless communication between systems, platforms and humans, thus
assisting in the generation of smarter decisions (Fig. 1).

Figure 1: Examples of IoT components

However, due to the diversity and differences between smart devices belonging to IoT, and the
layered, seamless, and unstable nature of the network structure, security is facing serious challenges,
which are highlighted by the frequent occurrence of malicious attacks, which are harmful. On 20
October 2023, genetic testing provider 23 and Me suffered from a crash attack that led to the leakage
of 6.9 million users’ data, which was described as the “the worst medical data breach”; on 8 November
2023, ICBC Financial Services LLC (ICBCFS), a wholly-owned US subsidiary of the Industrial and
Commercial Bank of China (ICBC), was hit by a LockBit ransomware [3] attack that was launched
using the Citrix Bleed vulnerability that was not patched in time attack, resulting in partial system
disruption and affecting normal business. The occurrence of the above security incidents is not
coincidental, the “2022 Annual Cyberspace Mapping Report”shows that the number of exposed smart
connected devices such as cameras, routers, VoIP phones, etc., in 2022 have all exceeded 2 million units,
which has a very high risk of information leakage, and this has directly led to the development and
expansion of the market for IoT security industry [4] (Fig. 2).

In the face of severe IoT network security problems, a complete IoT network security system [5]
has been proposed (Fig. 3).

In order to achieve the solidity of the system and give full play to the system’s role, this paper
starts the research from the bottom structure-security protection [6]. However, traditional network
security protection means, such as data encryption [7], traceability analysis, firewall [8], access control
[9], anti-virus wall, user authorization [10], etc., belong to the negative means of passive defence, and
it is difficult to provide comprehensive security protection. Therefore, the active means of protection-
intrusion detection technology urgently needs to be used, which focuses on the internal data, external
data and misuse of active detection and early warning, to provide decision-making basis for operations
and maintenance personnel. Although the current research for intrusion detection [11] technology is
being carried out one after another, machine learning, deep learning and other artificial intelligence
technology to make the detection performance greatly improved. However, it is far from enough for
the network anomaly traffic detection which requires very high accuracy and costly false alarms, with
the following problems:

(1) Directly using low-dimensional deep learning models to learn, train and test one-dimensional
network traffic data, ignoring the superiority of deep learning in extracting complex features;
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(2) Lacking the necessary and efficient feature extraction and further processing of network traffic
data after simple preprocessing, which substantially affects the detection accuracy;

(3) Directly using baseline machine learning or deep learning models to detect and classify network
traffic, which is highly dependent on the quality and diversity of the training dataset, with low
model robustness and detection accuracy.

Figure 2: IoT security industry market trend chart

Figure 3: Internet of things network security system architecture

In order to further improve the detection accuracy of the IoT intrusion detection framework, this
paper conducts research on the above issues, with the following main contributions:
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(1) The MTF method is proposed to convert one-dimensional network traffic data into two-
dimensional images, using Recurrent Neural Networks (RNN) instead of frequency counts
to estimate the transfer probability, automatically learning the complex relationship between
different states, accurately capturing the key features of the data, and having a stronger
semantic understanding capability;

(2) Adopt Unsharp Masking filter to sharpen the converted 2D image, so as to enhance the image
details and lay a good foundation for the next step of image classification and detection;

(3) Propose to construct an image classification model using the soft voting integration method to
improve the detection accuracy, select three efficient baseline deep learning models for image
classification: MobileNet, VGGNet, and ResNet, perform soft voting integration, and use the
merged integrated model AVR Model to detect the image, which greatly improves the detection
accuracy;

(4) Construct a MUS intrusion detection framework for IoT using MTF method and deep
learning models. Three types of experiments are conducted on two datasets: N_BaIoT, and
CICIDS2018, respectively, and the results prove that the detection accuracy of the proposed
framework is substantially improved and is effective on IoT.

The line structure of this paper is as follows: Section 2 is the related work, including an overview
comparison of research on intrusion detection techniques, data processing and integration methods;
Section 3 is the methodology, including a detailed description of the MTF method, the improved
Unsharp Masking filtering method, and the baseline image classification model soft-voting integration
method, which ultimately constitutes the intrusion detection framework, MUS; and Section 4 is the
implementation of the experiments. It includes a description of the dataset, experimental environment,
setup conditions and process to demonstrate the effectiveness of the work done; Section 5 is the
conclusion and outlook, which aims to summarize this paper and look forward to the future, providing
a reference basis for researchers in related fields.

2 Related Work
2.1 Intrusion Detection Systems (IDS)

Since Anderson first proposed the concept of intrusion detection in 1980 [12], the research of
intrusion detection technology has become a hot spot in the field of network security protection, and
the related researches have emerged and developed rapidly. Especially after Hinton et al. [13] proposed
deep neural networks in 2006, along with the arithmetic power improvement of hardware devices and
the surge of data volume, machine learning and deep learning algorithms have been widely used in the
field of intrusion detection and achieved good results. Farooq et al. in their research [14] proposed a
fusion intrusion detection framework based on machine learning, IDS-FMLT, for a heterogeneous net-
work composed of heterogeneous networks composed of different source networks, and experiments
proved that the detection accuracy of this framework on the training and validation sets can reach
96.73% and 95.18%, respectively, which significantly improves the detection accuracy; Qazi et al. in
their research [15] proposed an intrusion detection based on convolutional neural network (CNN)
and recurrent neural network (RNN) for the problem of difficulty in acquiring and analyzing the
local features of the data, and proposed a convolutional neural network (CNN) and recurrent neural
network (RNN) based intrusion detection system HDLNIDS, and achieved an average accuracy of up
to 98.90% on the public dataset CICIDS2018; In their research [16], Xie et al. proposed an anomaly
detection method based on Multi-Granularity Neighbourhood Residual Network (MGNRN) for
the problem of difficult to obtain sample features comprehensively in the time series data, which
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was proved by experiments to significantly improve the detection accuracy on the task scenarios,
especially on F1-Score, and provide a high-value method for the difficulty of deep feature extraction
in time series. Yin et al. in their research [17] constructed an intrusion detection framework based
on virtual fusion data for the IoT security problem, fused machine learning and deep convolutional
neural network algorithm (DCNN), and proposed a new loss function with full consideration of
user privacy protection, and the detection accuracy is up to 96.5% on the NSL-KDD dataset. The
above studies make full use of the advantages of deep learning in feature analysis and learning, and
they all achieve good detection results. However, they neglect the potential and effectiveness of deep
learning models in extracting high-dimensional features, and all of them directly detect and classify
one-dimensional network traffic, which cannot fully exploit the superiority of deep learning algorithms
in terms of detection accuracy. Therefore, due to the above considerations, this paper adopts the MTF
method, which converts one-dimensional network traffic into two-dimensional images, and combines
the classical filtering method and the efficient image classification model to obtain higher detection
accuracy and improve the level of IoT network security protection.

2.2 Data Processing

Data processing usually refers to numerical, normalization, feature extraction, feature dimen-
sionality reduction and other operations on the collected data to clean the “dirty” data into “clean”
data, laying the foundation for subsequent detection and classification. However, the arrival of the
big data era has led to a surge in the amount of heterogeneous data from multiple sources, and the
traditional simple data processing is no longer sufficient to effectively detect malicious traffic attacks.
Therefore, a number of studies have made special processing of 1D network traffic before detection and
classification, such as converting data types, feature engineering processing, etc. Terzi in their research
[18] emphasised the superiority of the visual interpretation capability of deep learning algorithms and
used the Gram’s Angle Field method (GAF) to convert 1D data to 2D images and classify the images
using CNN, with a detection accuracy of up to 1.0% on the CICIDS2017. The detection accuracy on
the dataset is up to 99.33%; Baldini et al. in their research [19] used Grey Level Co-occurrence Matrix
(GLCM) and 2D Dispersion Entropy to convert 1D data into 2D grey scale maps, and later used the
detection bias of machine learning algorithms to achieve an Error Rate (ER) of as low as 0.16% on
the CICIDS2017 dataset; Siddiqi et al. in their research [20] proposed improved DeepInsight-based
approach and Kernel Principal Component Analysis (KPCA) method to convert one-dimensional
data into two-dimensional images, and after data augmentation, a deep learning classifier was used
to classify the images on CSE-CIC-IDS 2018 and other three types of datasets experimentally proved
to have high detection accuracy. All of the above studies convert one-dimensional network traffic into
two-dimensional images for detection and classification, which not only allows the data to present
more features and diversity, which is conducive to the model to better capture different types of
network traffic behaviours; they also make use of the mature image processing techniques in the fields
of computer vision and deep learning to better learn and train the model, and further improve the
detection accuracy of malicious traffic. However, they only focus on image conversion using traditional
data processing methods, while ignoring the way and accuracy of feature extraction, and the effective
data information is not retained, converted and utilised on a large scale. Therefore, in this paper,
we adopt the MTF method for image conversion, which can maximise the retention of sequence
information, reduce the data dimensions, enhance local features, and help the deep learning model
to better capture the key details related to intrusion.
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2.3 Ensemble Learning

Ensemble Learning (EL) [21] is a learning method that accomplishes a learning task by combining
multiple underlying learners. It uses a set of complementary learners for prediction, combining their
outputs appropriately to improve the generalisation ability of the model, reduce the risk of overfitting,
and in some cases produce better performance than the individual learners, and is now widely used in
the field of intrusion detection. In their research [22], Shen et al. constructed a class-level soft-voting
integration scheme (CBA-CLSVE) combining Chaos Bat Algorithm (CBA) with Support Vector
Machines (SVM), K Nearest Neighbours (KNN), and Decision Trees (DTs) as the base learners, and
experimentally proved the scheme to be effective on NSL-KDD, UNSW-NB15, and CICIDS2017
datasets; Alshede et al. in their research [23] developed a Random Forest (RF) and Convolutional
Neural Network (CNN) based integrated voting method, and experimentally achieved up to 98.29%
accuracy on the CICIDS2017 dataset, which is a significant increase in accuracy compared to other
baseline models; Albashish et al. proposed a heterogeneous integrated classifier combining multiple
baseline machine learning models and weighted majority voting in their research [24], and performed
five classifications on the NSL-KDD dataset, and experimentally proved that the overall classification
accuracy has been significantly improved. As shown in Table 1, the above study proves that integrated
learning can effectively improve the detection accuracy of baseline deep learning models in intrusion
detection, especially the soft voting integration method. Therefore, in this paper, on the basis of
selecting three types of high-performing baseline image classification models: MobileNet, VGGNet
and ResNet, we adjust the parameters and construct a soft-voting integration framework to improve
the classification accuracy of abnormal traffic.

Table 1: Relevant studies conducted on IoT intrusion detection

Related work Proposed algorithm Dataset With or without
data processing

With or
without
integration

Accuracy Year

[14] IDS-FMLT KDD-CUP99 × × 95.18% 2023
NetML-2020

[15] HDLNIDS CICIDS2018 � × 98.90% 2023
[16] MGNRN three UCI datasets � × 99.20% 2022
[17] RNN, DCNN cloud-based

loss function
NSL-KDD � × 96.50% 2023

[18] GAF + CNN CICIDS2017 � × 99.33% 2022
[19] GLCM the 2D dispersion

entropy
CICIDS2017 � × 0.16%

(Error
rate)

2021

[20] DeepInsight-based kernel
principal component analysis
(KPCA) CNN

CSE-CIC-IDS 2018,
CIC-IDS 2017,
ISCX-IDS 2012

� × 97.75%
98.79%
92.92%

2022

[22] CBA-CLSVE NSL-KDD × � 97.50% 2022
UNSW-NB15 94.73%
CICIDS2017 99.75%

[23] ADS CICIDS2017 × � 98.29% 2023
[24] ACOR-WMV NSL-KDD × � 83.43% 2022
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3 Methodology

In order to give full play to the superiority of deep learning models in high-dimensional data
learning and testing, and to further improve the accuracy of anomalous traffic detection and
classification, it is different from the traditional research in which one-dimensional network traffic
data are directly subjected to feature learning, training and classification. In this paper, we focus on
the application of deep learning models on 2D images, using MTF method to convert 1D network
traffic data into 2D images, and then using Unsharp Masking filter to sharpen the image to enhance
the details, and finally constructing a soft-voting integration framework consisting of three types of
baseline image classification models, namely MobileNet, VGGNet, and ResNet. The processed images
are inputted into the integrated intrusion detection framework with high detection accuracy to obtain
accurate classification of benign and abnormal traffic (Fig. 4).

Figure 4: Intrusion detection integration framework

3.1 MTF [25]—for Data Type Conversions

MTF is a data type conversion method based on Markov stochastic process, belongs to the first
step in the constructed intrusion detection framework for data type conversion, which regards the
one-dimensional time series to be converted as a set of data conforming to the Markov stochastic
process, i.e., the current state is related to the previous state only, and is not related to other previous
states. Based on the above theory a Markov matrix can be constructed to expand the time series into
a Markov transfer field, thus realizing the conversion of data types.

Taking a set of benign network traffic in the CICIDS2018 dataset as an example, the process can
be briefly described as follows: the first step is to divide the one-dimensional time series X = {x1, x2,...,
xn} into Q bins Q = {q1, q2,..., qn}, which serves to discretize the data; at the same time, the time series
data can also be mapped into the Q quantile bins, which facilitates the subsequent transformation into
Markov matrices; the second step is to construct the Markov transfer matrix W (Eq. (1)).

W =
⎡
⎢⎣

w11 · · · w1Q

...
. . .

...
wQ1 · · · wQQ

⎤
⎥⎦ , s.t.

∑
j

wij = 1 (1)

where wij denotes the frequency of transfer of data from quartile box i to quartile box j. In this
case, frequency counts or frequency statistics are usually used to estimate the transfer probability.
For example, using maximum likelihood estimation or frequency statistics, the transfer probability
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is estimated based on the number or frequency of transfers between states occurring in the historical
data. Based on these estimates, the number of occurrences of neighbouring sub-sequences in the actual
data is counted and normalized to a probability value, which represents the likelihood of transferring
from one state to another, thus estimating the transfer probability between neighbouring sub-intervals
(Eq. (2)).

p(i, j) = count(i, j)∑N

k=1 count(i, j)
(2)

where p(i,j) denotes the probability of transferring state i to state j in the data; count(i,j) denotes the
frequency or number of transfers from state i to state j, which can be obtained by updating the number
of (i,j) in real time on the transfer count matrix C initialized with N ∗ N (N is the number of states);
similarly, count(i,k) denotes the number of transfers from each state i to the other states, denoting the
the total number of transfers from state i to any state; the transfer probability p(i,j) can be obtained
by dividing the number of transfers in the specified state interval count(i,j) by the total number of
transfers from the specified state to any state.

The third step is to construct the Markov transfer field M (Eq. (3)), which achieves the purpose
of representing the spatial distribution of transfer probabilities by arranging each transfer probability
in the Markov transfer matrix W along the time order. Finally, the matrix elements are mapped to 2D
matrix pixel values, and the transformed 2D image is obtained by displaying the transfer probabilities
between different states and visualizing the transfer patterns and correlations in the data (Fig. 5).

Figure 5: 2D image after MTF conversion
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M =
⎡
⎢⎣

wij|x1 ∈ pi, x1 ∈ pj · · · wij|x1 ∈ pi, xN ∈ pj

...
. . .

...
wij|xN ∈ pi, x1 ∈ pj · · · wij|xN ∈ pi, xN ∈ pj

⎤
⎥⎦ (3)

3.2 Unsharp Masking [26]–for Image Feature Processing

The Unsharp Masking method is an effective image sharpening method, belonging to the second
step in the constructed intrusion detection framework for image feature processing, which serves to
sharpen the image edge details by enhancing the high-frequency details of the image, and strengthens
the deep-level feature expression and learning. It mainly consists of three steps: constructing a blurred
image, generating an image with high-frequency details, and enhancing image details (Fig. 6).

Figure 6: Unsharp Masking schematic diagram

Specifically, the original image x(n,m) (n,m represents the pixel coordinates of the image) is first
filtered out the high-frequency details by a low-pass filter (e.g., Gaussian filter) to generate a blurred
image that does not contain the high-frequency details; then the original image is subtracted from the
blurred image to generate the high-frequency detail image z(n,m); and finally the original image is
added to the high-frequency detail image by the enhancement factor λ to get the output image y(n,m)
(Eq. (4)), which is enhanced with details and sharpened with edges. Finally, the original image is added
to the high-frequency detail image by the enhancement factor λ to obtain the output image y(n,m) after
detail enhancement and edge sharpening (Eq. (4)).

y(n, m) = x(n, m) + λz(n, m) (4)

Meanwhile, in the traditional USM algorithm, z(n,m) can be generally obtained by Eq. (5).

z(n, m) = 4x(n, m) − x(n − 1, m) − x(n + 1, m) − x(n, m − 1) − x(n, m + 1) (5)

The 2D image converted by the MTF method can be filtered by Unsharp Masking to obtain a
high-quality image with sharpened edge details (Fig. 7), which is convenient for the next step of the
image classification model to carry out deep feature learning and achieve high-precision anomalous
traffic detection and classification.

3.3 Soft Voting Integration—for Image Detection Classification

When using a single image classification model, the classification accuracy and effectiveness may
be far inferior to an integrated model built from multiple baseline models, even though the parameters
are tuned appropriately. In particular, soft-voting integration methods make decisions by weighted
averaging or voting the predictions of multiple models: for a multi-category classification problem, the
probabilities of each model on each category are weighted averaged or weighted summed to obtain the
final category prediction. It is usually possible to improve the performance of the integrated models,
make full use of the advantages of each model, reduce the risk of overfitting, and give higher weights to
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the predictions with higher confidence, thus improving the overall accuracy and robustness. Therefore,
in this paper, we select three baseline image classification models with large differences, MobileNet,
VGGNet and ResNet, and integrate them using a soft-voting method to form a final integrated model,
AVR Model, belongs to the third step in the constructed intrusion detection framework for image
detection classification, to improve the detection accuracy.

Figure 7: 2D image after Unsharp Masking

3.3.1 Three Types of Baseline Models—MobileNet, VGGNet and ResNet

VGGNet was proposed by Simonyan et al. in 2014 [27], which consists of sixteen convolutional
layers and three fully-connected layers with a pooling layer between every two convolutional layers;
multiple small 3 ∗ 3 convolutional kernels are also stacked to increase the depth of the network to
obtain deeper features, and its main feature is that the structure is simple and clear and easy to build;
ResNet was proposed by Shafiq et al. in 2015 [28], which introduces residual connections to skip the
multilayer structure in the network to mitigate the phenomenon of gradient vanishing, each residual
block has multiple convolutional and normalisation layers and is connected by constant mapping,
the main feature is that the residual connections are used to effectively mitigate the phenomenon
of gradient vanishing. MobileNet belongs to a kind of lightweight model, which was proposed by
Google in 2017 of [29], MobileNet replaces the standard convolution in VGGNet with depth-separable
convolution, and adds a point-by-point convolution layer using ReLU activation function behind some
of the layers, the main feature is to reduce the model size and computation as much as possible while
maintaining higher accuracy, and with depth-separable convolution as the core feature, it achieves a
good performance in the design of lightweight models [3]. All the above three types of baseline models
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have achieved good performance in the field of image classification, and their respective characteristics
are different and differ. Therefore, in this paper, we adjust to the appropriate model parameters to
integrate them with soft voting.

3.3.2 Soft Voting Integration Model—AVR Model

AVR Model improves detection accuracy by integrating three classes of baseline models
MobileNet, VGGNet and ResNet. Using the soft-voting integration method, the classification
results of the three models are weighted and combined to finally form the most credible and unified
classification results (Algorithm 1). The integration process can be represented by Eq. (6).

Algorithm 1: Soft Voting Integration of VGGNet, MobileNet, and ResNet to Form the AVR Model
Require:
1:List of predictions from three models: predictions_mobile_net, predictions_vgg_net, predic-
tions_res_net
2:List of weights for the three models: weights, ensuring the sum of weights is 1
Procedure:
3:soft_voting_intergration(predictions_mobile_net,predictions_vgg_net,predictions_res_net,
weights)
Ensure:
4:final_predictions contains the weighted combination of the predictions from the three models
Begin:
5: final_predictions = []
6: for i in range(len(predictions_mobile_net)):
7: # Weighted combination of the predictions from the three models
8: final_prediction = (weights [0] ∗ predictions_mobile_net[i] +
9: weights [1] ∗ predictions_vgg_net[i] +
10: weights [2] ∗ predictions_res_net[i])/sum(weights)
11: final_predictions.append(final_prediction)
12: return final_predictions
End procedure

FinalPred = SV(PMobileNet, PVGGNet, PResNet (6)

where SV represents the soft-voting integrated prediction function of the three component models
MobileNet, VGGNet & ResNet. AVR Model architecture is shown in Fig. 8.

4 Results and Discussion

The focus of this chapter is to describe the conditions, details and process of the experimental
implementation in order to confirm the effectiveness of the methods involved with the construction
of the intrusion detection framework. Based on various evaluation metrics, the performance of the
methodological models is evaluated in all aspects to illustrate the limitations and advantages of the
models to provide a feasible and high performance approach for the field of intrusion detection.
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Figure 8: AVR Model framework structure diagram

4.1 Introduction to the Data Set

Considering the necessity of comparing with other related work in the field of intrusion detection
and the applicability of the application scenario as IoT, this paper selects two publicly available
datasets: the dataset CICIDS2018, which is widely used by researchers, to facilitate comparative
experiments with other models; and the dataset N_BaIoT, which contains data on networking of smart
devices in the Internet of Things (IoT), in order to validate the fit with IoT environments.

4.1.1 CICIDS2018

CICIDS2018 dataset was collected by the Canadian Institute for Cybersecurity Research in 2018
and contains seven types of attack scenarios: brute force, heartbleed leaks, botnets, DoS, DDoS,
web attacks, and internal penetration, collected from five departments, 420 machines, and 30 servers
using the CICFlowMeters-V3 traffic capture software. Compared to the NSL-KDD, KDDCUP99
dataset, the temporal dimension is more novel and contains the latest cyberattack diversity and
capacity. However, CICIDS2018 contains 16,232,943 data, including 59,721 null data, and there are
also incomplete and repetitive data, the massive data will increase the training model overhead, and
the meaningless data will reduce the model efficiency. Therefore, data preprocessing is carried out,
data cleaning is performed, null data, error data, incomplete data and duplicate data are deleted, and
three major types of attack data and one type of normal data are extracted according to the difficulty
of each type of attack in the original data, forming a new training set and test set (Table 2).
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Table 2: Data distribution of the CICIDS2018 train and test sets

Type of attack Train set Number Test set Number

Normal Benign 16,899 Benign 4225
Botnet Botnet attack 16,144 Botnet attack 4036
DDoS DDoS-LOIC-HTTP

DDOS-HOIC
17,024 DDoS-LOIC-HTTP

DDOS-HOIC, DDOS-LOIC-UDP
4256

Bruteforce FTP-Bruteforce 16,840 FTP-Bruteforce, SSH-Bruteforce 4210
Total 5 66,907 7 16,727

CICIDS2018 contains a total of 83 features and 1 tag class, deleting the “Timestamp” feature
because Timestamp records the time of the attack, which has no practical significance and reference
value for the detection of network attacks in all-weather hours; deleting the “Flow ID”, “Src IP”,
“Src Port”, and “Dst IP” because these four features only appear in the flow of one day, and most of
the flow data does not contain these features; using the remaining 78 features for the training of the
intrusion detection model, as shown in Table 3.

Table 3: Featured description of CICIDS2018

Feature Feature information/attributes

1–4 Network connection
5–15 Network packet
16–21 Network flow
22–44 Statistics of network traffic
45–62 Content-related traffic features
63–66 Network sub-traffic features
67–78 Generic flow features
78–79 Labels

4.1.2 N_BaIoT

N_BaIoT dataset contains malicious attack traffic collected from nine IoT devices involving two
types of botnet attacks, Mirai and BASHLITE, which can be subdivided into 10 categories of attacks,
and are specifically designed to launch botnet attacks against IoT environments. N_BaIoT contains
a total of 7,062,606 instance data, and in order to improve the model training efficiency and reduce
unnecessary arithmetic consumption, the training set and test set are divided according to Table 4. In
addition, its 115 features are appropriately filtered and cleaned for input into the intrusion detection
framework.
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Table 4: Data distribution of the N_BaIoT train and test sets

Class Train set Number Test set Number

Normal Normal 34,806 Normal 14,917
BASHLITE attack Scan (BASH), Junk

COMBO, UDP (BASH)
6869 Scan (BASH), Junk

COMBO, UDP (BASH),
TCP flooding

5778

Mirai attack Ack, Syn, UDPplain 6051 Ack, Syn, UDPplain,
Scan (Mirai),
UDP (Mirai)

5663

Total 8 47,726 11 26,358

4.2 Evaluation of Indicators

In order to facilitate comparison and validation with other related work in the field of intrusion
detection, this paper selects four common types of evaluation metrics: accuracy, precision, recall and
F1-Score, where accuracy is used to measure the proportion of samples correctly predicted by the
model, precision is used to measure the reliability of the model in making positive class predictions,
recall is used to measure the ability of the model to predict positive samples, and F1-Score is a
combined consideration of precision and recall, and is the reconciled average of the two. Recall are
considered together and are the reconciled mean of the two, which is used to measure the balanced
performance of the model.

Accuracy = TP + TN
FP + FN + TP + TN

(7)

Precision = TP
FP + TP

(8)

Recall = TP
FN + TP

(9)

F1 − Score = 2 × Precision × Recall
Precision + Recall

(10)

The meanings of the sub-indicators TP, TN, FP and FN are shown in Table 5.

Table 5: Meaning of TP, TN, FP, FN

Actual/prediction Positive Negative

Positive TP FN
Negative FP TN
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4.3 Experimental Implementation

To validate the effectiveness of the proposed method and the constructed framework in this paper,
three types of experiments are mainly conducted on two datasets, CICIDS2018 and N_BaIoT: (1)
ablation experiments are conducted on the MTF used for data type conversion and compared with
other type conversion methods to validate the effectiveness of the MTF on the conversion of one-
dimensional data to two-dimensional images; (2) ablation experiments on AVR Model, a soft-voting
integration model for image detection and classification, and compare its detection performance with
individual baseline models VGGNet, ResNet and MobileNet on task scenarios to validate the utility
of the integration approach for image classification; (3) comparative evaluation experiments on MUS
Model, an entire intrusion detection framework, compared with SVM, DT, RNN, CNN four classes
of machines with deep learning baseline models to illustrate the value of the work done.

4.3.1 Evaluation of MTF Methods for Data Type Conversion

Since the images generated in this paper are mainly used for the detection of the image classi-
fication module, no metrics specifically for assessing image quality are used; instead, different data
conversion methods are combined and compared with the baseline image classification model, CNN,
so as to illustrate the effectiveness of the MTF method in the whole intrusion detection framework
using classification assessment metrics. Firstly, this paper selects unprocessed one-dimensional data as
the input source and compares the detection performance of MTF on CNN to illustrate the necessity
and importance of data type conversion; meanwhile, classical data type conversion methods such as
GAF, STFT and recursive map are set as the control group to illustrate that it is more effective and
practical to adopt the MTF method in the intrusion detection framework constructed in this paper.

As can be seen from Fig. 9, the MTF method in the constructed framework achieves higher
detection accuracy on both the CICIDS2018 and N_BaIoT datasets compared to the control group,
which can be explained in two ways: firstly, compared to the one-dimensional data processing methods
that do not use image conversion methods, the STFT, Recurrence Plot, GAF, and MTF methods that
convert the one-dimensional network traffic data into 2D images for detection and classification, all
of which achieve a high accuracy rate, due to the fact that the conversion of data types can learn deep
features, and 2D images are more capable of capturing spatio-temporal features; it facilitates the use of
advanced computer vision and image processing techniques to enhance the pattern recognition ability,
which leads to effective training and classification, and embodies the superiority of the idea; secondly,
in comparison with STFT, Recurrence Plot, GAF and other image transformation methods, the MTF
method achieves the best performance on both the CICIDS2018 and N_BaIoT datasets, which is due
to the fact that the MTF can extract features at multiple scales, thus capturing patterns and features
at different scales in the dataset, which helps to characterise the data in a more comprehensive way
and facilitates subsequent detection classification. It is also worth noting that the experimental results
show that all the four types of methods outperform the dataset N_BaIoT on the dataset CICIDS2018,
indicating that the adopted frameworks are more effective in representing the characteristics of the
CICIDS2018 dataset, which is not only applicable to the widely used IoT, but also applicable to
different scenarios and attack types.
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Figure 9: Experimental diagram of MTF evaluation

4.3.2 Evaluation of AVR Model

In order to comprehensively evaluate the effectiveness of the constructed integrated model AVR
Model, it is compared with three single baseline models, VGGNet, ResNet and MobileNet, in the
classification task of two types of datasets, and the experimental results of the four evaluation metrics
are as follows:

As can be seen from Fig. 10, AVR Model outperforms the single baseline model in all four
categories of evaluation metrics on both types of datasets. This is due to the fact that AVR Model has
the characteristic of diversity integration, which is able to gather the advantages of the three models and
make up for their shortcomings; in addition, it is able to reduce the risk of overfitting, synthesise the
feature representations of each baseline model, and reduce the stochasticity. Specifically, AVR Model
significantly outperforms all the single baseline models in terms of overall classification accuracy,
which indicates that the integrated model is able to combine the advantages of the different models
and handle complex classification tasks more efficiently; the precision rate of AVR Model also exhibits
high performance, which suggests that there are fewer misclassifications in determining the positive
class of samples; and lastly, the significant improvement in the F1-Scores further proves that AVR
Model is superior in maintaining a balance between precision rate and recall balance of AVR Model.
Taking the above experimental results together, it can be seen that AVR Model outperforms the single
baseline model in all the evaluation metrics, proving its effectiveness and efficiency in dealing with
complex classification tasks. This is due to its ability to integrate the features of multiple models, thus
compensating for the deficiencies of a single model and improving the overall performance.
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Figure 10: Experimental diagram of AVR Model evaluation

4.3.3 Evaluation of MUS Model

The above two types of ablation experiments illustrate the effectiveness of the modules in the
intrusion detection framework, however, the role of the independent modules does not indicate the
performance of the overall framework. Therefore, in order to evaluate the superiority of the intrusion
detection framework MUS in the field of IoT security, comparative experiments with classical machine
learning models SVM, DT and deep learning models RNN, CNN are conducted on two types of
datasets, CICIDS2018 and N_BaIoT, and evaluated with four types of metrics.

As can be seen from Fig. 11, the constructed MUS intrusion detection framework achieves the
highest detection accuracy on the CICIDS2018 dataset, indicating that MUS can identify intrusions
more accurately in complex network traffic data; MUS likewise performs best on the N_BaIoT dataset,
which contains a large amount of data from IoT devices,. It further shows that MUS has strong
detection capability in IoT environment. Taken together, the above experimental results show that
the MUS framework demonstrates better performance than traditional machine learning models and
deep learning models on both types of datasets, this is due to the fact that the MUS framework contains
three modules of data conversion, image processing and detection and classification, which are able to
convert one-dimensional data into two-dimensional images, mine deep-seated features with the help of
advanced computer vision and image processing techniques, and use the soft-voting integration model
AVR to combine the advantages of the three types of baseline models for accurate detection, which
further proves the superiority of the MUS framework in the field of IoT security, and its efficient
detection capability can help better identify and defend against a variety of cyber-attacks.

4.3.4 Tests of Model Variability

The Friedman test is a non-parametric test to determine whether multiple algorithms have the
same performance. The Nemenyi follow-up test, on the other hand, further determines whether the
difference between the mean ordinal values of two algorithms exceeds the critical value domain
on the basis of the Friedman test to identify significant differences in algorithm performance. In
order to compare whether there is any difference between the intrusion detection framework MUS
constructed in this paper and the baseline machine learning and deep learning models, the experiments
implemented in Section 4.3 are used as the research object to launch the model difference test.
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Figure 11: Experimental diagram of MUS model evaluation

The original hypothesis of the Friedman test is that the overall median is equal for all samples, and
the alternative hypothesis is that the overall median is different for at least one sample. In performing
the Friedman test, the data in each sample are first ranked, and then the rank order of each observation
is calculated; and then the ranks in each sample are summed to obtain the rank sum of the sample.
Finally, a statistical test is performed using the computed rank sum, and the distribution of the test
statistic approximates a chi-square distribution with k − 1 degrees of freedom, where k is the number
of samples, N is the number of datasets, and ri denotes the average ordinal value of the ith algorithm.

τx2 = 12N
k(k + 1)

(∑k

i=1
r2

i − k(k + 1)2

4

)
(11)

The F-distribution τF obeying degrees of freedom k − 1 and (k − 1) (N − 1) can be derived from
τx2 .

τF = (N − 1)τx2

N(k − 1) − τx2
(12)

As a result of these calculations, the Friedman test rejected the original hypothesis, indicating that
at least one of the models differed significantly in performance on at least one of the metrics. Therefore,
a Nemenyi follow-up test was conducted. The Nemenyi test calculates the critical value domain for
the difference in mean ordinal values.

CD = qα

√
k(k + 1)

6N
(13)

where α is the fixed critical value derived from checking the table. In this paper, the CD is 1.9268, and
after control, it is found that MUS is significantly different from SVM, DT, and RNN, while it is not
significantly different from CNN (Fig. 12).
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Figure 12: Critical difference (CD) diagram

This is due to the fact that the three baseline models of the soft voting integration model in MUS:
VGGNet, ResNet and MobileNet all belong to the classical convolutional model and therefore do
not differ much from CNN, but in terms of the four types of performance metrics, have a significant
enhancement, which illustrates the validity and practicability of the constructed framework MUS.

4.4 Discussion

From the four types of experimental parts mentioned above, it can be concluded that each module
of the constructed part plays a corresponding role and contributes to the effectiveness of the overall
framework in IoT intrusion detection. Among them, the data type conversion module consisting of the
MTF method for converting 1D network traffic data into 2D images has higher evaluation indexes in
all four categories than the direct processing of 1D data and the baseline image classification method,
which illustrates the necessity of data type conversion and the applicability of the adopted MTF
method; the detection and classification model AVR, which is obtained by integrating the three image
classification baseline models of VGGNet, ResNet, and MobileNet by the soft polling The detection
and classification model AVR Model obtained from the soft-vote integration of VGGNet, ResNet,
and MobileNet has higher detection accuracy compared with the above three baseline models, which
illustrates the effectiveness of the soft-vote integration method; finally, the IoT intrusion detection
framework MUS constructed by the research institute has the best performance in the four types of
evaluation indexes compared with commonly used machine learning and deep learning models, which
further illustrates the excellent performance of the constructed framework AVR Model performance;
the experimental performance on two types of datasets, CICIDS2018 and N_BaIoT, fully proves that
MUS is not only suitable for IoT intrusion detection environments, but also for different attack types
and network environments.

However, the experimental setup is limited in some aspects and needs to be further improved.
First, in terms of dataset selection bias, the division of training and testing sets in CICIDS2018 and
N_BaIoT is random, which cannot cover each traffic data of each attack type, and there exists one-
sidedness; in addition, although the dataset used in the experiments has covered the real network
environments and the specific IoT environments, it is not possible for them to cover all possible
intrusion scenarios and network environments, and the model’s ability to generalise in unknown
environment, the generalisation ability of the model in unknown environments needs to be further
verified. Second, the four categories of indicators used in the experimental evaluation are commonly
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used in the field of intrusion detection, which can illustrate the high-performance performance of the
constructed framework on the IoT intrusion detection task scenarios; however, it gives the same weight
to the prediction performance of all categories, which does not take into account the requirements of
practical applications, and needs to be explored and improved in the next step.

5 Conclusion and Outlook

In order to fully improve the performance of the IoT intrusion detection model, considering
the superiority of deep learning models in learning and training high-dimensional data, this paper
constructs an IoT intrusion detection framework, MUS Model, based on MTF, Unsharp Masking,
and soft-voting integration models, and conducts three types of experiments on two datasets to prove
that each module of the constructed framework MUS is necessary and all contribute to the final
performance improvement, and that the overall framework is applicable not only to IoT intrusion
detection environments, but also to different attack types and network environments. This fully
demonstrates the following conclusions: (1) after converting 1D network traffic data into 2D images,
it is effective to detect and classify them using advanced computer vision techniques, which shows
that the data type conversion can fully leverage the visual feature extraction techniques to improve
the detection performance to a certain extent; (2) processing the converted data images is necessary to
facilitate learning to extract the deeper features and optimise the detection performance; (3) the soft-
voting integration method can combine the advantages of different baseline models and reduce the
risk of overfitting, which provides a reference for the subsequent improvement of intrusion detection
performance under different task scenarios.

However, this paper only focuses on the enhancement of intrusion detection performance in
the IoT domain without considering the resource constraints. In the future, IoT security domain,
with the explosive growth of the number of devices and the increasing complexity of the network
environment, the intrusion detection system not only needs to have high-precision detection capability
to accurately identify and defend against a variety of threats, but also must have fast inference speed
and lightweight model design to adapt to resource-constrained IoT devices and to ensure real-time
security requirements. To achieve this goal, the following methods are proposed for refinement: model
compression and pruning, knowledge refinement, quantification, hardware-specific optimisation,
joint-learning distributed training, etc.; through the combined use of the above methods, both the
performance and efficiency of the IoT intrusion detection model can be improved, and its feasibility
and practicability can be ensured in resource-constrained environments, so that the growing IoT
ecosystem can be better protected from security threats.
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