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ABSTRACT

This paper presents a novel multiclass system designed to detect pleural effusion and pulmonary edema on chest X-
ray images, addressing the critical need for early detection in healthcare. A new comprehensive dataset was formed
by combining 28,309 samples from the ChestX-ray14, PadChest, and CheXpert databases, with 10,287, 6022, and
12,000 samples representing Pleural Effusion, Pulmonary Edema, and Normal cases, respectively. Consequently,
the preprocessing step involves applying the Contrast Limited Adaptive Histogram Equalization (CLAHE) method
to boost the local contrast of the X-ray samples, then resizing the images to 380 × 380 dimensions, followed by using
the data augmentation technique. The classification task employs a deep learning model based on the EfficientNet-
V1-B4 architecture and is trained using the AdamW optimizer. The proposed multiclass system achieved an
accuracy (ACC) of 98.3%, recall of 98.3%, precision of 98.7%, and F1-score of 98.7%. Moreover, the robustness of the
model was revealed by the Receiver Operating Characteristic (ROC) analysis, which demonstrated an Area Under
the Curve (AUC) of 1.00 for edema and normal cases and 0.99 for effusion. The experimental results demonstrate
the superiority of the proposed multi-class system, which has the potential to assist clinicians in timely and accurate
diagnosis, leading to improved patient outcomes. Notably, ablation-CAM visualization at the last convolutional
layer portrayed further enhanced diagnostic capabilities with heat maps on X-ray images, which will aid clinicians
in interpreting and localizing abnormalities more effectively.
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1 Introduction

Detecting pulmonary edema and pleural effusion using chest X-rays is crucial for the diagnosis
of diseases [1,2]. Pulmonary edema occurs due to fluid buildup in the lungs’ alveoli [3]. Conversely,
pleural effusion is a disorder indicated by the abnormal fluid buildup in the membranes surrounding
the lungs [4]. Fig. 1a depicts pulmonary edema [5] and Fig. 1b shows pleural effusion [6].
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Figure 1: (a) Pulmonary edema (Reprinted from reference [5]); (b) Pleural effusion (Reprinted from
reference [6])

In this context, it is crucial to classify whether the fluid is located inside the lung tissue and air
sacs (pulmonary edema) or within the pleural space (pleural effusion) [7,8]. Therefore, diagnostic
imaging techniques, such as X-rays, are paramount in identifying the presence and extent of these
medical conditions, enabling healthcare practitioners to make timely and precise diagnoses [9]. Overall,
the complexity in detecting pulmonary edema and pleural effusion underscores the need for a
multidisciplinary approach involving clinicians, radiologists, and other specialists to ensure accurate
diagnosis and appropriate management.

Additionally, the distinction between pulmonary edema and pleural effusion using chest X-rays
will lead to identification the underlying causes of fluid accumulation in the chest. It will also help
medical professionals suggest the appropriate management of these disorders and an appropriate
treatment approach. For instance, detection of pulmonary edema might indicate congestive heart
failure or pneumonia, necessitating specific therapeutic interventions [10]. Conversely, the detection of
pleural effusion would require different treatment strategies involving drainage through thoracentesis
and chest tube [11].

Likewise, accurately classifying the location of the fluid helps in determining the precise underly-
ing causes, ensuring that patients receive the most effective and tailored care to improve their overall
health outcomes [8,12].

Deep learning techniques have demonstrated remarkable advancements in the domain of medical
image analysis, particularly in disease detection and diagnosis [13–15]. Deep Convolutional Neural
Networks (CNNs) have proven exceptional capabilities in extracting intricate features from com-
plex images, making them an ideal candidate for the detection of pulmonary edema and pleural
effusion [16–18].

EfficientNet is a family of CNNs that excel at achieving high accuracy and is computationally
efficient [19]. EfficientNet was developed to scale the depth, width, and resolution of the model
using a compound coefficient to optimize performance [20]. This approach has led to state-of-the-
art results on the task of image classification for various applications while minimizing computational
demands [21]. In particular, the EfficientNet-V1-B4 architecture is known for its exceptional efficiency
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in terms of the model size and computational resources. It achieves superior performance with fewer
parameters compared to traditional architectures, making it well-suited for resource-constrained
environments commonly encountered in medical settings. This efficiency translates to faster inference
times and reduced computational costs, facilitating the real-time or near-real-time analysis of medical
images for timely diagnosis and intervention. Coupled with the AdamW optimizer, which integrates
the advantages of the Adam optimizer with weight decay techniques, detection algorithms can achieve
superior convergence rates and model generalization. AdamW is an extension of the Adam optimizer
commonly used for training neural networks [22]. It directly incorporates weight decay into its
formulation improving generalization by preventing excessive weight growth. This modification helps
control model complexity and enhances training stability.

Accordingly, by introducing EfficientNet-V1-B4 Architecture and AdamW in medical imaging
analysis, healthcare professionals can expect improved diagnostic accuracy, faster processing times,
and enhanced decision-making capabilities, ultimately leading to better patient outcomes and more
effective treatment plans.

The contributions of this study are as follows:

1. A multi-class medical diagnosis system was developed to describe the accumulation of fluid
in the lungs from perspective of image processing. Thus, the system categorizes three patterns
using chest X-ray images including pleural effusion, pulmonary edema, and normal cases.

2. The utilization of the EfficientNet-V1-B4 architecture associated with the AdamW optimizer
in the context of pulmonary edema and pleural effusion detection from chest X-ray images
represents a novel application and exploration of deep learning models for medical image
analysis.

3. The localization of pleural effusion and pulmonary edema diseases is accomplished by utilizing
the ablation-CAM technique and is graphically presented using heatmap data visualization.

By automating this classification process, medical professionals can save valuable time by achiev-
ing early diagnosis while ensuring more accurate diagnoses. The remainder of this paper is organized
as follows. The related work is presented in Section 2. Section 3 describes the research methodology.
The empirical results are analyzed and discussed in Section 4. The conclusions of this research and
future work are presented in Section 5.

2 Related Work

Fluid accumulation in the lungs is a life-threatening medical emergency that requires timely
diagnosis and intervention and is known as pulmonary edema. Traditional methods for detecting
pulmonary edema in medical imaging have limitations, leading to the demand for more accurate and
efficient approaches. The promising results of artificial intelligence in various medical fields, including
the detection of pulmonary edema, have encouraged the development of advanced methodologies.
One major challenge hindering the advancement of CNNs in medical image analysis is the necessity
of constructing ground-truth data based on specialists’ opinions.

Deep CNNs have been applied in research [23–27] to classify different types of radiographs, such
as X-rays, CT scans, and ultrasounds. CNNs are used to diagnose various diseases, such as pulmonary
edema, pulmonary effusion, pneumonia, COVID-19, and pneumothorax. Despite demonstrating
promise for radiographic interpretation, these early studies generally lacked the level of specificity
and granularity required for practical diagnostic utility.
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Based on the expansion of using Artificial Intelligence (AI) in detecting diseases, Wang et al. [28]
compared several deep learning techniques for diagnosing pulmonary edema and estimating the
severity of the case, and the dataset used was MIMIC-CXR for images and reports [29]. According to
previous studies [30,31], there are approximately 77% accuracy among radiologists and 59% accuracy
among ED physicians. Edema severity was classified in 3058 cases as mild, 1414 moderate cases, and
severe in 296 cases.

2.1 Related Studies on CNN-Based Detection of Pulmonary Edema

Serte et al. [18] studied pulmonary edema disease as a result of heart failure depending on chest
radiographs. Researchers constructed a dataset of 27,748 front-chest radiographs over nearly six years.
The collected images were in the range of 1.4–4.7 k in height and width with 80% training set,
10% validation, and a test group of 10%. Training was carried out in two stages (pipelines) to train
a branched CNN based on ResNet152v2 architecture. The goal is to cooperatively predict B-type
Natriuretic Peptide (BNP) or BNPP (BNP precursor) cases. With a preset learning rate of 1e-5 and a
patch size of 16, Adam’s optimizer was used to train all CNNs. The region of attention was determined
using a heatmap. Another factor that is considered is the blur sensitivity. Consequently, the trained
models attained an AUC of 0.801 for the detection of pulmonary edema.

In [32], a 2.5D CNN model was developed to detect multiple diseases, such as: atelectasis,
pneumonia, edema, and nodules. The study investigated 5000 CT images that contained 156 edema
cases, 225 pneumonia cases, and other cases. The research split the image set for each disease into
training, validation, and test sets. The model achieved accuracies of 0.963, 0.818, 0.878, and 0.784, for
edema, atelectasis, pneumonia, and nodule, respectively. Moreover, AUC of 0.940, 0.891, 0.869, and
0.784 were obtained for categorizing edema, atelectasis, pneumonia, and nodule diseases, respectively.

In [33], a 2.5D CNN model was developed to detect multiple diseases, that are: atelectasis,
pneumonia, edema, and nodules. The study investigated 5000 CT images that contained 156 edema
cases, 225 pneumonia cases, and other cases. The research split the image set for each disease into
training, validation, and test sets. As a result, the model achieved an accuracy of 0.963, 0.818,
0.878, and 0.784, for edema, atelectasis, pneumonia, and nodule, respectively. Moreover, The AUC
of 0.940, 0.891, 0.869, and 0.784 were attained for categorizing edema, atelectasis, pneumonia, and
nodule diseases, respectively. As shown in Table 1, a summary of previous studies on the detection of
pulmonary edema using CNN models from chest X-ray images is provided.

Table 1: Summary of previous studies on the detection of pulmonary edema using CNN models from
chest X-ray images

Study Architecture Performance

Serte et al. [18] ResNet152v2-CNN AUC = 0.801
Hayat [32] DesneNet-CNN AUC = 0.714
Geng et al. [33] 2.5D-CNN ACC = 0.963

AUC = 0.940

2.2 Related Studies on CNN-Based Detection of Pleural Effusion

Previous studies in the domain of pleural effusion detection have explored various approaches and
architectures to improve the accuracy and efficiency of diagnostic systems. With the aim of automating
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Lung Ultrasound (LUS) image evaluation for pleural effusion detection, Hammon et al. [30] employed
a deep-learning model that was constructed based on the Regularized Spatial Transformer Network
(Reg-STN) architecture to perform binary classification of pleural effusion in clinical LUS imaging.
The dataset, obtained from the Royal Melbourne Hospital, consisted of 623 videos containing 99,209
2D LUS images obtained from examinations of 70 patients using a phased array transducer. This
model was trained using weakly supervised and supervised methodologies utilizing a video-based
labeling approach, resulting in an accuracy of 91.1%, and a frame-based labeling approach, resulting in
an accuracy of 92.4%. Notably, the reference was proficient clinicians who assessed the interpretation
of images.

Researchers in [34] applied a deep learning model based on the ResNet18 architecture to the
chest radiography images. The model was applied to identify pleural effusion arising from three
types of respiratory disorders, namely tuberculosis, COVID-19, and pneumonia. Hence, the developed
system can detect these three diseases once they occur at an early stage before evolving into pleural
effusion. Three experiments were conducted for binary classification. Consequently, the performance
in terms of accuracy for early detection of pleural effusion disease from tuberculosis, COVID-
19, and pneumonia was 99%, 100%, and 75%, respectively. In contrast, a multiclass experiment
was applied, which included the following categories: tuberculosis, COVID-19, pleural effusion,
bacterial pneumonia, and viral pneumonia. Thus, the best result was obtained for bacterial pneumonia
detection, with an accuracy of 83% and an AUC of 81%. Furthermore, the multiclass system detected
pleural effusion with an accuracy of 82% and AUC of 77%.

In a study by Bar et al. [35], the identification of various pathologies, such as right pleural effusion,
from chest radiographs was investigated. Their analysis utilized a CNN trained on non-medical data,
achieving an AUC of 0.95. Lakhani et al. [36] explored deep-learning approaches for tuberculosis
detection on chest radiographs containing pleural effusion, miliary patterns, and cavitation, and
achieved an impressive AUC of 0.99. As shown in Table 2, a summary of previous studies on the
detection of pleural effusion using CNN models from chest X-ray images is provided.

Table 2: Summary of previous studies on the detection of pleural effusion using CNN models from
chest X-ray images

Study Architecture Performance

Serte et al. [34] ResNet18-CNN ACC = 0.82
AUC = 0.77

Bar et al. [35] CNN + classical features AUC = 0.95
Lakhani et al. [36] DCNNs (AlexNet and

GoogLeNet)
AUC = 0.99

3 Material and Methodology

As essential as it is in practice, this study developed an AI system to detect fluid buildup
in the lungs by categorizing three patterns using chest X-ray images including pleural effusion
disease, pulmonary edema disease, and normal cases as illustrated in Fig. 2. The proposed computer
vision-based medical classification system encompassed various stages including Data Preprocessing,
Build and Training Model (learning), and Model Output (testing). Fig. 2 illustrates the research
methodology. From this perspective, chest X-ray images will pass through a preprocessing stage before
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being fed into the training model. Furthermore, the output of the system includes class activation
mapping and the category to which each test image belongs.

Figure 2: The research methodology

3.1 Datasets

With the aim of conducting a classification task to reveal the presence or absence of pleural
effusion and pulmonary edema disorders in the lungs using X-ray images, a new dataset of 28,309
samples was formed by combining several public datasets, including ChestX-ray14 [37], PadChest
[38], and CheXpert [39]. The new dataset under consideration was distributed among three classes
as follows: approximately 10,287 samples depicting pleural effusion, about 6022 samples representing
pulmonary edema, and 12,000 samples exhibiting normal cases.

3.2 Data Preprocessing

During this stage, a stratified split of the medical image dataset was conducted, with 85% allocated
to the training set and 15% to the test set. Thus, the training and test sets are independent. This
stratification was aimed at maintaining a consistent distribution of classes across both the training
and test sets. Particularly, pixel normalization was excluded from the preprocessing steps, as empirical
evidence suggests its unnecessary approach in certain medical image classification tasks [40].

To achieve the computer vision classification goal, the image data should be handled properly
before reaching the input layer of the model. For the application at hand, a dedicated pipeline was
employed on the image data by conducting three sequential steps, as illustrated in Fig. 3. First,
enhancing the contrast of the chest X-ray images was enhanced using the CLAHE approach. Second,
all images were resized to 380 × 380 pixels. Lastly, multiple data augmentation techniques were
employed.

3.2.1 CLAHE Technique

The CLAHE technique has been used in various image processing applications because of its
capability to enhance image contrast by partitioning the image into small blocks and equalizing the
histogram of each block. This method also mitigates contrast amplification within each block, thus
minimizing noise amplification [41]. It serves to improve image contrast, facilitates better visibility and
interpretation, and is adept at enhancing image details [42]. Fig. 4a shows the original X-ray image
selected from the data under consideration. Conversely, Fig. 4b illustrates the enhanced X-ray image
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after employing the CLAHE technique, which demonstrates the contrast improvement compared to
the original X-ray image proving the effectiveness of applying CLAHE in rendering certain lung details
more discriminant.

Figure 3: Preprocessing steps

Figure 4: (a) The original X-ray image; (b) The enhanced X-ray image after employing CLAHE

3.2.2 Resize

Determining the image size for training CNN is important when considering the trade-offs
between accuracy, speed, and memory requirements [43]. Larger image sizes typically exhibt better
accuracy, but they also require more computation and memory [44]. Additionally, the benefits of using
larger images tend to diminish as the size increases [45].

CNNs frequently downsample the dimensions of an input image, resulting in an irregular final
size [46]. To avoid this, it is advisable to employ a square image size during the training phase [47].
In our approach, we resized all images to 380 × 380 pixels, maintaining the original aspect ratio and
implementing zero-padding as needed.
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3.2.3 Data Augmentation

To improve the performance of the deep learning model and promote its capacity for generaliza-
tion, a data-augmentation approach was employed. Data augmentation involves integrating subtly
modified versions of current data or generating synthetic data based on existing samples, thereby
expanding the effective dataset size. For this purpose, a total of six augmentation methods were
adopted, including: CutMix [48], MixUp [49], CenterCrop, RandomChannelShift [50], RandomGaus-
sianBlur [51], and Random Brightness [50] transformations during the training process, aiming to
improve the robustness of the model.

3.3 Build and Training Model

Attaining superior performance for image categorization necessitates not only creating a superb
architecture but also selecting an appropriate optimizer that can significantly minimize the loss func-
tion. Thus, this study presents a deep learning model that was constructed based on the EfficientNet-
V1-B4 architecture along with the AdamW optimizer that was utilized for training this model.

3.3.1 EfficientNet-V1-B4 Architecture

The EfficientNet-V1 architecture was introduced by Tan and Le in 2019 [20] in which a novel
compound scaling approach was proposed. In this view, the EfficientNet-V1 model uses R to
uniformly scale all the dimensions of the network including the width, depth, and resolution. Thus,
the scaling method of the model is mathematically described as follows [20]:

depth = αR,

width = βR, and (1)

resolution = γR

s.t. α.β2.γ2 ≈ 2

α ≥ 1, β ≥ 1, and γ ≥ 1

where the coefficients α, β, and γ are constant, and they are specified by a small grid search, whereas
the value of (R) is determined by the user depending on the available resources to scale the model. As
illustrated in Eq. (1), the Floating-Point Operations (FLOPs) of the ordinary convolution operation
are typically proportional to α.β2.γ2. Considering the restriction of α.β2.γ2 ≈ 2, such that for each
change in the value of R, the overall FLOPs roughly increase by 2R.

Therefore, it can be straightforward to increase the dimensions of the network by (R) if there is a
need to use 2R times more computational resources. Hence, utilizing the abovementioned compound
scaling strategy has an intuitive implication if there is a larger input image that requires additional
layers in the network to expand its receptive area and additional channels to obtain more fine-grained
patterns. Hence, scaling the network dimensions leads to a systematic increase in the performance of
the model.

Furthermore, there are eight variations of EfficientNet-V1, referred to as EfficientNet-V1-B0
through EfficientNet-V1-B7. This study employs EfficientNet-V1-B4. Fig. 5 depicts the details of
the EfficientNet-V1-B4 architecture considered in this study. The architecture of EfficientNet-V1-B4
is segmented into seven blocks, called Mobile Inverted Bottleneck Convolution (MBConv), which
are the elementary building blocks of EfficientNet-V1-B4, followed by a fully connected layer. For a
particular stage(s) within this architecture, the block appears as MBConvX×L, where the notation
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X = 1 and X = 6 indicate the block type signify the standard Swish activation function, and
(

L̂s

)

denotes the number of layers. The kernel size associated with the MBConvX block also appears under
the block type.

Figure 5: The EfficientNet-V1-B4 architecture

Lastly, the input resolution
(

Ĥs × Ŵs

)
, and the number of output channels

(
Ĉs

)
, is depicted as(

Ĥs × Ŵs × Ĉs

)
, respectively. For example, in the second stage of the architecture where (S = 2), the

MBConv1 × 2 notation indicates that the MBConv1 block is repeated twice (L = 2), the kernel size is
(k3 × 3), and the notation (190 × 190 × 24) implies the input resolution which is (190 × 190), and the
number of channels is (24).

In this study, the optimal performance was pursued by fine-tuning the pre-trained weights of
EfficientNet-V1-B4 using Noisy Student data. Subsequently, a fully connected layer with three neurons
was used to represent the class scores (i.e., the output layer).

Furthermore, the MBConvX blocks utilize the Swish activation function and squeeze-and-
excitation (SE) optimization which enables the efficient extraction of high-quality features, and
minimize computational complexity while maximizing accuracy. Additionally, MBConv’s lightweight
design extracts informative features from early stages, while SE dynamically refines them, resulting in
sharper detections and improved accuracy compared to traditional Convolutional Neural Networks.
Fig. 6a illustrates MBConv1, while Fig. 6b presents MBConv6, both representing distinct design
points in the EfficientNet-V1-B4 architecture. MBConv1 emphasizes early feature extraction with
minimal computational cost, making it particularly well-suited for the initial stages of the network.
By contrast, MBConv6 concentrates on advanced feature refinement, achieving heightened accuracy
although with a modest increase in complexity. The deliberate utilization of MBConvX variants in
this manner enables EfficientNet-V1-B4 to achieve a balance between efficiency and accuracy.

3.3.2 AdamW Optimizer

An AdamW optimizer was used to train the model. The AdamW optimizer is an extension of
the Adam optimizer with the addition of a weight decay regularization approach [22]. Furthermore,
weight decay serves as a method to mitigate overfitting by imposing penalties on substantial weights.
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Figure 6: The MBConv blocks in the EfficientNet-V1-B4 architecture. (a) MBConv1; (b) MBConv6

Accordingly, the Adam optimizer exhibited comparatively reduced efficiency in weight regular-
ization when compared to alternative optimizers, such as SGD with momentum. However, AdamW
disentangles the weight decay from the adaptive estimation of the first and second moments of the
gradients. This decoupling empowers AdamW to enhance the weight regularization more efficiently
without compromising the speed of convergence.

4 Model Outputs

In this section, the experimental settings, and results for the dataset under consideration are
illustrated. The performance of the classification model was evaluated based on complexity and dif-
ferent metrics including accuracy (A), precision (P), recall (R), and F1-score. Finally, Ablation-based
Class Activation Mapping (Ablation CAM) was employed to provide meaningful and interpretable
explanations of the results.

4.1 Experiments Setting

In this study, TPU 3-8 was utilized to train the network. Subsequently, the training and testing
phases occurred within the same environment, employing the Keras deep learning framework and
Python 3.8 as the programming language. Network training involved the utilization of the hyperpa-
rameters outlined in Table 3.

4.2 Computational Complexity

The computational complexity of a CNN is an important consideration for its practical deploy-
ment and can be analyzed along two dimensions which are spatial and temporal [52]. The spatial
complexity (SC) indicates the storage requirements (i.e., disk space) of a trained CNN model,
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including both its parameters and intermediate feature maps. The temporal complexity (TC) reflects
the computational cost, commonly measured in floating-point operations per second (FLOPS),
required for the CNN to make predictions. For the proposed CNN model evaluated in this study, we
obtained SC of 243 MB and TC of 4.51 GigaFLOPS. These values can be used to assess the resource
requirements and inference speed of a model in real-world applications.

Table 3: Hyperparameters

Parameter Value

Input size 380 × 380 × 3
Batch size 256
Learning rate 1e-4
Optimizer AdamW
Epochs 70
Loss function Categorical crossentropy

4.3 Classification Performance Evaluation

The performance evaluation of the proposed model on the test set relies on the utilization of a
confusion matrix. The accurate determination of this matrix requires knowledge of the true values
associated with the validation data. As illustrated in Fig. 7, the confusion matrix was implemented to
evaluate the performance of the model. In this view, multiple measures were computed including P, R,
A, and F-1, utilizing the predetermined methods described in previous research [53]. The formulations
for these evaluation measures are detailed in Eqs. (2) through (5).

P = TP
TP + FP

(2)

R = TP
TP + Fn

(3)

A = TP + TN
TP + TN + FP + FN

(4)

F1 = 2 · PR
P + R

(5)

Specifically, the TP represents True Positives, denoting correctly identified positive instances.
TN represents True Negatives, signifying correctly identified negative instances. FP represents False
Positives, indicating instances incorrectly identified as positives. FN represents False Negatives,
representing instances incorrectly identified as negatives.

The results of the calculation of the aforementioned matrices are presented in Table 4, which shows
that the developed system classifies pleural effusion, pulmonary edema, and normal patterns with a
high classification rate compared with previous studies as shown in Tables 1 and 2. According to this
viewpoint, the average achieved accuracy was approximately 0.983, the average accomplished precision
was approximately 0.987, the attained average recall value was roughly 0.983, and the average F-1 was
score approximately 0.987. These findings confirm that the classification system is precise and robust
in identifying pleural effusion and pulmonary edema disorders using X-ray images.
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Figure 7: The confusion matrix for chest X-ray images

Table 4: The classification report of our proposed approach to X-ray images

Classes Precision Recall F1-score Accuracy

Edema 0.99 0.98 0.98 0.98
Effusion 0.98 0.98 0.99 0.98
Normal 0.99 0.99 0.99 0.99
Average 0.987 0.983 0.987 0.983

Finally, we confirmed a comprehensive evaluation of the model’s performance across various
sensitivity and specificity thresholds. The ROC curve tool was used specifically to analyze three medical
classes: pulmonary edema, pleural effusion, and normal cases using the dataset of X-ray images
under consideration in this study, as represented in Fig. 8. The results revealed that the AUC was
1.00 for pulmonary edema and normal cases. Additionally, the AUC was 0.99 for pleural effusion
disease. These ROC evaluations confirmed the robustness of the developed categorization system that
differentiated between pulmonary edema, pleural effusion, and normal cases, thus providing valuable
insights into its diagnostic capabilities.

This work proves the effectiveness of the proposed neural network architecture combined with
the AdamW optimizer for the detection of Pulmonary Edema and Pleural Effusion diseases. The
results were compared with well-known classification architectures such as VGG19, DenseNet121,
InceptionV3, EfficientNet, and ResNet101. Hence, the average accuracy of these architecture models
was assessed using various training-based optimizers including SGD, Adagrad, RMSprop, Adam,
Radam, and AdamW. Table 5 compares the aforementioned optimizers and architectures. As a result,
the proposed model achieved the highest average accuracy of 0.983 when employing the AdamW
optimizer across EfficientNet-V1-B4 compared to the others utilizing the same datasets applied in
this study.
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Figure 8: ROC curves for pulmonary edema, pleural effusion, and normal cases using chest X-rays

Table 5: Comparison of various optimizers applied to renowned architectures in terms of average
accuracy on the datasets used in this study

Model SGD Adagrad RMSprop Adam Radam AdamW

VGG19 0.820 0.814 0.81 0.822 0.825 0.83
DenseNet121 0.850 0.832 0.844 0.858 0.861 0.864
InceptionV3 0.832 0.834 0.830 0.845 0.847 0.85
ResNet101 0.871 0.870 0.871 0.879 0.883 0.881
EfficientNetV1-B0 0.932 0.924 0.92 0.948 0.95 0.951
EfficientNetV1-B1 0.935 0.927 0.921 0.95 0.951 0.957
EfficientNetV1-B2 0.945 0.935 0.933 0.955 0.966 0.968
EfficientNetV1-B3 0.951 0.947 0.949 0.967 0.968 0.97
EfficientNetV1-B4 0.961 0.953 0.959 0.975 0.979 0.983
EfficientNetV1-B5 0.961 0.951 0.96 0.97 0.973 0.981
EfficientNetV1-B6 0.961 0.952 0.962 0.972 0.975 0.978
EfficientNetV1-B7 0.962 0.955 0.964 0.971 0.976 0.979
EfficientNetV1-L2 0.962 0.957 0.964 0.974 0.976 0.980
EfficientNetV2-B0 0.928 0.923 0.92 0.941 0.947 0.948
EfficientNetV2-B1 0.93 0.925 0.922 0.943 0.950 0.950
EfficientNetV2-B2 0.935 0.928 0.925 0.948 0.953 0.955
EfficientNetV2-B3 0.943 0.938 0.935 0.952 0.956 0.956
EfficientNetV2T 0.953 0.95 0.946 0.957 0.958 0.961
EfficientNetV2_GC 0.957 0.963 0.958 0.976 0.978 0.972
EfficientNetV2S 0.96 0.957 0.951 0.976 0.978 0.979
EfficientNetV2M 0.963 0.96 0.956 0.979 0.979 0.981
EfficientNetV2L 0.969 0.966 0.96 0.976 0.974 0.979
EfficientNetV2XL 0.968 0.964 0.96 0.978 0.980 0.978



1068 CMC, 2024, vol.80, no.1

4.4 Localization Using Ablation-CAM

In the context of medical image classification using deep learning, it is imperative to enhance the
interpretability and significance of the results. Ablation-CAM emerged as a gradient-free methodology
designed to provide visual explanations for models based on deep CNNs [54]. This technique operates
by selectively ablating (removing) individual units within feature maps and measuring the subsequent
drop in the activation score for the target class. The significance of each feature map unit was then
quantified as the proportion of decrease in the activation score.

To generate the ablation-CAM map, feature map units are weighted based on their calculated
importance and superimposed onto the original image. The outcome is a coarse localization map that
accentuates the pivotal regions in the image, thereby influencing the model’s concept predictions.

Notably, ablation-CAM exhibits superiority over the state-of-the-art Grad-CAM technique across
diverse image classification tasks [55]. Because ablation-CAM is more resilient to local irregularities
and saturations within the neural network, it is considered an effective and robust approach to visual
interpretation. To utilize this functionality, ablation-CAM was applied after the prediction of the class
label by the developed classification system. Further, we visualized the effect of employing the ablation-
CAM technique on X-ray test images. Fig. 9a shows the heatmap for a test image from the pulmonary
edema class; Fig. 9b depicts the heatmap for a test image from the pleural effusion class; and Fig. 9c
exhibits the heatmap for a test image from the normal cases class.

Figure 9: Visualization of the effect of employing the ablation-CAM technique on X-ray test images.
(a) The heatmap for a test image from the pulmonary edema class; (b) The heatmap for a test image
from the pleural effusion class; (c) The heatmap for a test image from the normal cases class

Based on radiographic differences, a normal chest X-ray (Fig. 9c) shows clear lungs at which there
is no buildup in the person’s lungs and a physician can define the borders of the vessels very well
because they appear sharp and demarcated. Moreover, the vessels in the upper lung were relatively
smaller than the vessels in the lower lungs of a person with a healthy lung. Besides, the pleural cavity
typically contains approximately 15 ml of pleural fluid.
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In contrast, increased hydrostatic pressure leads to pulmonary vascular congestion and cephaliza-
tion of the pulmonary vasculature. This case is not yet edema because the fluid is still in the pulmonary
vessels. Consequently, once the fluid leaves the pulmonary vessels and enters the interstitial space,
the patient will develop interstitial pulmonary edema (actual edema). Subsequently, the fluid spills
into the alveolar space in which the patient will get alveolar pulmonary edema (airspace edema).
The appearance of edema was heterogeneous with interstitial and airspace edema. Hence, if a patient
develops pulmonary edema, there may be two signs. First, the upper lungs are much more indistinct
which means that the edema fluid has moved from the vessels to the interstitial space, and the vessels
seem to be more enlarged and not well-defined. The other sign is, that the patient has interlobular
septal thickening, which is manifested by Kerley B lines, which are typically less than 1 cm in length
at the lung periphery and represent fluid in the interstitial space (Fig. 9a).

On the contrary, pleural effusion is excess fluid that accumulates between two layers of the plural
including the parietal pleura and visceral pleura. Because the lungs are always in motion, there must be
some fluid between the two layers of the pleura to protect them from injury by friction. Furthermore,
pleural effusion is the result of any process that causes more fluid to develop than it can be absorbed
(>15 ml in the pleural cavity). Typically, the area that is the first to present plural effusion is the right
and left costophrenic angle. This is because the fluid is heavier than the lung and it must fall towards
gravity. In the normal case (Fig. 9c), the appearance of both costophrenic angles was clear and sharp.
In contrast, left-sided pleural effusion is present in Fig. 9b, because the left costophrenic angle is blunt
and is not visible due to the high fluid level.

Lastly, based on the abovementioned analysis of X-rays for normal cases, pulmonary edema
disease, and pleural effusion disease, it is obvious that employing the ablation-CAM technique on
X-ray test images provides meaningful insight into the chest X-rays of the target medical application.

5 Conclusion

There is a growing need to promote the advancement of medical image classification systems that
demonstrate superior performance in diagnosing diseases within the field of pathology. Therefore,
this study incorporated a deep learning model based on the EfficientNet-V1-B4 architecture with the
training-based AdamW optimization method. Consequently, the developed system operated on chest
X-ray, which required passing through a preprocessing stage before being fed into the training model.
The preprocessing stage involves enhancing the contrast of the chest X-ray images using the CLAHE
approach, resizing images to 380 × 380 resolution, and applying the data augmentation process.

To carry out the classification task, a new dataset of 28,309 samples was formed by combining
several publicly available datasets. This dataset comprised three patterns: pleural effusion, pulmonary
edema, and normal cases. Further, the dataset was divided into 85% samples for training the model and
15% samples for testing the model. The results show that the developed system achieved a classification
rate of approximately 0.983. In addition, the achieved AUC was 1.00 for pulmonary edema and normal
cases, and the obtained AUC for pleural effusion disease was approximately 0.99. Additionally, the
categorization system utilizes ablation-CAM which provides meaningful insight into the chest X-rays
of the target medical application.

In summary, early and accurate detection of pulmonary conditions such as edema and effusion can
significantly influence patient outcomes. This study has the potential to revolutionize the detection of
pulmonary edema and pleural effusion, leading to improvements in patient care, healthcare efficiency,
and accessibility of advanced diagnostic tools. In line with this, the study may contribute to reducing
the workload of radiologists and healthcare providers. Automating the initial screening and diagnosis



1070 CMC, 2024, vol.80, no.1

process can allow specialists to focus on more complex cases and patient care, thereby enhancing the
overall healthcare efficiency.

Future work should focus on further validating the suitability of the model under consideration
in this research to identify other diagnoses using larger and more diverse datasets. Further research
can be conducted using the EffiecientNet-V2 model and examining its performance on smaller X-ray
image sizes to reduce memory usage for the image classification problem under investigation.
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