
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.051530

ARTICLE

Cloud-Edge Collaborative Federated GAN Based Data Processing for
IoT-Empowered Multi-Flow Integrated Energy Aggregation Dispatch

Zhan Shi*

Electric Power Dispatching Control Center, Guangdong Power Grid Co., Ltd., Guangzhou, 510030, China

*Corresponding Author: Zhan Shi. Email: w_1234567892021@163.com

Received: 07 March 2024 Accepted: 27 May 2024 Published: 18 July 2024

ABSTRACT

The convergence of Internet of Things (IoT), 5G, and cloud collaboration offers tailored solutions to the rigorous
demands of multi-flow integrated energy aggregation dispatch data processing. While generative adversarial
networks (GANs) are instrumental in resource scheduling, their application in this domain is impeded by
challenges such as convergence speed, inferior optimality searching capability, and the inability to learn from
failed decision making feedbacks. Therefore, a cloud-edge collaborative federated GAN-based communication and
computing resource scheduling algorithm with long-term constraint violation sensitiveness is proposed to address
these challenges. The proposed algorithm facilitates real-time, energy-efficient data processing by optimizing
transmission power control, data migration, and computing resource allocation. It employs federated learning for
global parameter aggregation to enhance GAN parameter updating and dynamically adjusts GAN learning rates
and global aggregation weights based on energy consumption constraint violations. Simulation results indicate that
the proposed algorithm effectively reduces data processing latency, energy consumption, and convergence time.

KEYWORDS
IoT; federated learning; generative adversarial network; data processing; multi-flow integration; energy aggregation
dispatch

1 Introduction

The rapid growth of renewable energy sources such as distributed photovoltaics (PVs) and wind
power brings new challenges to the energy demand-supply balance due to their volatile, random, and
intermittent characteristics [1,2]. This spurs the development of novel energy dispatch services where
distributed PVs, electric vehicles, and adjustable loads are intelligently aggregated and dispatched
based on real-time processing of grid state data gathered by Internet of Things (IoT) devices [3,4].
Therefore, the influx of massive state data, the increasing randomness and volatility of energy
sources, as well as the rising complexity of energy dispatch services, present an urgent requirement
to integrate information flow, energy flow, and service flow [5]. However, the traditional cloud-based
paradigm is no longer suitable to meet the exponentially growing data processing demands of multi-
flow integration [6,7]. How to realize real-time and energy-efficient data processing for multi-flow
integrated energy aggregation dispatch remains an open issue.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.051530
https://www.techscience.com/doi/10.32604/cmc.2024.051530
mailto:w_1234567892021@163.com

974 CMC, 2024, vol.80, no.1

Edge computing can provide proximate data processing. It can be combined with cloud com-
puting in a complementary fashion to realize cloud-edge collaboration and support complex data
processing [8,9]. In addition, with the advancement of communication technologies such as power
line communication (PLC) and 5G, cloud-edge collaboration can further improve workload balance
via edge-edge migration and cloud-edge migration [10,11]. For example, data can be intelligently
migrated from a heavy-loaded edge server to a light-loaded edge server to reduce processing delay
and improve computing resource utilization efficiency [12,13]. The core of edge-cloud collaboration
for multi-flow integrated energy aggregation dispatch lies in resource scheduling optimization. Service
data migration, computing resource allocation, and transmission power control should be adaptively
optimized with time-varying channel states, electromagnetic interference, server workload, and service
requirements.

Generative adversarial network (GAN) is a deep learning model, which can enhance the training
process by min-max zero-sum game of generator and discriminator networks to achieve Nash
equilibrium. In [14], Ali et al. employed GAN to obtain the resource scheduling strategy for high-
reliable low-delay communication in wireless networks. In [15], Rohit et al. adopted a GAN-assisted
network slicing resource orchestration algorithm in industrial IoT applications. In [16], Hua et al. pre-
sented a GAN-assisted distributed deep learning to solve the resource scheduling problem among
multiple network slices. In [17], Naeem et al. leveraged GAN-based deep distributional Q-network
for learning the action-value distribution for intelligent transmission scheduling to achieve ultra-
reliable low latency communication. The application of GAN in resource scheduling helps improve
model robustness, optimize scheduling strategies, and reduce experimental costs, thereby facilitating
the effective operation and management of power systems. However, when applying GAN to multi-
flow integrated energy aggregation dispatch, several technical challenges remain to be addressed.

First, the realization of multi-flow integrated energy aggregation dispatch is indispensable from
real-time and energy-efficient data processing. However, low processing energy consumption and
delay are paradoxical goals. Increasing transmission power can reduce transmission delay and the
total data processing delay, but reduces the future energy budget and increases the probability of
energy consumption constraint violation [5]. Second, traditional GAN suffers from slow convergence
speed and inferior optimality searching capability due to the lack of global foresight of workload
distribution. It is intuitive to explore cloud-edge collaboration to provide a priori knowledge of
the entire network for improving GAN without significantly increasing communication overheads.
Last but not least, traditional GAN cannot learn from failed decision making feedbacks such as
the violation occurrences of energy consumption constraint. How to augment GAN with failure
occurrence sensitiveness to further improve convergence and optimality searching performances is
a key challenge.

Federated learning adopts a semi-distributed learning framework. Compared to traditional
centralized learning, it reduces communication costs, enhances global performance, and speeds up
the model convergence. By integrating federated learning, IoT, and cloud-edge collaboration, part of
the model training can be done on edge servers, reducing communication overhead between cloud
and edge servers, and thus improving real-time performance [18]. Furthermore, federated learning
improves the global network insight performance of GAN in a distributed environment, boosting the
convergence rate. In [19], Xu et al. proposed a federated generative adversarial network (FGAN)-based
decentralized data synthesizing and data processing integration method, which is able to improve the
traffic classification performance. In [20], Eisuke et al. proposed an FGAN-based image generation
model training method in wireless ad hoc collaboration, which achieves better performance in cross-
node data learning and image generation. In [21], Sui et al. augmented the training dataset by

CMC, 2024, vol.80, no.1 975

leveraging the FGAN method and addressed the unlabeled data by means of an active learning
method. In [22], Li et al. proposed an alternative approach which learns a globally shared GAN model
by aggregating locally trained generators’ updates with maximum mean discrepancy to achieve the
highest inception score and produce high-quality instances. However, there are still some unresolved
issues in the literature mentioned above. Firstly, these works did not take into account the multi-
flow integration based on IoT and cloud-edge collaboration, and did not enable joint optimization of
energy consumption and delay. Secondly, edge-edge as well as edge-cloud migration are not considered,
making it difficult to achieve load balancing and reduce processing delay. Lastly, the insights provided
by failure events have not been effectively utilized, resulting in poor accuracy and convergence speed.

To deal with the aforementioned challenges, a cloud-edge collaborative FGAN-based data
processing algorithm is proposed for multi-flow integrated energy aggregation dispatch, with the
optimization objective of minimizing the long-term average weighted sum of total energy consumption
and total delay under long-term energy consumption constraint. First, we develop the system models
of cloud-edge collaborative migration, data processing, and total energy consumption and delay
for multi-flow integrated energy aggregation dispatch. Second, we formulate a communication and
computing resource scheduling optimization problem. Then, we utilize Lyapunov optimization to
perform problem decomposition. Finally, a cloud-edge collaborative FGAN-based communication
and computing resource scheduling algorithm with long-term constraint violation sensitiveness is pre-
sented, which effectively exploits global environment information to optimize the cloud-edge resource
scheduling strategy, and achieves a joint guarantee of transmission delay and energy consumption.

The main innovations are introduced as follows:

• Real-time and energy-efficient data processing for multi-flow integrated energy aggregation
dispatch: We formulate a weighted sum of total energy consumption and delay minimization
problem for real-time and energy-efficient data processing, where the weight factor is utilized
to balance the energy consumption and delay. In addition, the energy deficit virtual queue is
incorporated into the optimization objective through problem decomposition, which enforces
low-energy consumption resource scheduling optimization.

• Cloud-edge collaborative FGAN-based resource scheduling algorithm: A cloud-edge collabora-
tion FGAN-based communication and computing resource scheduling algorithm is proposed.
The edge-edge and edge-cloud data migration are considered to reduce processing delay. In
addition, the cloud and edge servers cooperate to perform network training and parameter
interaction to jointly optimize communication resource scheduling, such as transmission power,
as well as computing resource scheduling, including data migration and computing resource
allocation.

• Improved convergence and optimality for FGAN with constraint violation sensitiveness: We
integrate federated learning with GAN to leverage global insight for improving convergence
and optimality performance of resource scheduling in multi-flow integrated energy aggregation
dispatch data processing. In addition, the number of constraint violation occurrences is utilized
for dynamic adjustment of the learning rate and network parameter weight to achieve constraint
violation sensitiveness and improve accuracy and convergence speed.

The remaining part is arranged as shown below. Section 2 presents the system model. Section 3
expatiates problem formulation and decomposition. The cloud-edge collaborative FGAN-based
resource scheduling algorithm is proposed in Section 4. Sections 5 and 6 give the simulation results
and conclusion.

976 CMC, 2024, vol.80, no.1

2 System Model

The multi-flow integrated energy aggregation dispatch framework based on cloud-edge collab-
oration is illustrated in Fig. 1, including four layers of device, edge, cloud, and application. There is
various electrical equipment in the device layer, including distributed PV, electric vehicle, charging pile,
and adjustable load. Numerous IoT devices are arranged to gather key equipment state data, which
are uploaded to the edge layer based on PLC. The edge layer deploys several edge servers that process
the data uploaded from devices within their coverage. To reduce data processing delay and improve
load balance, an edge server can also migrate its data to other neighbor servers or the cloud server
for processing via edge-edge migration or edge-cloud migration. The cloud layer consists of a cloud
server with large computing capacity but located far away from the device layer. Thus, edge-cloud
migration reduces processing delay at the cost of increased transmission delay. The application layer
operates novel services of PV dispatch, electric vehicle dispatch, load dispatch, and virtual power plant
dispatch based on the data processed by edge and cloud servers.

Figure 1: Multi-flow integrated energy aggregation dispatch framework based on cloud-edge collabo-
ration

There exist information, energy and service flows based on the interaction among device,
edge, cloud and application layers. Information flow contains the entire lifecycle of data collection,
transmission, processing. Energy flow represents the whole process of energy generation, transmission,
conversion, and utilization in energy aggregation dispatch of low-voltage distribution gird. Partic-
ularly, distributed PV generators, electric vehicles, loads, and energy storage units are intelligently
aggregated and scheduled to meet the demand-supply balance. Both information flow and energy flow
serve are the key pillars to realize the service flow of various applications including service registration,
approval, demand disclosure, service strategy development, and implementation.

Define the set of M edge servers as S = {s1, . . . , sm, . . . , sM}. The cloud server is represented
as sM+1. Each edge server manages N IoT devices, and the set of devices managed by sm is Dm ={
dm,1, . . . , dm,n, . . . , dm,N

}
. A time slot represents the total duration experienced by a data packet from

generation to processing. We consider a total of T time slots, i.e., T = {1, . . . , t, . . . , T}.

CMC, 2024, vol.80, no.1 977

Due to the time varying computing resources and workloads, edge servers are categorized into
two types, i.e., heavy-loaded servers and light-loaded servers. A heavy-loaded edge server with little
computing resources and overwhelming workloads will result in large processing delay. Therefore, it
is intuitive to avoid heavy-loaded edge servers by optimizing edge-edge and edge-cloud migrations.
Define xn,m,m′ (t) ∈ {0, 1} as the service migration indicator variable. xn,m,m′ (t) = 1 indicates that data
packet is migrated. Specifically, when xn,m,m′ (t) = 1 and m′ = m, it indicates that the data packet is
processed locally by the edge server sm. When xn,m,m′ (t) = 1, m′ �= m and s′

m ∈ S, it indicates that
the data packet is migrated from sm to edge server s′

m based on edge-edge migration. In addition, if
m′ = M + 1, it indicates that the packet is migrated from sm to the cloud server based on edge-cloud
migration.

2.1 Cloud-Edge Collaborative Migration Model

2.1.1 Device-Edge Data Transmission Model

At each time slot, IoT device uploads the collected data to edge layer through PLC. In slot t, the
transmission delay from dm,n to sm can be expressed as

τ up
n,m (t) = an,m (t)

Rup
n,m (t)

, (1)

where an,m (t) denotes the collected data size. Rup
n,m (t) is the transmission rate from dm,n to sm, which is

calculated as

Rup
n,m (t) = Bup

n,m (t) log2

(
1 + Ptran

n,m (t) gn,m (t)

δ2 + en,m (t)

)
(2)

em,n (t) is the electromagnetic interference (EMI) power. gm,n (t) and δ2 are the channel gain, white
noise power. Ptran

n,m (t) is the device-edge transmission power. Bup
n,m (t) is the device-edge transmission

bandwidth. Ptran
n,m (t) is discretized into K levels, i.e.,

Ptran
n,m (t) ∈ P tran =

{
Ptran

n,m,min, . . . , Ptran
n,m,min + (k − 1)

(
Ptran

n,m,max − Ptran
n,m,min

)
K − 1

, . . . , Ptran
n,m,max

}
, (3)

where Ptran
n,m,min (t) and Ptran

n,m,max (t) are the minimum and maximum transmission power of dm,n, respectively.

To intuitively illustrate the effect of EMI on PLC, the alpha-stable distribution is employed to
describe the EMI with distinct impulse characteristics [23]. Define W

(
eχqen,m(t)

)
as the eigenfunction of

em,n (t), whose expression is given by

W
(
eχqen,m(t)

) =
{

exp
(
χμn,mϕ − ξn,m |ϕ|an,m × (

1 − χβn,msgn (ϕ) tan αn,mπ

2

))
, αn,m �= 1

exp
(
χμn,mϕ − ξn,m |ϕ| − χβn,msgn (ϕ) ln |ϕ| 2

π

)
, αn,m = 1,

(4)

where αn,m, βn,m, ξn,m, and μn,m refer to the eigenfactor, skew parameter, scale parameter and position
parameter, respectively. χ and ϕ denote the quantization coefficients of the scale and position
parameters, respectively.

The transmission energy consumption of dm,n is calculated as

Eup
n,m (t) = τ up

n,m (t) Ptran
n,m (t). (5)

978 CMC, 2024, vol.80, no.1

2.1.2 Edge-Edge and Edge-Cloud Data Migration Models

The data packet is migrated to the edge server or cloud server based on 5G communications. The
edge-edge and edge-cloud data migration delays are calculated as

τ ee
n,m (t) =

∑
sm′ ∈S

xn,m,m′ (t) τ ee
m,m′ (t), m′ �= m, (6)

τ ec
n,m (t) = xn,m,m′ (t) τ ec

m,m′ (t), m′ = M + 1, (7)

where τ ee
m,m′ (t) and τ ec

m,m′ (t) are the data transmission delay between edge sever sm and s′
m as well as sm

and the cloud server.

The energy consumptions of edge-edge and edge-cloud data migration are calculated as

Eee
n,m (t) =

∑
sn′ ∈S

xn,m,m′ (t) Eee
m,m′ (t), m′ �= m, (8)

Eec
n,m (t) = xn,m,m′ (t) Eec

m,m′ (t), m′ = M + 1. (9)

Eee
m,m′ (t) and Eec

m,m′ (t) are the transmission energy consumption between edge sever sm and s′
m as well

as sm and the cloud server, and Eee
m,m′ (t) < Eec

m,m′ (t).

2.2 Data Processing Model

2.2.1 Edge Data Processing

The edge data processing delay of data from device dm,n at edge server sm is calculated as

τ pro
n,m (t) =

∑
sm′ ∈S

xn,m,m′ (t)
an,m (t) γn,m (t)

χ ee
n,m,m′ (t)

, (10)

where γn,m (t) is the computation complexity of processing single bit data of dm,n. When m′ = m, χ ee
n,m,m′ (t)

indicates the computing resources allocated by sm and the data of device dm,n are processed locally. When
m′ �= m, the data are migrated from sm to s′

m and processed remotely. χ ee
n,m,m′ (t) indicates the computing

resources allocated by s′
m for dm,n.

The edge data processing energy consumption is given by

Epro
n,m (t) =

∑
sm′ ∈S

xn,m,m′ (t) ee
n,man,m (t) γn,m (t)

(
χ ee

n,m,m′ (t)
)2

, (11)

where ee
n,m is the energy consumption coefficient of edge server.

2.2.2 Cloud Data Processing

If edge-cloud migration is implemented, the cloud data processing delay is given by

τ proc
n,m (t) = xn,m,m′ (t)

αn,m (t) γn,m (t)
χ ec

n,m,m′ (t)
, m′ = M + 1, (12)

where χ ec
n,m,m′ (t) is the computing resources allocated by the cloud server for dm,n.

The cloud data processing energy consumption is calculated as

Eproc
n,m (t) = xn,m,m′ (t) ec

n,man,m (t) γn,m (t)
(
χ ec

n,m,m′ (t)
)2

, m′ = M + 1, (13)

where ec
n,m is the energy consumption coefficient of cloud server.

CMC, 2024, vol.80, no.1 979

2.3 Total Energy Consumption and Delay Model

The total delay of the cloud-edge collaborative processing is calculated by summing transmission
delay, edge-edge migration delay, edge processing delay, edge-cloud migration delay, and cloud
processing delay, i.e.,

τ tot
n,m (t) = τ up

n,m (t) + τ ee
n,m (t) + τ pro

n,m (t) + τ ec
n,m (t) + τ proc

n,m (t). (14)

The total energy consumption is calculated by summing transmission energy consumption, edge-
edge migration energy consumption, edge processing energy consumption, edge-cloud migration
energy consumption, and cloud processing energy consumption, i.e.,

Etot
n,m (t) = Eup

n,m (t) + Eee
n,m (t) + Epro

n,m (t) + Eec
n,m (t) + Eproc

n,m (t). (15)

3 Problem Formulation and Decomposition

To promote low-latency and energy-efficient data processing for multi-flow integrated energy
aggregation dispatch, the objective is minimizing the long-term average weighted sum of total energy
consumption and delay of data processing of all the devices over T slots. The edge-side service data
migration selection, computing resource allocation, and device-side transmission power control are
jointly optimized under long-term energy consumption constraint. Define the set of optimization
variables as Y (t) = {

xn,m,m′ (t), Ptran
n,m (t), χ ee

n,m,m′ (t)
}
. The problem is formulated as

P1: min
Y(t)

T∑
t=1

M∑
m=1

N∑
n=1

(
τ tot

n,m (t) + αEtot
n,m (t)

)
s.t.C1 :

M+1∑
m′=1

xn,m,m′ (t) = 1, ∀dm,n (t) ∈ Dm, ∀t ∈ T ,

C2 : Ptran
n,m (t) ∈ P tran, ∀dm,n ∈ Dm, ∀t ∈ T ,

C3 :
N∑

n=1

M∑
m=1

χ ee
n,m,m′ (t) ≤ χm′ ,max (t), ∀sm′ ∈ S, ∀t ∈ T ,

C4 :
T∑

t=1

Etot
n,m (t) ≤ En,m,max, ∀dm,n ∈ Dm.

(16)

α is the weight of total energy consumption. C1 is the constraint of service data migration
selection, which indicates that data packet can only be processed by one edge server or the cloud
server. C2 defines the transmission power constraint. C3 is the available computing resource constraint
of edge server, which denotes that the total resources allocated by edge server should not exceed
the maximum available amount of its computing resources χm′ ,max (t). C4 is the long-term energy
consumption constraint, indicating that the total energy consumption over T slots should not exceed
the threshold En,m,max to promote energy-efficient data processing.

It is hard to settle P1 in polynomial time in view of the coupling between long-term energy
consumption constraint with slot-based optimization. Specifically, due to the lack of future foresight
information, the policy aimed to minimize the weighted sum per slot may not necessarily guarantee
long-term constraint. For example, utilizing too much energy to reduce delay in the current slot results
in less energy budget in the future, causing a larger possibility of long-term constraint violation. To
develop a tractable solution, we decompose the coupling among slots based on virtual queue theory
[24]. Specifically, virtual queuing theory is an effective tool for decoupling the original problem into
independently solved subproblems. It turns the long-term energy constraint problem into the queue
stability problem. In essence, the input to the virtual queue is the available energy and its output is

980 CMC, 2024, vol.80, no.1

the consumed energy. The queue backlog denotes the energy deficit or surplus for each time slot. The
time-averaged values of the queue inputs and queue outputs converge to two finite constants, i.e., aav

and bav. The queue backlog is rate-stable if and only if aav ≤ bav. If aav > bav, the queue backlog is
equal to aav minus bav. Therefore, the queue backlog does not tend to infinity, which can guarantee the
long-term constraints. Define the energy deficit virtual queue corresponding to IoT device dm,n as

Hn,m (t + 1) = max
{

Hn,m (t) + Etot
n,m (t) − En,m,max

T

}
. (17)

Adopting Lyapunov optimization [25], P1 is decomposed into a bunch of optimization problems
per slot, i.e.,

P2: min
Y(t)

M∑
m=1

N∑
n=1

[
V

(
τ tot

n,m (t) + αEtot
n,m (t)

) + Hn,m (t) Etot
n,m (t)

]
s.t.C1 :

M+1∑
m′=1

xn,m,m′ (t) = 1, ∀dm,n (t) ∈ Dm, ∀t ∈ T ,

C2 : Ptran
n,m (t) ∈ P tran, ∀dm,n ∈ Dm, ∀t ∈ T ,

C3 :
N∑

n=1

M∑
m=1

χ ee
n,m,m′ (t) ≤ χm′ ,max (t), ∀sm′ ∈ S, ∀t ∈ T ,

C ′
4 : Hn,m (t) is mean rate stable, ∀dm,n ∈ Dm,

(18)

where V is the weight coefficient to characterize the trade-off between the optimization objective and
the stability of the queue. C ′

4 indicates the queue stability constraint of Hn,m (t).

4 Cloud-Edge Collaborative FGAN-Based Communication and Computing Resource Scheduling Algo-
rithm for Multi-Flow Integrated Energy Aggregation Dispatch

To address the decomposed problem P2, we construct Markov decision processes (MDPs),
and propose the cloud-edge collaborative FGAN-based communication and computing resource
scheduling algorithm for multi-flow integrated energy aggregation dispatch. The proposed algorithm
integrates federated learning with GAN to leverage global insights to improve the convergence
and optimization performance of resource scheduling in multi-flow integrated energy aggregation
dispatch data processing. In addition, the proposed algorithm utilizes the number of constraint
violation occurrences to dynamically adjust the learning rate and network parameter weights to
achieve constraint violation sensitiveness and improve accuracy and convergence speed. Compared
to deep convolutional GAN (DCGAN), wasserstein GAN (WGAN) and progressive growing of
GAN (PGGAN), FGAN reduces the risk of data leakage and reduces communication overhead by
performing local model training and transmitting only local model parameters to the cloud server.

4.1 MDP

Firstly, we model the formulated problem as MDPs in the following:

State: In slot t, the state space of edge server sm includes the size and computation complexity of
device packet data, as well as energy deficit virtual queue backlog, i.e.,

Om (t) = {
an,m (t), Hn,m (t), γn,m (t), |dm,n ∈ Dm

}
. (19)

Action: In slot t, the action space incorporates optimization variables of service data migration,
transmission power control, and computing resource allocation. Specially, the edge server computing

CMC, 2024, vol.80, no.1 981

resource is divided into Q levels, i.e., χ ee
n,m,m′ (t) ∈ {

χ ee
m′ ,1, . . . , χ ee

m′ ,q′ , χ ee
m′ ,Q

}
, where χ ee

m′ ,1 and χ ee
m′ ,Q represent

the minimum and maximum computing resources. χ ee
m′ ,q = (q − 1)

(
χ ee

m′ ,Q − χ ee
m′ ,1

)
Q − 1

is the q-th level of

computing resources. The action space is given by

Am (t) = {
xm (t), ptran

m (t), Xee
m (t)

}
, (20)

where xm (t) = {
xn,m,m′ (t) |dm,n (t) ∈ Dm (t)

}
, ptran

m (t) = {
Ptran

n,m (t) |dm,n ∈ Dm

}
and Xee

m (t) ={
χ ee

n,m,m′ (t) |dm,n ∈ Dm

}
.

Reward function: The reward function is designed as the negative optimization objective of problem
P2, i.e.,

Πm (t) = −
N∑

n=1

V
(
τ tot

n,m (t) + αEtot
n,m (t)

) +
N∑

n=1

Hn,m (t) Etot
n,m (t). (21)

4.2 Coud-Edge Collaborative FGAN with Long-Term Constraint Violation Sensitiveness

Traditional GAN algorithms show slow convergence and inferior optimality without global
knowledge. To address this issue, we augment traditional GAN with the federated learning framework
and develop a novel cloud-edge collaborative FGAN algorithm with long-term constraint violation
sensitiveness, the framework of which is shown in Fig. 2. The proposed algorithm provides edge servers
with insights of entire network based on cloud-empowered global aggregation. This significantly
improves the global optimality searching capability of traditional GAN and avoids falling into local
optimal dilemmas. Each edge server maintains an actor-critic based GAN generator and a GAN
discriminator. In the GAN generator, the actor network is used to observe states and learn scheduling
policies with policy gradients, and the critic network learns the state value function to assist in policy
update. The training purpose of GAN generator is to improve its capability of generating the resource
scheduling strategy and to confuse GAN discriminator in a best-effort way. The GAN discriminator
outputs the evaluation results and guides the update of the GAN generator according to the state-
action pairs of the GAN generator. The training purpose of GAN discriminator is to improve its
ability to distinguish the expert policy from the resource scheduling strategy generated by GAN
generator. Thus, the edge server continuously optimizes the relationship between GAN generator
and GAN discriminator through mutual gaming. At the end of each slot, each server transmits the
GAN model parameters to the cloud server, which aggregates the parameters and distributes them
to edge servers to guide the learning of the optimal scheduling decision under global information.
The proposed algorithm improves the accuracy of the traditional reinforcement learning actor-critic
structure for policy generation by employing a GAN network. Compared to deep Q-network (DQN),
deep actor-critic (DAC) and deep deterministic policy gradient (DDPG), the proposed algorithm
combines federated learning, which not only provides the necessary global information for GAN
to accelerate its convergence, but also enables model training on various distributed endpoints, thus
greatly reducing the cost of data transmission in data centers. Meanwhile, the proposed algorithm
solves the problem that DQN, DAC and DDPG are not applicable to distributed scenarios, such
as low-voltage distribution networks, and proves its effectiveness in dealing with distributed training
scenarios.

982 CMC, 2024, vol.80, no.1

Figure 2: Framework of cloud-edge collaborative FGAN with long-term constraint violation sensi-
tiveness

4.2.1 Actor-Critic Based GAN Generator

For the GAN generator of each edge server, the input and output of the actor network are the state
space Om (t) and the strategy πθ ,m (t), i.e., the probability distribution of action under input Om (t). The
edge server executes the action with the maximum probability and obtain reward Πm (t). Then, the
edge server transfers to the next state space Om (t + 1). The output πθ ,m (t) is utilized to update actor
network parameters through gradient descent as

θ a
m (t + 1) = θ a

m (t) − λ∇ log πθ ,m (t) ∂ (Om (t), Am (t)). (22)

θ a
m (t) is the parameters of the actor network. ∇ (·) is the gradient function and λ is the learning rate.

The policies generated by the actor network are evaluated by the critic network, the input of which
is the states Om (t) and Om (t + 1). The output is the value functions Vm (Om (t)) and Vm (Om (t + 1)),
which measure the expected return of Om (t) and Om (t + 1) when following the current strategy.
Temporal difference error (TD-error) is adopted to evaluate the deviation between the expected return
and actual reward, which is calculated as

∂ (Om (t), Am (t)) = Πm (t) + γ Vm (Om (t + 1)) − Vm (Om (t)), (23)

where γ is the decay factor to adjust the degree of reference to future decisions. Then, update the critic
network parameter ωc

m (t) as

ωc
m (t + 1) = ωc

m (t) − βm (t) ∇E [∂ (Om (t), Am (t))]2 . (24)

E [·] represents the expectation. βm (t) represents the learning rate, which adjusts the updating
amplitude of parameters. A larger learning rate indicates a larger updating amplitude of ωc

m (t). To fur-
ther improve parameter updating accuracy and convergence speed, we develop a dynamic adjustment
method of learning rate, where βm (t) is adjusted in accordance with constraint violation occurrences.

CMC, 2024, vol.80, no.1 983

Define I [·] as the indicator function. When Eup
n,m (t) >

En,m,max

T
, I

[
Eup

n,m (t) >
En,m,max

T

]
= 1, it represents

that the long-term energy consumption constraint is violated. Otherwise, I
[

Eup
n,m (t) >

En,m,max

T

]
= 0.

Therefore, βm (t) is dynamically adjusted as

βm (t) = ϕ

⎡
⎣κ + 1

2
(1 − κ)

(
1 + e

N∑
n=1

I

[
E

up
n,m(t)>

En,m,max
T

])−1
⎤
⎦ , (25)

where ϕ represents the initial learning rate, and κ is the learning rate adjustment factor. If none
constraint violation occurs, the learning rate remains unchanged as the initial value, i.e., βm (t) = ϕ. On
the other hand, if there exist numerous constraint violation occurrences, the learning rate is enlarged
to accelerate learning speed of the generator network, thereby realizing constraint violation sensitive
decision-making optimization.

4.2.2 GAN Discriminator

GAN discriminator takes the set of states Om (t) as input, and the expert strategy and the
action Am (t) are output by GAN generator. Define Dφm (Om (t), Am (t)) as the output of the GAN
discriminator. It represents the probability that the GAN discriminator distinguishes the policy
generated by the generator from the expert policy in the expert knowledge base. When the GAN
discriminator cannot effectively discriminate between the GAN generator policy and the expert policy,
the GAN network training is completed. Therefore, the objective function of GAN discriminator is
defined as

min
Gm

max
Dφm

V
(
Gm, Dφm

) = E
[
log

(
Dφm (Om (t), Am (t))

)]
πGm (t)

+E
[
log

(
1 − Dφm (Om (t), Am (t))

)]
πem (t)

.
(26)

Gm represents the generator network, Dφm represents the discriminator network, πGm (t) is the
generator’s generation policy, πem (t) is the expert strategy generated by the expert knowledge base,
and φm (t) denotes the discriminator network parameters.

The GAN discriminator updates the GAN generator parameters and its own network parameters
based on the discrimination results. For the generator, its objective is to produce a policy that the
discriminator recognizes as an expert strategy, i.e., Dφm (Om (t), Am (t))πGm (t) tends to be 0. Therefore,
the loss function that measures the goodness of the GAN generator strategy is defined as

LGm (t) = E
[
log Dφm (Om (t), Am (t))

]
πGm (t)

. (27)

For the GAN discriminator, its objective is to distinguish between expert strategies and generated
strategies from the generator, i.e., Dφm (Om (t), Am (t))πGm (t) tends to be 1 and Dφm (Om (t), Am (t))πem (t)

approaches 0. Therefore, the loss function that measures the goodness of the GAN discriminator is
defined as

LDm (t) = −E
[
log Dφm (Om (t), Am (t))

]
πGm (t)

− E
[
log

(
1 − Dφm (Om (t), Am (t))

)]
πem (t)

. (28)

Traditional GAN algorithm adopts Jenson’s Shannon (JS) divergence as the discriminator loss
function. When there is no overlap between the GAN generator policy distribution and the expert
policy distribution, JS divergence will be constant, resulting in gradient disappearance and making

984 CMC, 2024, vol.80, no.1

the training difficult in the parameter update process. Thus, this paper builds upon traditional GAN
by incorporating the Wasserstein distance to evaluate the deviation between generated and expert
strategies. The Wasserstein distance is defined as

W
(
πGm (t), πem (t)

) = sup
‖fD‖L≤1

E
[
log Dφm (Om (t), Am (t))

]
πGm (t)

− E
[
log Dφm (Om (t), Am (t))

]
πcm (t)

, (29)

where ‖ fD ‖L≤ 1 denotes that the function fD = log(Dφm (Om (t), Am (t)) needs to follow 1-Lipschitz
continuity, and the upper bound of the absolute value of its derivative is 1. sup (·) denotes the solution
of the supremum, i.e., the minimum upper bound.

4.2.3 Federated Learning Enabled GAN Parameter Updating

Federated learning is a distributed learning method that trains global parameters by sharing
trained parameters among various edge servers instead of original dataset, which is introduced into
GAN in this paper. Define ωc (t), θ a (t), and φ (t) as the global GAN generator actor network
parameters, the global GAN generator critic network parameters, and the global GAN discriminator
network parameters in slot t, respectively. Similarly, define ωc

m (t), θ a
m (t), and φm (t) as the GAN

generator actor network parameters of sm, the GAN generator critic network parameters of sm, and
the GAN discriminator network parameters of sm in slot t, respectively. The cloud server distributes
parameters ωc (t), θ a (t), and φ (t) to various edge servers. Each edge server uses these parameters
to train its GAN parameters. The detailed procedures are shown in Algorithm 1, and are detailedly
described in the following:

Algorithm 1: Coud-edge Collaborative FGAN with Long-Term Constraint Violation Sensitiveness
Initialization:
1: Initialize an,m (t) = 0, Hn,m (t) = 0, ωc

m (t) = ωc (t), θ a
m (t) = θ a (t) and φm (t) = φ (t).

2: while W
(
πGm (t), πem (t)

)
> W do

3: Each sm ∈ S downloads global parameters ωc (t), θ a (t), and φ (t).
4: Each sm ∈ S takes state Om (t) as input of GAN generator actor network, and outputs the policy

πθ ,m (t).
5: Each sm ∈ S executes the action Am (t) based on policy πθ ,m (t) and obtains reward Πm (t).
6: Update Om (t) to Om (t + 1).
7: Update θ a

m (t) based on (22).
8: Each sm ∈ S takes Om (t) to Om (t + 1) as input of GAN generator critic network, and outputs

the value functions Vm (Om (t)) and Vm (Om (t + 1))

9: Calculate ∂ (Om (t), Am (t)) based on (23)
10: Update βm (t) based on (25).
11: Update ωc

m (t) based on (25).
12: Each sm ∈ S takes the set of states Om (t), the expert strategy, and the action Am (t) as input of

GAN discriminator, and outputs D (Om (t), Am (t)).
13: Update LGm (t), LDm (t), and W

(
πGm (t), πem (t)

)
based on (27)–(29).

14: Each sm ∈ S uploads GAN parameters ωc
m (t + 1), θ a

m (t + 1), and φm (t + 1) to cloud server.
15: Perform cloud server aggregation as (30).
16: t = t + 1.

Step 1: Each edge server uses the distributed global parameters ωc (t), θ a (t), and φ (t) to update
its GAN parameters based on (26) and (29).

CMC, 2024, vol.80, no.1 985

Step 2: After edge-side updating, each edge server uploads GAN parameters ωc
m (t + 1), θ a

m (t + 1),
and φm (t + 1) to the cloud server. Then, the cloud server performs aggregation to obtain the global
GAN parameters by collecting parameters from all edge servers, which is given by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ωc (t + 1) = 1∑M
m=1 ρm(t)

M∑
m=1

ρm (t) ωc
m (t + 1),

θ a (t + 1) = 1∑M
m=1 ρm(t)

M∑
m=1

ρm (t) θ a
m (t + 1),

φ (t + 1) = 1∑M
m=1 ρm(t)

M∑
m=1

ρm (t) φm (t + 1),

(30)

where ρm (t) represents the weight coefficients assigned to network parameters of different edge
servers. A larger weight ρm (t) indicates that the parameters of sm contribute more to global parameter
aggregation. To further improve the accuracy of global parameter aggregation, we design a dynamic
adjustment mechanism of weight related to the constraint violation occurrences. Similar to (25), the

indicator function I

[
Etot

n,m (t) >
En,m,max

T

]
is utilized to adjust ρm (t), which is given by

ρm (t) =
numE

max (t) −
N∑

n=1

I
[
Eup

n,m (t) >
En,m,max

T

]
numE

max (t) − numE
min (t)

(31)

where numE
max (t) and numE

min (t) represent the maximum and minimum numbers of energy consumption
constraint violations per time slot. If devices managed by sm occur less constraint violation, it means
that its network parameters are updated well. Its weight in global parameter aggregation needs to be
increased to improve the aggregation performance. On the contrary, if devices managed by sm exist
numerous constraint violation occurrences, its weight needs to be decreased.

Step 3: Repeat steps 1 and 2 until the GAN generator policy for each edge server is close to the
same as the expert policy, i.e., W

(
πGm (t), πem (t)

) ≤ Wmin, where Wmin is the preset training threshold.

4.3 Computation Complexity

The proposed algorithm is divided into GAN and federated learning enabled GAN parame-
ters updating. The computation complexity of the GAN generator is O (MN) and the computa-
tion complexity of the GAN discriminator is O (MN). Therefore, the computation complexity of
GAN is O (2MN). The computation complexity of the federated learning local model update is
O (K · MN), where K is the number of local updates. The computation complexity of federated
learning global model aggregation is O (M). Therefore, the computation complexity of federated
learning is O (K · MN)+O (M). The computation complexity of the proposed algorithm is 2O (MN)+
O (K · MN) + O (M).

5 Simulation Results

The effectiveness of the cloud-edge collaborative FGAN algorithm with long-term constraint
violation sensitiveness is verified through simulations. We consider a multi-flow integrated energy
aggregation dispatch scenario based on IEEE 33 bus [26], which is shown in Fig. 3. The scenario
consists of 25 devices, 5 edge servers and 1 cloud server. Other relevant parameters are specified
in Table 1 [22,27]. Three comparison algorithms are utilized. The federated deep actor-critic (DAC)

986 CMC, 2024, vol.80, no.1

based cloud-edge collaborative resource scheduling algorithm (FDAC) [28], the GAN based cloud-
edge collaborative resource scheduling algorithm (GAN) [29], and the DDPG based cloud-edge
collaborative resource scheduling algorithm (DDPGRS) [30] are adopted as comparison algorithms.
In FDAC, the edge server uses the traditional DAC algorithm to generate communication and com-
puting resource scheduling decisions, and the cloud server performs model aggregation and parameter
dissemination. In GAN, each edge server establishes an independent GAN to learn communication
and computing resource scheduling decisions, and the cloud only performs data processing rather
than global aggregation. Both FDAC and GAN do not take into account the long-term constraint of
energy consumption. In DDPGRS, each edge server connected to the central cloud server via a fiber
connection utilizes the actor part of DDPG to search the optimal data offloading strategy and energy
consumption control of the device. However, DDPGRS does not take into account the edge-edge
migration.

Figure 3: IEEE 33 bus model based on simulation scenario

Table 1: Simulation parameters

Parameter Value

T 200
M 6
δ2 −114 dBm
N 25
K 5
λ 0.99
α 0.2
Bup

n,m (t) 1 MHz

Ptran
n,m,min 0.1 W

(Continued)

CMC, 2024, vol.80, no.1 987

Table 1 (continued)

Parameter Value

Ptran
n,m,max 0.5 W

τ ec
m,m′ [0.15 0.25] s

τ ee
m,m′ [0.1 0.14] s

γn,m [7 × 106, 1.1 × 107] cycles/Mbit
an,m (t) [0.8, 1.2] Mbits
χm′ ,max 1.2 × 109 CPU cycles/s

Fig. 4 demonstrates the average weighted sum of total energy consumption and delay vs. time
slot. The proposed algorithm has the minimum weighted sum value and smaller fluctuations. When
t = 200, the proposed algorithm reduces the weighted sum by 33.24%, 46.74% and 23.47% compared
to FDAC, GAN and DDPGRS, respectively. The reason is that the proposed algorithm utilizes
federated learning to aggregate model parameters across edge servers, a strategy whose core advantage
lies in its ability to provide a global convergence point of information to guide the GANs to converge
more efficiently. In addition, the cloud and edge servers cooperate to perform network training and
parameter interaction to jointly optimize communication resource scheduling, such as transmission
power, as well as computing resource scheduling, including data migration and computing resource
allocation.

Figure 4: Average weighted sum of total energy consumption and delay vs. time slot

Fig. 5 demonstrates the average weighted sum of total energy consumption and delay for 50
simulations. Compared to the FDAC, GAN and DDPGRS, the proposed algorithm reduces the
median of the average weighted sum of total energy consumption and delay by 35.71%, 42.65%
and 26.95%, respectively. Meanwhile, the proposed algorithm has the smallest mean and variance
of the average weighted sum of total energy consumption and delay, indicating the reliability and
generalizability of the findings.

988 CMC, 2024, vol.80, no.1

Figure 5: Average weighted sum of total energy consumption and delay for 50 simulations

Fig. 6 shows the loss functions vs. time slot, respectively. The proposed algorithm has the fastest
convergence, the lowest loss function of generator, and the highest loss function of discriminator.
Compared to FDAC, GAN and DDPGRS, the loss function of generator achieved by the proposed
algorithm is decreased by 9.66%, 33.10%, and 12.37%. The rationale behind this is that the proposed
algorithm adopts the Wasserstein distance rather than the traditional JS divergence to calculate loss
function. During model training, the Wasserstein distance significantly improves the accuracy of the
model in capturing the details of the data distribution, which in turn effectively contributes to the
generalization performance of the model. When the Wasserstein distance is adopted as a loss function,
it motivates the generative model to produce outputs that are closer to the real data distribution.

Fig. 7 shows the energy consumption virtual queue backlogs of different algorithms. The red
line denotes the median. Compared to the FDAC, GAN and DDPGRS, the proposed algorithm
reduces the median of the energy consumption virtual deficit queue backlog by 49.90%, 62.55% and
34.64%, respectively. Moreover, the proposed algorithm decreases the virtual deficit queue backlog
deviation by 75.69%, 68.23% and 35.86%. The reason is that the proposed algorithm considers energy
consumption virtual deficit queues and applies them in the optimization objective, so as to optimize
the scheduling policy according to the urgency of tasks and real-time availability of resources, which
effectively reduces the service delay as well as the system energy consumption. In addition, the
algorithm considers the sensitivity to constraint violations when dynamically adjusting the learning
rate and global aggregation weights to minimize the occurrence of constraint violations.

Fig. 8 demonstrates the trade-off between the total energy consumption and the total delay under
different weight values of α. The total energy consumption denotes the sum of transmission energy
consumption, edge-edge migration energy consumption, edge processing energy consumption, edge-
cloud migration energy consumption, and cloud processing energy consumption for all devices across
a span of 200 time slots. From the figure, it is shown that as the weight of energy consumption increases
from 0.4 to 2, the total energy consumption is declined by 38.16%, and the total delay is increased by
19.82%. It indicates that as the weight factor increases, the proposed algorithm gradually pays more
attention to energy consumption reduction at the cost of increased delay. Therefore, the value of α

should be carefully determined in accordance with energy dispatch service requirements to enable a
well balance between energy consumption and delay.

CMC, 2024, vol.80, no.1 989

(a) Loss function of generator vs. time slot

(b) Loss function of discriminator vs. time slot

Figure 6: Loss functions vs. time slot

Figure 7: Energy consumption virtual queue backlogs of different algorithms

990 CMC, 2024, vol.80, no.1

Figure 8: Total energy consumption and total delay vs. the weight α

Fig. 9 shows delay composition and migration composition vs. edge server computing resources.
As the edge server computing resources increase from 3 × 1010 to 7 × 1010 CPU cycles/s, the proportion
of edge-side processing delay is reduced from 8.92% to 5.08%. Meanwhile, the proportions of both the
edge-edge migration and edge-cloud migration are reduced from 53.57% to 37.79%. This is because the
increase of edge server computing resources facilitates lower edge-side processing delay, and the data
from devices are more inclined to be processed locally by edge server rather than relying on edge-edge
migration and edge-cloud migration.

Figure 9: Delay composition and migration composition vs. edge server computing resources

Fig. 10 shows the delay composition and migration composition vs. data computation complexity.
As the data computation complexity increases from 7 × 106 to 11 × 106 cycles/Mbit, the local
edge server becomes heavy loaded, and the proportion of local processing delay is decreased by
57.22%. This enforces that more data are migrated to other light-loaded edge servers or the cloud
server whose computing resources are sufficient. Therefore, edge-edge migration proportion and edge-
cloud migration proportion are increased by 39.26% and 71.41%. From the figure, it is obvious
that the proposed algorithm demonstrates superior performance in improving workload balance
by dynamically adjusting the tradeoff among local processing, edge-edge migration and edge-cloud

CMC, 2024, vol.80, no.1 991

migration. In addition, the incorporation of federated learning provides global insight of the entire
network for each edge server to optimize its decision making and local parameter updating of GAN.

Figure 10: Delay composition and migration composition vs. data computation complexity

Table 2 shows the computation complexity of different algorithms. Although federated learning
introduces additional communication overhead, the computation complexity of the proposed algo-
rithm is still in the same order of magnitude as FDAC, GAN. The computation complexity of the
proposed algorithm is slightly higher than FDAC, GAN, and DDPGRS, but the weighted sum of
the proposed algorithms is reduced by 33.24%, 46.74%, and 23.47% compared to FDAC, GAN, and
DDPGRS, respectively.

Table 2: Comparison of the computation complexity

Algorithm Computation complexity (cycles/Mbit)

Proposed 9 × 106

FDAC 6 × 106

GAN 7 × 106

DDPG 13 × 106

6 Conclusion

This paper addresses the joint optimization challenge of communication and computing resource
scheduling for multi-flow integrated energy aggregation dispatch. The study introduces a cloud-edge
collaborative FGAN algorithm that is sensitive to long-term constraint violations to facilitate energy-
efficient data processing with reduced latency, even under stringent energy consumption constraints.
This method significantly enhances energy efficiency and response times, offering a robust solution for
the real-world implementation of multi-flow integrated energy aggregation dispatch systems. It also
presents innovative strategies for adapting to diverse computational resources and data complexities.
When benchmarked against FDAC, GAN and DDPGRS, the proposed FGAN algorithm achieves a
33.24%, 46.74% and 34.64% reduction in the average weighted sum of energy consumption and latency,
respectively, and lowers the average energy consumption virtual queue deficit backlogs by 49.90% and
62.55% and 35.86%. Simulation results further reveal its capability to dynamically adjust migrations

992 CMC, 2024, vol.80, no.1

between edge devices and from edge to cloud, in response to fluctuations in available computing
resources and data processing complexities, thereby ensuring workload balance.

However, the proposed algorithm still has some potential limitations. For instance, it does not
account for certain unexpected situations and possible attacks, posing risks of privacy breaches, which
may result in low scheduling accuracy. Smart contracts and blockchain technology enable data and
transactions to occur on decentralized networks, reducing the risk of single points of failure and
enhancing the reliability and security of the system. Future research efforts could combine smart
contracts with blockchain to improve security.

Acknowledgement: The author would like to thank the Electric Power Dispatching Control Center of
Guangdong Power Grid Co., Ltd. for supporting this work.

Funding Statement: This work was supported by China Southern Power Grid Technology Project
under Grant 03600KK52220019 (GDKJXM20220253).

Availability of Data and Materials: The data that support the findings of this study are available from
the corresponding author upon reasonable request.

Conflicts of Interest: The author declares that they have no conflicts of interest to report regarding the
present study.

References
[1] Y. Wu, V. K. N. Lau, D. H. K. Tsang, L. P. Qian, and L. Meng, “Optimal energy scheduling for residential

smart grid with centralized renewable energy source,” IEEE Syst. J., vol. 8, no. 2, pp. 562–576, Jun. 2014.
doi: 10.1109/JSYST.2013.2261001.

[2] Y. Liu, S. Xie, Q. Yang, and Y. Zhang, “Joint computation offloading and demand response management
in mobile edge network with renewable energy sources,” IEEE Trans. Vehicular Technol., vol. 69, no. 12, pp.
15720–15730, Dec. 2020. doi: 10.1109/TVT.2020.3033160.

[3] L. Lei, Y. Tan, G. Dahlenburg, W. Xiang, and K. Zheng, “Dynamic energy dispatch based on deep
reinforcement learning in IoT-driven smart isolated microgrids,” IEEE Internet Things J., vol. 8, no. 10,
pp. 7938–7953, May 2021. doi: 10.1109/JIOT.2020.3042007.

[4] J. Zhang, Q. Yan, X. Zhu, and K. Yu, “Smart industrial IoT empowered crowd sensing for safety monitoring
in coal mine,” Digit. Commun. Netw., vol. 9, no. 2, pp. 296–305, Apr. 2023. doi: 10.1016/j.dcan.2022.08.002.

[5] P. Srikantha and D. Kundur, “Intelligent signal processing and coordination for the adaptive smart grid:
An overview of data-driven grid management,” IEEE Signal Process. Mag., vol. 36, no. 3, pp. 82–102, May
2019. doi: 10.1109/MSP.2018.2877001.

[6] D. Gan, X. Ge, and Q. Li, “An optimal transport-based federated reinforcement learning approach for
resource allocation in cloud-edge collaborative IoT,” IEEE Internet Things J., vol. 11, no. 2, pp. 2407–2419,
Jan. 15, 2024. doi: 10.1109/JIOT.2023.3292368.

[7] Z. Zhou et al., “Blockchain-based secure and efficient secret image sharing with outsourcing com-
putation in wireless networks,” IEEE Trans. Wirel. Commun., vol. 23, no. 1, pp. 423–435, 2024. doi:
10.1109/TWC.2023.3278108.

[8] H. Liao et al., “Cloud-edge-device collaborative reliable and communication-efficient digital twin for low-
carbon electrical equipment management,” IEEE Trans. Ind. Inform., vol. 19, no. 2, pp. 1715–1724, Feb.
2023. doi: 10.1109/TII.2022.3194840.

[9] J. H. Syu, J. C. W. Lin, G. Srivastava, and K. Yu, “A comprehensive survey on artificial intelligence
empowered edge computing on consumer electronics,” IEEE Trans. Consum. Electron., vol. 69, no. 4, pp.
1023–1034, 2023. doi: 10.1109/TCE.2023.3318150.

https://doi.org/10.1109/JSYST.2013.2261001
https://doi.org/10.1109/TVT.2020.3033160
https://doi.org/10.1109/JIOT.2020.3042007
https://doi.org/10.1016/j.dcan.2022.08.002
https://doi.org/10.1109/MSP.2018.2877001
https://doi.org/10.1109/JIOT.2023.3292368
https://doi.org/10.1109/TWC.2023.3278108
https://doi.org/10.1109/TII.2022.3194840
https://doi.org/10.1109/TCE.2023.3318150

CMC, 2024, vol.80, no.1 993

[10] F. Fang and X. Wu, “A win-win mode: The complementary and coexistence of 5G networks
and edge computing,” IEEE Internet Things J., vol. 8, no. 6, pp. 3983–4003, Mar. 15, 2021. doi:
10.1109/JIOT.2020.3009821.

[11] Z. Yang et al., “Differentially private federated tensor completion for cloud-edge collaborative
AIoT data prediction,” IEEE Internet Things J., vol. 11, no. 1, pp. 256–267, Jan. 1, 2024. doi:
10.1109/JIOT.2023.3314460.

[12] F. Zeng, K. Zhang, L. Wu, and J. Wu, “Efficient caching in vehicular edge computing based on edge-
cloud collaboration,” IEEE Trans. Vehicular Technol., vol. 72, no. 2, pp. 2468–2481, Feb. 2023. doi:
10.1109/TVT.2022.3213130.

[13] A. T. Z. Kasgari, W. Saad, M. Mozaffari, and H. V. Poor, “Experienced deep reinforcement learning with
generative adversarial networks (GANs) for model-free ultra reliable low latency communication,” IEEE
Trans. Commun., vol. 69, no. 2, pp. 884–899, Feb. 2021. doi: 10.1109/TCOMM.2020.3031930.

[14] R. K. Gupta, S. Mahajan, and R. Misra, “Resource orchestration in network slicing using GAN-based
distributional deep Q-network for industrial applications,” J. Supercomput., vol. 79, no. 5, pp. 5109–5138,
Oct. 2022. doi: 10.1007/s11227-022-04867-9.

[15] Y. Hua, R. Li, Z. Zhao, H. Zhang, and X. Chen, “GAN-based deep distributional reinforcement
learning for resource management in network slicing,” in 2019 IEEE Global Communications Conference
(GLOBECOM), Waikoloa, HI, USA, 2019, pp. 1–6. doi: 10.1109/GLOBECOM38437.2019.9014217.

[16] F. Naeem, S. Seifollahi, Z. Zhou, and M. Tariq, “A generative adversarial network enabled deep distri-
butional reinforcement learning for transmission scheduling in internet of vehicles,” IEEE Trans. Intell.
Transp. Syst., vol. 22, no. 7, pp. 4550–4559, Jul. 2021. doi: 10.1109/TITS.2020.3033577.

[17] S. Zhang, Z. Yao, H. Liao, Z. Zhou, Y. Chen and Z. You, “Endogenous security-aware resource manage-
ment for digital twin and 6G edge intelligence integrated smart park,” China Commun., vol. 20, no. 2, pp.
46–60, Feb. 2023. doi: 10.23919/JCC.2023.02.004.

[18] C. Xu, R. Xia, Y. Xiao, Y. Li, G. Shi and K. C. Chen, “Federated traffic synthesizing and classification
using generative adversarial networks,” in ICC 2021-IEEE Int. Conf. Commun., Montreal, QC, Canada,
2021, pp. 1–6. doi: 10.1109/ICC42927.2021.9500866.

[19] E. Tomiyama, H. Esaki, and H. Ochiai, “WAFL-GAN: Wireless ad hoc federated learning for distributed
generative adversarial networks,” in 2023 15th Int. Conf. Knowl. Smart Technol. (KST), Phuket, Thailand,
2023, pp. 1–6. doi: 10.1109/KST57286.2023.10086811.

[20] H. Sui, X. Sun, J. Zhang, B. Chen, and W. Li, “Multi-level membership inference attacks in federated
learning based on active GAN,” Neural Comput. Appl., vol. 35, no. 23, pp. 17013–17027, Apr. 2023. doi:
10.1007/s00521-023-08593-y.

[21] W. Li, J. Chen, Z. Wang, Z. Shen, C. Ma and X. Cui, “IFL-GAN: Improved federated learning generative
adversarial network with maximum mean discrepancy model aggregation,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 34, no. 12, pp. 10502–10515, Dec. 2023. doi: 10.1109/TNNLS.2022.3167482.

[22] G. Laguna-Sanchez and M. Lopez-Guerrero, “On the use of alpha-stable distributions in noise mod-
eling for PLC,” IEEE Trans. Power Deliv., vol. 30, no. 4, pp. 1863–1870, Aug. 2015. doi: 10.1109/TP-
WRD.2015.2390134.

[23] Z. Zhou, Y. Guo, Y. He, X. Zhao, and W. M. Bazzi, “Access control and resource allocation for M2M
communications in industrial automation,” IEEE Trans. Ind. Inform., vol. 15, no. 5, pp. 3093–3103, May
2019. doi: 10.1109/TII.2019.2903100.

[24] M. Wasim and D. S. Naidu, “Lyapunov function construction using constrained least square optimization,”
in IECON, 2022–48th Annual Conference of the IEEE Industrial Electronics Society, Brussels, Belgium,
2022, pp. 1–5. doi: 10.1109/IECON49645.2022.9968442.

[25] J. Zhang, S. Guo, J. Guo, D. Zeng, J. Zhou and A. Y. Zomaya, “Towards data-independent knowledge
transfer in model-heterogeneous federated learning,” IEEE Trans. Comput., vol. 72, no. 10, pp. 2888–2901,
Oct. 2023. doi: 10.1109/TC.2023.3272801.

https://doi.org/10.1109/JIOT.2020.3009821
https://doi.org/10.1109/JIOT.2023.3314460
https://doi.org/10.1109/TVT.2022.3213130
https://doi.org/10.1109/TCOMM.2020.3031930
https://doi.org/10.1007/s11227-022-04867-9
https://doi.org/10.1109/GLOBECOM38437.2019.9014217
https://doi.org/10.1109/TITS.2020.3033577
https://doi.org/10.23919/JCC.2023.02.004
https://doi.org/10.1109/ICC42927.2021.9500866
https://doi.org/10.1109/KST57286.2023.10086811
https://doi.org/10.1007/s00521-023-08593-y
https://doi.org/10.1109/TNNLS.2022.3167482
https://doi.org/10.1109/TPWRD.2015.2390134
https://doi.org/10.1109/TII.2019.2903100
https://doi.org/10.1109/IECON49645.2022.9968442
https://doi.org/10.1109/TC.2023.3272801

994 CMC, 2024, vol.80, no.1

[26] J. Liu, P. Li, G. Wang, Y. Zha, J. Peng and G. Xu, “A multitasking electric power dispatch approach with
multi-objective multifactorial optimization algorithm,” IEEE Access, vol. 8, pp. 155902–155911, 2020. doi:
10.1109/ACCESS.2020.3018484.

[27] B. Kar, W. Yahya, Y. D. Lin, and A. Ali, “Offloading using traditional optimization and machine learning
in federated cloud-edge–fog systems: A survey,” IEEE Commun. Surv. Tut., vol. 25, no. 2, pp. 1199–1226,
Secondquarter 2023. doi: 10.1109/COMST.2023.3239579.

[28] Z. Su et al., “Secure and efficient federated learning for smart grid with edge-cloud collaboration,” IEEE
Trans. Ind. Inform., vol. 18, no. 2, pp. 1333–1344, Feb. 2022. doi: 10.1109/TII.2021.3095506.

[29] R. Yan, Y. Yuan, Z. Wang, G. Geng, and Q. Jiang, “Active distribution system synthesis via unbalanced
graph generative adversarial network,” IEEE Trans. Power Syst., vol. 38, no. 5, pp. 4293–4307, Sep. 2023.
doi: 10.1109/TPWRS.2022.3212029.

[30] H. Hu, D. Wu, F. Zhou, X. Zhu, R. Q. Hu and H. Zhu, “Intelligent resource allocation for edge-cloud
collaborative networks: A hybrid DDPG-D3QN approach,” IEEE Trans. Vehicular Technol., vol. 72, no. 8,
pp. 10696–10709, Aug. 2023. doi: 10.1109/TVT.2023.3253905.

https://doi.org/10.1109/ACCESS.2020.3018484
https://doi.org/10.1109/COMST.2023.3239579
https://doi.org/10.1109/TII.2021.3095506
https://doi.org/10.1109/TPWRS.2022.3212029
https://doi.org/10.1109/TVT.2023.3253905

	Cloud-Edge Collaborative Federated GAN Based Data Processing for IoT-Empowered Multi-Flow Integrated Energy Aggregation Dispatch
	1 Introduction
	2 System Model
	3 Problem Formulation and Decomposition
	4 Cloud-Edge Collaborative FGAN-Based Communication and Computing Resource Scheduling Algorithm for Multi-Flow Integrated Energy Aggregation Dispatch
	5 Simulation Results
	6 Conclusion
	References

