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ABSTRACT

Personalized gait curves are generated to enhance patient adaptability to gait trajectories used for passive training
in the early stage of rehabilitation for hemiplegic patients. The article utilizes the random forest algorithm to
construct a gait parameter model, which maps the relationship between parameters such as height, weight, age,
gender, and gait speed, achieving prediction of key points on the gait curve. To enhance prediction accuracy, an
attention mechanism is introduced into the algorithm to focus more on the main features. Meanwhile, to ensure
high similarity between the reconstructed gait curve and the normal one, probabilistic motion primitives (ProMP)
are used to learn the probability distribution of normal gait data and construct a gait trajectory model. Finally, using
the specified step speed as input, select a reference gait trajectory from the learned trajectory, and reconstruct the
curve of the reference trajectory using the gait key points predicted by the parameter model to obtain the final curve.
Simulation results demonstrate that the method proposed in this paper achieves 98% and 96% curve correlations
when generating personalized lower limb gait curves for different patients, respectively, indicating its suitability for
such tasks.
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1 Introduction

According to statistics, the number of hemiplegic patients resulting from stroke and other
diseases is increasing annually. Without timely treatment, patients may permanently lose leg motor
function and experience issues such as muscle atrophy, joint stiffness, and cardiopulmonary problems.
Simultaneously, patients may experience significant psychological trauma, pessimism, depression, and
other emotions, severely impacting their overall well-being. Clinical studies demonstrate that precise
and timely rehabilitation training can enhance coordinated movement in joints and muscle groups,
restoring muscle strength and walking function in patients. Researches [1–3] have demonstrated that
employing lower limb rehabilitation equipment in training aids in the restoration of the patient’s motor
abilities. Research [4] notes that during the initial phase of rehabilitation training, patients are passively
guided by the rehabilitation robot, impacting the rehabilitation outcome as the robot’s passive training
reference trajectory plays a crucial role. In research [5], the development of a personalized training
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reference trajectory is divided into two components: the gait parameter model (GPM) and the gait
trajectory model (GTM).

Researches [6,7] indicated a strong correlation between human gait trajectory and speed. Addi-
tionally, parameters like height, weight, age, gender, and BMI have a significant impact on gait. In
GPM, it is essential to establish the relationship between body parameters and gait, predicting key
gait characteristics. In prior studies [8], gait reference trajectories at various speeds were successfully
predicted using Long Short-Term Memory Neural Networks (LSTM) and Convolutional Neural
Networks (CNN). In the study by [9], an SAE-LSTM network was employed to predict gait based
on nine information variables, including acceleration, angular velocity, thigh, calf, and foot motion
angles, as well as three plantar pressure variables. The model achieved an average accuracy of 93%.
In their work [10], CNN-LSTM was utilized to predict the gait of patients for assessing the severity
of Parkinson’s disease, achieving favorable classification and identification accuracies. In the research
[11], gait prediction was performed using plantar pressure data with a transformer neural network.
The prediction error was smaller compared to other methods, but the transformer network showed
a tendency to overfit small datasets. Research employed a random forest regression model (RF)
to generate personalized gait trajectories based on anthropometric features. However, the dataset
lacked the crucial parameter of gait speed, limiting the applicability of the generated gait profiles in
rehabilitation training. In their research [12], a method for personalized gait pattern generation based
on recurrent neural networks (RNNs) was introduced. RNNs were employed to establish a mapping
from body parameters and gait parameters to gait patterns, yielding improved prediction results.
However, the “black-bo” nature of RNNs hindered the understanding of the potential relationship
between body parameters and gait patterns.

GPM constructs a model that correlates human body parameters with gait, enabling the prediction
of key gait points based on input parameters. In GTM, the output of GPM serves as input, enabling
personalized reconstruction of gait curves to enhance patient adaptability. In research [13], the internal
dynamics of gait were modeled as a second-order Markov process evolving in a low-dimensional
potential space using Gaussian regression. Motion was generated by directly mapping the potential
space dynamics to joint trajectories through predicted features, reducing the mean-square error of
the generated gait pattern. However, this method still introduces a large reconstruction error in gait
curves and does not support step length adjustment. In [14], a polynomial fitting approach is utilized to
generate joint angles, but it necessitates specifying optimal values for angular acceleration and angular
velocity of the joint angles. In the study by [15], the Gaussian regression algorithm is employed for
joint angle generation, also learning the probability distribution of the joint angle trajectory. In [16],
dynamic motion primitives are used to adjust trajectories based on walking profiles from a normal
gait database through a set of Gaussian kernels, displaying statistical learning. However, the method
does not consider the impact of body characteristics on gait. Based on the aforementioned research
on personalized gait trajectory generation, it is evident that many gait parameter modeling methods
neglect the consideration of body parameters, particularly the crucial feature of gait speed. This results
in the prediction of gait characteristics that fail to meet personalization needs. Additionally, in gait
trajectory modeling methods, many approaches do not account for the learning and generalization
of normal gait curves. The prehabilitation period of passive training tasks tends to be homogeneous,
emphasizing the importance of ensuring the generated similarity between gait and normal gait.

This study focuses on rehabilitation training for hemiplegic patients, introducing RF with
attention mechanism (RF-Attention, RFA) and combining it with probabilistic motion primitives to
propose the RFA-ProMP algorithm for personalized gait trajectory generation. To ensure the learning
and generalization performance of the algorithm on normal gait trajectories, the study employed
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ProMP to construct probabilistic trajectory models based on different gait speeds in the human gait
database. Since many existing methods have not considered the impact of gait speed on gait, this paper
characterizes the characteristics of hip and knee joint trajectories using gait key points. RF is employed
to map the nonlinear relationship between human parameters, gait speed, and gait trajectory, enabling
the prediction of gait key points based on input parameters. The predicted gait key points will serve
as inputs to the trajectory model for reconstructing the gait reference trajectory.

The main contributions of this article are as follows:

1) A gait parameter model was constructed, using gender, age, height, weight, BMI, and gait
speed as input parameters to predict the key point angles of the gait trajectory. This model can reflect
individual differences and achieve personalized prediction of gait key points.

2) A gait trajectory model was constructed. By learning normal gait data, a reference gait
trajectory library based on gait speed was obtained. A reference trajectory was selected based on the
specified gait speed. The predicted gait key points were used to effectively reconstruct the trajectory
while maintaining similarity with the reference trajectory.

2 Methods

Research [17] demonstrated that the Random Forest algorithm excels in processing numerous
features and can rank them based on importance. Given the necessity to extract as many features
as possible in constructing gait parameter models, the random forest algorithm is well-suited for
establishing the mapping relationship between human parameters and gait trajectory key points.
In studying the internal relationship between human parameters and gait, emphasis is placed on
highly important features. The attention mechanism focuses on relevant areas of input data and
assigns different attention weights based on the importance of input features. Therefore, the attention
mechanism is integrated into random forests to enhance the accuracy of mapping relationship
construction.

Personalizing the passive training trajectory according to the specific patient’s situation is crucial,
aiming for a reconstructed trajectory highly similar to the patient’s trajectory during normal move-
ment. Researches [18–21] have demonstrated that probabilistic motion primitives can learn probability
distributions of trajectories from normal gait databases and reconstruct them using learned reference
trajectories. The obtained trajectories exhibit high similarity to the original ones and possess flexibility
and adjustability, making them adaptable to personalized requirements.

2.1 Modeling of Gait Parameters

The random forest algorithm utilizes a multitude of decision trees as its base learners. During the
training phase, bootstrap sampling is employed on the gait dataset with dropout, enabling the training
of multiple individual decision trees. During the prediction phase, the random forest calculates the
arithmetic mean of the output results from each decision tree to derive the final prediction result.
In this study, model inputs included age, gender, height, weight, BMI, and walking speed. During
the prediction process of each gait feature, each decision tree established using bootstrap contains a
subset of data not used in its construction, referred to as Out of Bag (OOB) data. In predicting each
gait feature, for each decision tree, the OOB data was used for prediction to obtain the error Error.
A certain variable in the OOB data was then randomly replaced, and prediction was performed again
to obtain the error Error∗. The average difference between the two errors across all decision trees, i.e.,
Mean Decrease Accuracy (MDA), was calculated for that gait feature, which represents the variable
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importance measure value of the variable. The larger the value, the more important the feature variable
is in gait prediction. Based on this, the patient’s physical parameters are sorted by the importance of
gait, and the selection of important features serves as the basis for data preprocessing division.

The mathematical modeling equations for the RFA model are as follows:

y (x) = 1
M

M∑
i

hi (x) (1)

x is the input gait parameter, hi(x) is the output of the ith decision tree based on the input parameter,
M is the number of decision trees, and y(x) is the predicted gait data result.

The formula for MDA is as follows:

MDA = 1
M

M∑
i=1

(
Errori − Error∗

i

)
(2)

Errori is the out-of-bag data prediction error of the first decision tree; Error∗
i is the corresponding

out-of-bag data prediction error of the ith decision tree obtained by randomly replacing a certain
variable.

The feature attention weights are calculated as follows:

Ai = exp (MDA (i))
Σd

j=1 exp (MDA (i))
(3)

Update Eq. (1) to obtain the RFA model:

y (x) = 1
M

M∑
i

hi (x) ∗ Ai (x) (4)

X ε Rn×d represents the input features, where n is the number of samples, and d is the number of
features. Ai denotes the attention weight of the ith feature, MDA(i) represents the original importance
measure of feature i.

During the prediction process, RFA assigns different attention weights to different features based
on the importance of the input data, and predicts the final gait key point angle through the model.

2.2 Modeling of Gait Trajectory

To understand the normal gait pattern, considering a series of normal gait sample trajectories yn ∈
{y1 . . . yn}, the trajectories are approximated using a weighted sum of K normalized basis functions:

yn = ψωn (5)

ψ = Φ ⊗ I (6)

ωn = (
ψTψ + λI

)−1
ψTyn (7)

λ = 10−18, for avoiding numerical singularities, ωn ε RDK is the weight vector associated with the
nth presentation, the unit matrix I ε RDK , and ψ ε RDK is the matrix of basis functions, Φ is a Gaussian
basis function, ⊗ denotes the Kronecker product, and our choice of basis functions is Gaussian basis
functions:
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bi (t) = exp
(

−(t − ci)
2

2h

)
(8)

h is the width of the basis function and ci is the center of the ith basis function, t monotonically
increasing from 0 to 1. The basis functions have been normalized to enhance the accuracy of the fit.

The computed weight vector is assumed to be normally distributed, i.e., p (ω) = N (ω| μω, Σω),
The parameters μω and Σω can be obtained by the following equation:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μω = 1
N

N∑
n=1

ωn

Σω = 1
N

N∑
n=1

(ωn − μω) (ωn − μω)
T

(9)

Thus, the gait trajectory distribution can be obtained from μω and Σω to model the normal gait
trajectory:

y ∼ N
(
ψμω, ψΣωψ

T
)

(10)

For the established probabilistic trajectory model, we update the trajectory by adding the expected
points of gait characteristics y∗

t at moment t and the expected observation accuracy Σ∗
ω
. According to

Bayes’ theorem, the weight vector distribution of the basis functions is:

ρ
(
ω| y∗

t

) ∝ N
(

y∗
t

∣∣ Ψtω, Σ∗
y

)
(11)

The new mean and variance are calculated as follows:

μω
∗ = μω + Σωψt

TQ (yt
∗ − ψtμω) (12)

Σ∗
ω

= Σω − ΣωΨ
T
t QΨtΣω (13)

Q = (
Σ∗

y + ΨtΣωΨ
T
t

)−1
(14)

During gait trajectory reconstruction, a fundamental trajectory is chosen from the normal gait
probability trajectory model according to gait speed. The predicted expected gait point is then
inputted, and the probability trajectory model is iteratively updated using formulas (12)–(14). μ∗

ω
is

then inputted into formula (10) to derive the final expected gait trajectory.

2.3 Algorithmic Implementation

The study aimed to predict individualized lower extremity gait patterns for passive rehabilitation
training. It utilized the patient’s physical attributes and specified gait speed. The prediction focused
on a single cycle of lower limb gait, as prehabilitation training involves repetitive cycles. The gait
parameter model in this study incorporated six parameters: height (H), weight (W), sex (S), age (A),
BMI, and gait speed (V). The algorithm implementation involved five steps.

1) Construct a gait parameter model by RFA, and predict to get the angle of m gait key points
y∗

1 · · · y∗
m.

2) A set of joint demonstration trajectories
{
yn,L0

}N

n=1
is chosen from the gait database based on the

specified step speed V. The weight vector ωn is calculated, and using ωn, μω and Σω are computed to
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determine the probability distribution:

y ∼ N
(
ψμω, ψΣωψ

T
)

(15)

3) Calculate μ∗
ω

and Σ∗
ω

based on the predicted angle y∗
i of the key point and the given passing

accuracy Σ∗
y.

4) Updating the probabilistic trajectory model.

5) Repeat 3) and 4) to obtain the final trajectory model and the passive training trajectory with
fixed sequence length:

y∗ = ψμ∗
ω

(16)

The steps of the algorithm implementation can be demonstrated by Fig. 1.

inputs RF-Attention Key points

Reference 
trajectory

ProMP
Training 
trajectory

Speed:V1

Speed:V2

Speed:V6

…

Gait Databases

GPM

GTM

Figure 1: Algorithmic implementation process

3 Results

This study was conducted under Windows 10 with the device configuration of CPU: Intel(R)
Core(TM) i7-8750H CPU @ 2.20 GHz; RAM: 8 GB; GPU: NVIDIA GeForce GTX 1050 Ti;
Experimental environment: python 3.6, tensorflow 1.9, keras 2.0.

3.1 Dataset

Since this study aimed to establish the relationship between body characteristic parameters and
gait, the dataset must include body parameters, pace, and gait information. The experimental data
used in this study included physical parameters such as height, weight, gender and age of 52 volunteers.
The data set contains the hip and knee joint data of volunteers walking at different gait speeds, which
meets the data requirements of this experiment. The acquired gait curve was filtered and smoothed
using a Butterworth low-pass filter with a cutoff frequency of 6 Hz. Each gait curve is then resampled
as a discrete point. Table 1 displays the physical parameters and gait speed ranges. Following the
requirements for low speed and stability in passive rehabilitation training, gait data with speeds ranging
from 0.27 to 1.39 m/s (1 to 5 km/h) in the dataset were selected, resulting in a total of 940 sample sets.
All data underwent normalization, and the algorithms were evaluated using a leave-one-out cross-
validation method.

Formula (2) is used to obtain the importance evaluation ranking of variables for the knee and
hip joints in Fig. 2a,b. The figure clearly indicates that gait speed has the most substantial impact on
the gait trajectory among the collected parameters. Therefore, this study divided the training set into
six gait intervals, each with a 0.2 m/s interval based on the distribution of gait speeds in the dataset.
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The gait data from these corresponding intervals were then chosen as the basis for demonstrating
trajectories for the ProMP, considering the specified gait speeds.

Table 1: Data set parameters and scope

Features Range

Age 19–67
Sex 0/1
Height (m) 1.55–2.02
Weight (kg) 50–102
BMI (kg/m2) 17.17–30.42
Speed (m/s) 0.27–1.40

(a) knee (b) hip

Figure 2: Assessment of the importance of variables in the hip and knee joints

3.2 Evaluation Indicators

The performance of the algorithm is mainly assessed by the consistency of the generated gait
curve with the actual gait curve, and if the generated gait curve is closer to the actual curve, it is
considered to be more feasible to be used for rehabilitation training. We introduced Mean Absolute
Error (MAE) to evaluate the error between the trajectory θ̂ generated by the RFA-ProMP method
and the real reference trajectory θ . Research [22] introduces correlation coefficients ρ to measure the
similarity between the generated curve and the actual curve, where the smaller the MAE, the smaller
the deviation between the predicted gait trajectory and the actual trajectory. The larger the value of ρ,
the greater the similarity between the generated curve and the actual curve. Curve is more similar to
the actual curve. MAE and ρ are calculated as follows:

MAE = 1
L0

L0∑
i=1

∣∣∣θ̂i − θi

∣∣∣ , i = 1, . . . , L0 (17)

ρ =
cov

(
θ , θ̂

)
√

var (θ) var
(
θ̂
) (18)
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θi and θ̂i represent the angular true and predicted values of the gait curve of the current sample at
the ith discrete point, respectively, and L0 = 101, the number of discrete points of the gait curve.

3.3 Curve Reconstruction

The study constructs gait models based on various walking speeds in the dataset. Fig. 3 illustrates
the learning process of a series of hip joint trajectories and the curve update following the addition of
gait prediction key points. Fig. 3a displays the trajectory sets of various patients within the same gait
interval. The thick solid lines represent the learned reference trajectories in the figure, while Fig. 3b
depicts the reconstructed curve by selecting a reference trajectory according to the specified gait speed
and utilizing gait key points as input. The gait curves of subjects 15 and 16 were utilized in this study
as examples for reconstructing the knee and hip joint curves.

(a) demonstration curve (b) adjusted trajectory

Figure 3: Illustration of trajectory and adjusted trajectory

This study chooses gait key points uniformly distributed within the range of t = 1, . . . , L0. The
number of gait key points is incrementally increased from 5 to 15, and the mean absolute error (MAE)
is computed. Fig. 4 depicts the curve illustrating the impact of the number of gait key points on
adjustment error, the dashed data value is 0.3, as 0.3 is already a lower MAE value, it is used as a
reference threshold for selecting gait key points. The graph demonstrates a decrease in the curve’s
reconstruction error with an increasing number of gait key points. However, the complexity of the
parameter model will rise as the number of key points increases. Hence, taking all factors into account,
9 gait key points are chosen for the hip joint and 11 for the knee joint in this experiment. Fig. 5 displays
the reconstruction outcomes of hip and knee joint curves for two experimenters, Fig. 5a,b respectively
show the knee joint gait curve and hip joint reconstruction curve of subject 15, while Fig. 5c,d show
the knee and hip joint reconstruction curves of subject 16.

Figs. 6 and 7 display the curves of the hip and knee joints of the same patient across all walking
speeds. It can be observed that there is a slight difference in gait trajectory within a certain range of
intervals. To reduce the learning time of ProMP, this study divides the gait curve of the training set
based on gait speed into intervals of 0.2 m/s. Six intervals yield the gait curves: 0.26–0.47, 0.46–0.67,
0.66–0.87, 0.86–1.07, 1.06–1.27, and 1.26–1.39. The gait trajectory of each interval serves as the basis
for the demonstration trajectory. Figs. 8 and 9 depict the demonstration trajectories of the hip and
knee joints in five gait intervals, respectively.
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Figure 4: The impact of the number of gait key points on the curve MAE

(a) knee_15

(c) knee_16 (d) hip_16

(b) hip_15

Figure 5: Hip and knee reconfiguration trajectories
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Figure 6: All hip joint walking speed curves of
a single patient, with the legend indicating the
walking speed in meters per second

Figure 7: All knee joint walking speed curves of
a single patient, with the legend indicating the
walking speed in meters per second

Figure 8: Hip joint reference trajectories for the
same patient in five gait intervals, with legends
representing different gait intervals

Figure 9: Knee joint reference trajectories for the
same patient in five gait intervals, with legends
representing different gait intervals

As hip and knee joint angle data can be treated as time series, LSTM and CNN-LSTM
demonstrate strong performance in time series prediction. Thus, this article introduces LSTM and
CNN-LSTM as comparative algorithms, contrasting them with the RF algorithm proposed herein.
Figs. 10 and 11 show the comparison results of the reconstructed curves of the four algorithms.
Fig. 10a presents the comparison result of the hip joint for subject 15, Fig. 10b shows the hip joint
comparison for subject 16, Fig. 11a displays the comparison result of the knee joint for subject 15, and
Fig. 11b shows the knee joint comparison for subject 16. Additionally, to demonstrate the effectiveness
of our proposed algorithm, we compared it with the GPPM algorithm cited in research [22], known
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for its strong performance in gait pattern prediction. Figs. 12 and 13 display the comparison results.
Table 2 lists the algorithmic results.

Figure 10: Comparison of hip joint reconstruc-
tion trajectories between subjects 15 and 16
under different algorithms

Figure 11: Comparison of knee joint reconstruc-
tion trajectories between subjects 15 and 16
under different algorithms

From the curves, it is evident that the reconstruction probability curve for gait prediction using
RFA ProMP closely aligns with the reference curve. Calculations reveal that for the hip joint, the
reconstruction curve obtained via RFA ProMP is 3.2% higher than RF ProMP, 2.1% higher than
LSTM ProMP, 2.1% higher than CNN-LSTM ProMP, and 2.1% higher than GPPM. The mean
absolute deviation (MAD) is 24.2% lower than RF ProMP, 12.5% lower than LSTM ProMP, 15.6%
lower than CNN-LSTM ProMP, and 14.1% lower than GPPM. For the knee joint, the reconstruction
curve obtained via RFA ProMP is 7.7% higher than RF ProMP, 3.2% higher than LSTM ProMP,
5.4% higher than CNN-LSTM ProMP, and 4.3% higher than GPPM. The average MAD is 30.5%
lower than RF ProMP, 20.1% lower than LSTM ProMP, 28.8% lower than CNN-LSTM ProMP, and
27.2% lower than GPPM.
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Figure 12: Comparison of hip joint reconstruc-
tion curves between the algorithm in this article
and GPPM

Figure 13: Comparison of knee joint reconstruc-
tion curves between the algorithm in this article
and GPPM

Table 2: Algorithm performance comparison

Algorithm Hip (MAD/ρ) Knee (MAD/ρ)

RFA-ProMP 5.10/0.96 4.49/0.98
LSTM-ProMP 5.83/0.94 5.62/0.95
CNN-LSTM-ProMP 6.4/0.94 6.31/0.93
RF-ProMP 6.73/0.93 6.46/0.91
GPPM 5.94/0.94 6.17/0.94

From the data results, it can be seen that the curve reconstruction of the hip joint is better than
that of the knee joint. This is because the hip joint has a more stable motion mode compared to the
knee joint during motion, allowing the algorithm to extract features of the hip joint more accurately.

By trial and error, the optimal parameter table for each model in the experiment is obtained in
Table 3 based on the optimal ρ and MAD. Table 4 lists the average running time of the RFA ProMP
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and RF ProMP algorithms in this experiment (averaged over ten runs). Since CNN-LSTM ProMP
and LSTM ProMP require multiple training rounds, their running times are at the minute level and
are not included in the table. The table shows that due to the lower number of hip joint points, the
algorithm with Attention added has a shorter running time for training hip joint data compared to
the one without. While the training time for knee joints has increased, the increment compared to the
training time of the other two algorithms in minutes is entirely acceptable.

Table 3: Model parameter settings

Algorithm Hip Knee

CNN-
LSTM-
ProMP

Filters = 64, Filters = 32,
Kernel_size = 3, Kernel_size = 3,
lstm_units = 64, lstm_units = 32,
Epochs = 20, Epochs = 15,
Batch_size = 4 Batch_size = 4

LSTM-
ProMP

Units = 32, Units = 32,
Epochs = 20, Epochs =15,
Batch_size = 4 Batch_size = 4

RFA-ProMP n_tree = 100 n_tree = 100

Table 4: Runtime comparison

Time Hip Knee

RFA-ProMP 32 s 46 s
RF-ProMP 36 s 36 s

4 Discussion

Personalized gait trajectories based on human characteristics are necessary in passive rehabilita-
tion training as the degree of adaptation between the training trajectory and the patient significantly
influences the rehabilitation outcome. In the parametric model, the neural network requires iteration,
leading to higher computational resource demands and an increase in the algorithm’s running time
cost. Additionally, the tuning process for the neural network is more cumbersome. Therefore, from the
perspective of model complexity and tuning process, the algorithm proposed in this paper is superior
to LSTM and CNN-LSTM.

LSTM excels in long time series prediction, capturing the data’s long-term dependencies. However,
for passive training gait in rehabilitation, where the gait pattern remains constant for every walking
cycle once determined, it can be treated as a static dataset. In contrast, for static data requiring
feature selection, LSTM, designed for long time series prediction, is not as effective as CNN-LSTM.
Nevertheless, both of them are outperformed by Random Forest. Despite the latter’s weak predictive
performance, combining feature weighting with the attention mechanism noticeably enhances predic-
tion accuracy. As trajectory fitting relies on predicted points, RFA’s assurance of key point prediction
accuracy directly extends to the accuracy of reconstructed curves.



1454 CMC, 2024, vol.80, no.1

In trajectory modeling, many scholars employ interpolation methods for trajectory fitting, which,
however, lacks the learning of normal gait patterns. This paper utilizes ProMP to fit the gait
trajectory. ProMP can reconstruct the gait trajectory using gait key points learned from normal gait,
thereby reducing reconstruction errors. This method meets the requirement that rehabilitation training
gait should be similar to, yet different from, normal gait. The reference curves generated for various
gait speeds reveal that, for the same patient, the gait curves exhibit high similarity. With different gait
speeds, the most noticeable difference lies in the variation of the peak value. For the hip joint, besides
the change in peak size, there is an adjustment of the starting and ending values. Therefore, based
on these results, it can be inferred that rehabilitation practitioners, for the same patient, can adjust
rehabilitation strategies by modifying peak values, as well as the starting and ending values, of the gait
curves.

5 Conclusion

This study aims to offer personalized gait training reconstruction trajectories for rehabilitating
hemiplegic patients. The RFA algorithm is employed in this article to predict the patient’s gait key
point angles and choose the reference curve from the normal gait database based on gait speed.
A probabilistic trajectory model was established via ProMP, facilitating the learning of normal gait
patterns and the reconstruction of the reference curve based on key points. Compared to RF-ProMP,
LSTM-ProMP, CNN-LSTM-ProMP, and GPPM algorithms, our method demonstrates superiority,
suggesting its applicability in personalized gait trajectory generation and offering potential support
and applications in the field of rehabilitation medicine.

However, there is still room for improvement in this study. Future work will consider introducing
more parameters such as leg length, crotch width, etc., and these improvements will further enhance
the performance of the algorithm and make it more applicable to the field of rehabilitation medicine.

Acknowledgement: The authors acknowledge and extend their appreciation to the Lower Limb
Rehabilitation Exoskeleton Research Team of Guizhou University for their support in this study.

Funding Statement: This study was supported by Guizhou Provincial Department of Science and
Technology (Guizhou Science and Technology Cooperation Support [2021] General 442), Guizhou
Provincial Department of Science and Technology (Guizhou Science and Technology Cooperation
Support [2023] General 179), Guizhou Provincial Department of Science and Technology (Guizhou
Science and Technology Cooperation Support [2023] General 096).

Author Contributions: Zhiqin He conceived of the presented idea. Chunhong Zeng and Kang Lu
developed the theory and performed the computations. Qinmu Wu verified the methods. All authors
reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The data that support the findings of this study are available from
the corresponding author, Zhiqin He, upon reasonable request.

Conflicts of Interest: The authors declare they have no conflicts of interest to report regarding the
present study.



CMC, 2024, vol.80, no.1 1455

References
[1] J. Li, C. R. Lan, P. Liang, M. Y. Zhong, X. L. Shi and Y. L. Lv, “Research on interactive force acquisition

and active-passive mode determination of rehabilitation robot,” Measurement, vol. 220, pp. 113340, 2023.
doi: 10.1016/j.measurement.2023.113340.

[2] D. H. Zhao, T. Q. Zhang, H. D. Liu, J. Y. Yang, and H. Yokoi, “Gait rehabilitation training robot: A
motion-intention recognition approach with safety and convenience,” Robot. Auton. Syst., vol. 158, pp.
104260, 2022. doi: 10.1016/j.robot.2022.104260.

[3] C. Mcdonald, C. Fingleton, S. Murphy, and O. Lennon, “Stroke survivor perceptions of using an
exoskeleton during acute gait rehabilitation,” Sci. Rep. vol. 12, pp. 1–9, 2022.

[4] S. H. Lee, J. Kim, B. Lim, H. J. Lee, and Y. H. Kim, “Exercise with a wearable hip-assist robot
improved physical function and walking efficiency in older adults,” Sci. Rep., vol. 13, pp. 7269, 2023. doi:
10.1038/s41598-023-32335-8.

[5] C. B. Zou, R. Huang, H. Cheng, and J. Qiu, “Learning gait models with varying walking speeds,” IEEE
Robot. Autom. Lett., vol. 6, no. 1, pp. 183–190, 2021. doi: 10.1109/LRA.2020.3006818.

[6] S. X. Ren et al., “Personalized gait trajectory generation based on anthropometric features using Random
Forest,” J. Ambient Intell. Hum. Comput., vol. 14, pp. 15597–15608, 2019.

[7] X. Y. Hu, F. Shen, Z. Zhao, X. D. Qu, and J. Ye, “An individualized gait pattern prediction model based
on the least absolute shrinkage and selection operator regression,” J. Biomech., vol. 112, pp. 110052, 2020.
doi: 10.1016/j.jbiomech.2020.110052.

[8] V. B. Semwal, R. Jain, P. Maheshwari, and S. Khatwani, “Gait reference trajectory generation at
different walking speeds using LSTM and CNN,” Multimed. Tools Appl., vol. 82, pp. 21, 2023. doi:
10.1007/s11042-023-14733-2.

[9] C. Q. Chen, L. Jiang, and H. Wang, “A gait prediction method for lower limb exoskeleton based on SAE
and LSTM,” (in Chinese), Comput. Eng. Appl., vol. 55, no. 12, pp. 110–116+154, 2019.

[10] B. Vidya and P. Sasikumar, “Parkinson’s disease diagnosis and stage prediction based on gait signal
analysis using EMD and CNN-LSTM network,” Eng. Appl. Artif. Intell., vol. 114, pp. 105099, 2022. doi:
10.1016/j.engappai.2022.105099.

[11] J. L. Ren, A. H. Wang, H. Y. Li, X. B. Yue, and L. Meng, “A transformer-based neural network for gait
prediction in lower limb exoskeleton robots using plantar force,” Sensors, vol. 23, pp. 14, 2023.

[12] Z. K. Zhou, B. H. Liang, G. W. Huang, B. Liu, J. J. Nong and L. H. Xie, “Individualized gait generation for
rehabilitation robots based on recurrent neural networks,” IEEE Trans. Neural Syst. Rehabil. Eng.: Publ.
IEEE Eng. Med. Biol. Soc., vol. 29, pp. 273–281, 2021. doi: 10.1109/TNSRE.7333.

[13] J. Hong, C. Chun, S. J. Kim, and F. C. Park, “Gaussian process trajectory learning and synthesis of
individualized gait motions ,” IEEE Trans. Neural Syst. Rehabil. Eng, Publ. IEEE Eng. Med. Biol. Soc.,
vol. 27, pp. 6, 2019.

[14] B. Koopman, E. H. H. V. Aeesldonk, and H. V. D. Kooij, “Speed-dependent reference joint tra-
jectory generation for robotic gait support,” J. Biomech., vol. 47, no. 6, pp. 1447–1458, 2014. doi:
10.1016/j.jbiomech.2014.01.037.

[15] Y. Yun, H. C. Kin, S. Y. Shin, J. Lee, A. D. Deshpande and C. Kim, “Statisticl method for prediction
of gait kinematics with gaussian process regression,” J. Biomech., vol. 47, no. 1, pp. 186–192, 2014. doi:
10.1016/j.jbiomech.2013.09.032.

[16] L. Luo et al., “Trajectory generation and control of a lower limb exoskeleton for gait assistance,” J. Intell.
Robot. Syst., vol. 106, pp. 3, 2022.

[17] V. U. Lev and V. K. Andrei, “Attention-based random forest and contamination model,” Neural Netw.,
Official J. Int. Neural Netw. Soc., vol. 154, pp. 346–359 2022.

[18] J. Q. Wang, Y. Z. Gao, D. M. Wu, and W. Dong, “Probabilistic movement primitive based motion learning
for a lower limb exoskeleton with black-box optimization,” Front. Inf. Technol. Electron. Eng., vol. 24, no.
1, pp. 104–116, 2023. doi: 10.1631/FITEE.2200065.

[19] Y. L. Huang, D. Xu, and M. Tan, “A review of imitative learning for robot motion trajectories,”J. Automat.,
vol. 48, no. 2, pp. 315–334, 2022.

https://doi.org/10.1016/j.measurement.2023.113340
https://doi.org/10.1016/j.robot.2022.104260
https://doi.org/10.1038/s41598-023-32335-8
https://doi.org/10.1109/LRA.2020.3006818
https://doi.org/10.1016/j.jbiomech.2020.110052
https://doi.org/10.1007/s11042-023-14733-2
https://doi.org/10.1016/j.engappai.2022.105099
https://doi.org/10.1109/TNSRE.7333
https://doi.org/10.1016/j.jbiomech.2014.01.037
https://doi.org/10.1016/j.jbiomech.2013.09.032
https://doi.org/10.1631/FITEE.2200065


1456 CMC, 2024, vol.80, no.1

[20] J. Q. Wang, D. M. Wu, Y. Z. Gao, and W. Dong, “Interaction learning control with movement primitives for
lower limb exoskeleton,” Front. Neurorobot., vol. 16, pp. 1086578, 2022. doi: 10.3389/fnbot.2022.1086578.

[21] Z. C. Yan, W. H. Wang, L. Sun, and X. B. Yu, “Probabilistic motion prediction and skill learning for
human-to-cobot dual-arm handover control,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 1, pp.
1192–1204, 2024. doi: 10.1109/TNNLS.2022.3182973.

[22] T. P. Luu, K. H. Low, X. D. Qu, H. B. Lim, and K. H. Hoon, “An individual-specific gait pattern prediction
model based on generalized regression neural networks,” Gait Posture, vol. 39, no. 1, pp. 443–448, 2014.
doi: 10.1016/j.gaitpost.2013.08.028.

https://doi.org/10.3389/fnbot.2022.1086578
https://doi.org/10.1109/TNNLS.2022.3182973
https://doi.org/10.1016/j.gaitpost.2013.08.028

	Personalized Lower Limb Gait Reconstruction Modeling Based on RFA-ProMP
	1 Introduction
	2 Methods
	3 Results
	4 Discussion
	5 Conclusion
	References


