
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.051408

ARTICLE

Distributed Resource Allocation in Dispersed Computing Environment Based
on UAV Track Inspection in Urban Rail Transit

Tong Gan1, Shuo Dong1, Shiyou Wang1 and Jiaxin Li2,*

1Division of Consulting, Beijing Metro Consultancy Corporation Ltd., Beijing, 100037, China
2Department of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, 100083, China

*Corresponding Author: Jiaxin Li. Email: ll_jiaxin@163.com

Received: 05 March 2024 Accepted: 16 May 2024 Published: 18 July 2024

ABSTRACT

With the rapid development of urban rail transit, the existing track detection has some problems such as low
efficiency and insufficient detection coverage, so an intelligent and automatic track detection method based on UAV
is urgently needed to avoid major safety accidents. At the same time, the geographical distribution of IoT devices
results in the inefficient use of the significant computing potential held by a large number of devices. As a result,
the Dispersed Computing (DCOMP) architecture enables collaborative computing between devices in the Internet
of Everything (IoE), promotes low-latency and efficient cross-wide applications, and meets users’ growing needs
for computing performance and service quality. This paper focuses on examining the resource allocation challenge
within a dispersed computing environment that utilizes UAV inspection tracks. Furthermore, the system takes into
account both resource constraints and computational constraints and transforms the optimization problem into
an energy minimization problem with computational constraints. The Markov Decision Process (MDP) model is
employed to capture the connection between the dispersed computing resource allocation strategy and the system
environment. Subsequently, a method based on Double Deep Q-Network (DDQN) is introduced to derive the
optimal policy. Simultaneously, an experience replay mechanism is implemented to tackle the issue of increasing
dimensionality. The experimental simulations validate the efficacy of the method across various scenarios.

KEYWORDS
UAV track inspection; dispersed computing; resource allocation; deep reinforcement learning; Markov decision
process

Nomenclature

UAV Unmanned aerial vehicle
DCOMP Dispersed Computing
IoE Internet of Everything
MDP Markov Decision Process
MEC Mobile edge computing
MUs Multiple mobile users
NCPs Networked computation points

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.051408
https://www.techscience.com/doi/10.32604/cmc.2024.051408
mailto:ll_jiaxin@163.com

644 CMC, 2024, vol.80, no.1

DQN Double Q Network
DDQN Double Deep Q Network
NOMA Nonorthogonal multiple access
JCORA Joint optimization problem of Computation Offloading and Resource Allocation
TADPG Temporal Attention Deterministic Policy Gradient
PowMigExpand Power Migration Expand
EESA Energy Efficient Smart Allocator
UE User Equipment
IIoT Industrial Internet of Things
LCPSO Learning-based Collaborative Particle Swarm Optimization
MRF Markov random field
D2D Device-to-Device
NCPs Networked Computation Points
SGD Stochastic Gradient Descent

1 Introduction

Urban rail transit, serving as a crucial national infrastructure, holds significant significance in
the economic development of a nation. As urban rail transit expands swiftly, the density of road
networks has witnessed a continuous rise, safety problems along urban rail transit lines are particularly
prominent. Therefore, timely troubleshooting of equipment failures and potential safety hazards along
the line is becoming more and more important [1]. To guarantee the safety of urban rail transit
operations, concerned urban rail transit entities perform regular inspections of various professions
within the urban rail transit system. Many recent urban rail transit safety accidents can be attributed to
disasters occurring within the operating environment. Therefore, it is of utmost importance to perform
efficient inspections of the urban rail transit operating environment and accurately identify potential
hazards and risks. This is critical for ensuring the safety of urban rail transit operations.

The current inspection techniques for urban rail transit primarily involve manual inspections
and inspections conducted using rail inspection vehicles. Manual inspection refers to the routine
inspection of equipment along the line by using visual inspection or simple inspection tools after
professional training. The main feature of rail inspection vehicle inspection is to load the inspection
equipment on the rail inspection vehicle and use image processing technology, ultrasonic detection,
and laser detection technology to detect faults in key equipment and facilities such as urban rail transit
works and power supply. Combining the working principles of the two inspection methods, it can be
seen that the two generally have problems such as low efficiency, poor night inspection conditions,
low inspection frequency, constraints of comprehensive maintenance skylights, narrow inspection
areas, and poor automated analysis capabilities. Moreover, even if various types of inspections are
used repeatedly, there are still many dead ends of inspection, and it is difficult to achieve full
coverage of inspections. Unmanned Aerial Vehicles (UAVs) offer benefits such as excellent flight
maneuverability, low individual flight expenses, extensive surveillance capabilities, and the ability to
operate independently of train operations. Using UAVs for urban rail transit inspections can effectively
solve the drawbacks of existing methods. It is especially suitable as a supplement and replacement
for the current inspection methods of urban rail transit. At present, the UAV inspection method has
been widely used in power equipment inspection, engineering survey, geological exploration, fire early
warning, highway inspection, and bridge inspection, and has achieved ideal results [2–6], gradually
becoming an irreplaceable inspection method. In particular, the power industry has begun to use UAV
inspection methods and systems on a large scale. Inspection schemes, route planning, and inspection

CMC, 2024, vol.80, no.1 645

safety guarantees are becoming more and more mature. It is also necessary to use UAVs to inspect
urban rail transit lines and operating environments, it will become a trend [7–9].

Simultaneously, as industrial technology advances rapidly, smart devices are steadily gaining
increased computing and communication capabilities while also becoming smaller in size. IoT devices
have seamlessly integrated into our daily lives, forming an essential component of our infrastructure
[10,11]. However, due to the geographical distribution of equipment (i.e., UAV) is too scattered,
computing resources have not been fully utilized. The researchers propose to combine the scattered
resources through the network to build a scalable, secure, and robust new system driven by global
computing tasks [12]. Nevertheless, the efficient management of extensive computing tasks and real-
time monitoring of smart devices entail significant demands on computing paradigms, leading to the
emergence of the Dispersed Computing (DCOMP) paradigm [13]. The DCOMP paradigm, as a novel
architectural approach, was initially devised to address challenges pertaining to the heterogeneous
geographical distribution, collaborative computation, and communication between diverse devices.
This is achieved by introducing a dispersed computation layer that serves as a task execution agent,
strategically embedded between each network node’s application and resource layers. The primary
objectives are to optimize overall performance and network efficiency, as well as enhance the reliability
of computing and communication processes [14]. With further research, dispersed computing is
defined as connecting devices with general computing and communication properties into a network
organism in a wide area, so as to achieve the purpose of device interconnection and capability
interoperability. According to the specific requirements of users and applications, computing tasks
can automatically access multiple devices with the environment and idle resources from the network,
complete the computing tasks in a cooperative way among nodes, and return the computing results
[15]. The dispersed computing paradigm, as a new form of dispersed computing, does not aim
to replace the existing traditional computing architectures such as cloud computing, mobile cloud
computing, fog computing, and mobile edge computing. Instead, it serves as an augmentation and
natural progression of these traditional computing paradigms. Its primary objective is to address the
evolving requirements of users in the Internet of Everything (IoE) domain, ensuring the fulfillment of
increasingly demanding computing quality standards.

The primary contributions of this paper can be summarized as follows:

1) This paper explores a distributed computing environment that utilizes UAV track inspection,
comprising multiple mobile users (MUs) and networked computation points (NCPs). One dispersed
computing platform exists between the Mus and the NCPs, to achieve task allocation and resource
management.

2) The NCPs offer computational resources to mobile users (MUs) based on task requirements,
ensuring the timely completion of tasks on the dispersed computing platform. The allocation of
computing resources is presented as a binary optimization problem, aiming to minimize energy
consumption during task execution.

3) To minimize energy consumption across all the networked computation points (NCPs) in the
investigated dispersed computing environment, a Markov decision process (MDP) model is employed.
Additionally, a resource allocation approach based on Double Q Network (DDQN) is introduced to
determine the optimal allocation strategies.

The paper is presented in the form of the following: Section 2 provides the related works. Section 3
gives the system model. The solutions for the proposed resource allocation problem are provided in
Section 4. Numerical simulations are provided in Section 5. Finally, the work in Section 6 is concluded.

646 CMC, 2024, vol.80, no.1

2 Related Works
2.1 Resource Allocation for Edge Computing

As commonly understood, the cloud computing paradigm [16] often faces the challenge of
geographical distance between a multitude of terminal devices and the centralized cloud center,
and cloud computing also consumes substantial bandwidth from the backbone network, leading
to network congestion and elevated bandwidth expenses. Mobile cloud computing, as an inherent
progression and enhancement of cloud computing, addresses these challenges, but it still encounters
challenges related to network congestion and significant computational expenses [17]. Subsequently,
fog computing [18–20] was introduced. Compared with mobile cloud computing, fog computing is
closer to the user than mobile cloud computing. It can not only provide the resources needed for
computing but also provide some other services, such as image recognition. It also faces a lot of
security and privacy issues [21,22]. Mobile edge computing (MEC) [23,24] bears a resemblance to fog
computing, wherein a versatile computing server is deployed at the network edge, and tasks are likewise
transmitted to nearby high-performance servers via wireless links. The difference is that MEC supports
user location awareness, and MEC servers belong to mobile operators and are generally deployed on
the base station side [25], while fog computing nodes are generally managed by individuals. From the
perspective of privacy protection, MEC is relatively more reliable. From the design of MEC paradigm,
if the terminal nodes and edge nodes in MEC are not under load for a long time, the computing and
communication resources will be idle. Currently, resource allocation has grown into a crucial branch
of edge computing.

Liu et al. [26] explored the application of non-orthogonal multiple access (NOMA) technologies
to enhance connectivity in IoT networks, enabling energy-efficient mobile edge computing (MEC).
Additionally, Yang et al. [27] presented a method of resource allocation in multi-access MEC systems
that are designed to minimize mobile device energy consumption while meeting competing deadlines.
The scenarios consider a scenario in which several mobile devices with different computing capabilities
and energy restrictions offload their MEC tasks to a nearby server. Moreover, Chen et al. [28] analyzed
the coordination optimization of computation allocation and resource allocation in edge computing,
and proposed a new method: a time attention-deterministic strategy gradient (TADPG) for solving the
problem. Zhu et al. [29] presented a synthesis of hybrid NOMA and MEC techniques in their work.
They solved the optimization problem with respect to power and time allocation for each group and
alleviated latency and energy consumption. The method utilizes a matching algorithm for optimizing
power and time allocation to cut down the complexity of the method further. Otherwise, Ali et al. [30]
posed the Pow Mig Expand algorithm, based on a comprehensive utility function, which allocates
the requests received to the optimal server. In addition, they also introduced the Energy Efficient
Intelligent Splitter (EESA) algorithm, which utilizes deep learning to allocate the required energy
savings to the most suitable servers. Proposed methods are all using fixed infrastructure and lack
scalability, making them unable to flexibly respond to sudden traffic surges or damage caused by
disasters or other factors. In order to improve the flexibility of computing networks, recent attention
has been focused on mobile device-assisted work. Sun et al. presented a novel system architecture in
their work [31] that utilizes unmanned aerial vehicles (UAVs) and multiple Industrial Internet of Things
(IIoT) nodes. The proposed architecture enables the direct transmission of resources collected by IoT
nodes to the UAV for processing. The main goal of this system is to optimize response time for forest
fire monitoring considering some constraints between nodes, i.e., minimize the maximum time. The
system proposes a Markov random field-based decomposition (MRF) method and a learning-based
collaborative particle swarm optimization (LCPSO) scheme to achieve the optimal allocation. These
techniques work together to allocate the resources optimally in the UAV system, facilitating efficient

CMC, 2024, vol.80, no.1 647

forest fire monitoring. In their work, Chai et al. [32] considered users with task computing needs who
may choose to perform edge computing offloading, local computing, or device-to-device offloading.
The authors proposed a joint optimization method which wants to minimize costs by dividing the task
into small data segments and enabling various computational modes to execute them simultaneously.
On a similar note, Wang et al. [33] utilized MEC and D2D communication to facilitate offloading
from the core network. They studied the optimal resource allocation strategy in the ICWN (Cognitive
Wireless Network Internet) scenario. However, it is worth noting that the assistive technology may
involve additional costs. In addition, the above research overlooked the potential untapped resources
within the network and the achievement of utilizing neighboring computing nodes. If these factors are
considered, it may enhance the efficiency and performance of the system.

2.2 Resource Allocation for Dispersed Computing

Following the emergence of MEC, DCOMP was introduced as a complementary solution, aiming
to address this gap and harness the untapped computing resources effectively. The objective is to
establish a dispersed and distributed network ecosystem with heterogeneous resources, maximizing
the utilization of all available resources within the network and delivering users with enhanced
efficiency and reliability in computing services. Dispersed computing possesses distinct advantages
compared to other paradigms. The objectives of conventional computing paradigms involve task
offloading to either the cloud, which possesses greater computing power, or edge nodes with shorter
communication distances. This is done to minimize transmission delays and energy consumption.
However, central nodes like fog computing nodes, MEC nodes, or service gateways in cloud computing
exhibit limitations [34,35].

With a massive increase in users and tasks, the central node fails, services will be interrupted
and tasks will be lost, resulting in a poor user experience. Dispersed computing is an architecture
for dispersed resources. In this architecture, nodes with computing power are abstracted as general
computing points, and the DCOMP intermediate layer is responsible for security authentication,
privacy protection, task decision-making and data routing transmission between nodes [36], and there
is no centralized scheduling center. In addition, in a dispersed computing environment, the joining and
leaving of nodes are very efficient and transparent. Simultaneously, it also addresses the drawbacks of
the cloud computing paradigm, including high delay and high cost, while resolving the limitations of
edge computing, such as the limited coverage area of edge nodes and the inability of terminal nodes
to collaborate directly.

Indeed, in contrast to mobile edge computing, there has been growing attention to resource
allocation in dispersed computing. Several studies [37–39] have emerged in this area, taking into
account the presence of idle devices and limited resources within the network. A noteworthy example is
the work of Rahimzadeh et al. [37], who introduced SPARCLE. SPARCLE is a scheduling scheme for
dispersed computing systems and is designed especially for dispersed computing environments which
are provided with a network-aware algorithm for allocating tasks and resources for polynomial time
flow processes. The proposed schemes are very useful to optimize resources and improve overall system
performance. The collaborative management model for the task resource in a dispersed computing
system is proposed by Zhou et al. [38] and focuses on the quantification of dynamic dependencies
between the resources occupied in a dispersed computing system and the consumed resources of task
requests. This can better understand the resource utilization modes and achieve effective resource
allocation. A kind of intelligent controlling mechanism to solve the problem of the overburdened
load is brought into the collaborative management model of task resources. These intelligent control
technologies aim to dynamically allocate and manage resources to avoid overload and ensure system

648 CMC, 2024, vol.80, no.1

stability. Through intelligent control, this model can optimize resource allocation and improve the
whole performance and reliability of dispersed computing systems. The load-balancing scheduling
algorithms and the prioritization-aware resource allocation strategies of the open-source dispersed
computing system are studied by Paulos et al. [39]. These strategies are very important and have been
integrated into a core feature in middleware. However, the research on resource allocation in dispersed
environments is relatively limited to the field of dispersed computing. It is necessary to conduct further
exploration and investigation to deepen our understanding of resource allocation in this situation.
In addition, considering the limited energy resources of devices and the need to optimize energy
consumption, energy cost has become a crucial indicator, especially for mobile devices. Therefore,
when designing resource allocation strategies in a dispersed computing environment, special attention
should be paid to addressing energy efficiency.

3 System Model and Problem Formulation

In this section, we describe the application scenarios and system models in dispersed computing
environments with the goal of minimizing the energy consumption of networked computing nodes.

3.1 Scenario Description

Considering a dispersed computing environment including one dispersed computing platform, N
tasks published on the platform by L mobile users, and M networked computation points (NCPs)
that can complete the tasks published on the platform using their computing abilities. The platform
can publish and assign tasks for the mobile users, and can schedule computing resources of NCPs
for various tasks. In the dispersed computing environment, the set of mobile users is denoted by
U = {u1, u2, . . . , uL}. Each mobile user publishes the tasks in the platform and requires the computing
resources from the NCPs. Assuming the tasks published by user should be completed within a time
duration T . In the researched dispersed computing environment, the position of mobile users is
assumed to be unchanged with in the time duration for tasks to be completed.

The set of NCPs is given by P = {p1, p2, . . . , pM}, which can provide computing abilities to the
tasks in the platform. For each NCP, the available computing resource of NCP j for j = 1, 2, . . . , M
that can be allocated for the tasks is denoted by cj. By using these computing resources, the NCPs can
complete the tasks published on the platform by the mobile users.

The set of tasks published on the platform is denoted by V = {v1, v2, . . . , vN}, which is running on
the NCPs. For each computing task vi with i = 1, 2, . . . , N, the resources scheduled by the platform is
denoted by ri, for i = 1, 2, . . . , N. Generally, the tasks wk published by user k will be uniformly treated
as the related tasks in the set V = {v1, v2, . . . , vN}. The maximum number of tasks that each mobile
user can publish on the platform is given by δ, where 1 ≤ δ ≤ N, and wk = ∑δ

i=1 vi.

Assuming ci,j to denote the computing resources of NCP pj allocated for the task vi. We design a
binary variable bi,j to indicated whether the task vi is running on the NCP pj. If bi,j = 1, the task vi is
executed on NCP pj. If bi,j = 0, the task vi is not executed on NCP pj. Then we have ci,j ≥ ∑N

i=1 bi,jci,j.
In order to achieve load balancing among different NCPs, we assume that the maximum number of
tasks that is computed on NCP pj is εj, where εj ≥ ∑N

i=1 bi,j. Meanwhile, the maximum number of NCPs
working on the same task vi is assumed to be λi, and we have λi ≥ ∑M

j=1 bi,j.

CMC, 2024, vol.80, no.1 649

3.2 System Model

In the researched dispersed computing environment, we assume all the tasks published by the
mobile users should be completed only by the NCPs. The mobile users should publish the computation
requirements on the dispersed computing platform. Once the requirements are answered, they should
upload the related tasks to the NCPs and wait for the NCPs to complete the corresponding computing
tasks. Therefore, for each mobile user, the whole-time duration can be divided into two parts using
TDMA. The first part is to upload the computation tasks to the NCPs, where the second part is to
complete the computation tasks by the NCPs. The diagram is given in the following figure.

Assuming the transmit power of mobile user is p, and the upload transmission is undertaken on
the frequency band with channel bandwidth β. To avoid co-channel interference among different users,
we assumed that the task could be uploaded onto the NCP using orthogonal frequency patterns by
different users. Then the transmission time for the tasks upload can be written by [32]

τi = vi[
βlog

(
1 + p

σ 2

)] (1)

Once the tasks are upload to the NCPs, it will be computed by the NCPs. The NCPs should use
the limited time to complete the tasks to ensure the real-time satisfaction. The limited time available
for computation of task vi in the NCPs is T − τi. Assuming the workload of task vi is given by wi,
and the related time for computing the tasks is wi/ci. In order to complete the tasks, the NCPs should
contribute their computing abilities, which would bring energy consumption for task due to the control
variable ci,j. Therefore, the total cost for computing the task vi in the NCPs can be given by

Ji = (T − τi) ciei =
M∑

j=1

(T − τi) bi,jci,jei, (2)

where ei denotes the unit energy consumption of computation. The gross energy cost for the entire
dispersed computing environment can be given:

J =
N∑

i=1

M∑
j=1

(T − τi) bi,jci,jei. (3)

3.3 Problem Formulation

It follows that we aim at minimizing the consumption of a distributed computing environment
and that the minimization problem can be drawn out mathematically as follows:

minbi,j

N∑
i=1

M∑
j=1

(T − τi) bi,jci,jei,

s.t. C1:
N∑

i=1

bi,jci,j ≤ cj,

C2:
N∑

i=1

bi,j ≤ εj,

C3:
M∑

j=1

bi,j ≤ λi

(4)

To eliminate this problem (4) and solve it, the optimal solution to bi,j of the discrete offloading
decision is found. In this way, the task offloading in inter-slot time is coordinated under a limited time

650 CMC, 2024, vol.80, no.1

constraint, and the total computational energy consumed is minimized for a network computing node.
It is worth noting that bi,j is a binary variable which is the offloading decision variable and is why the
network computing nodes can choose user tasks intelligently. With the increase of mobile users and
computing tasks, traditional methods may not adapt to deal with complex scenarios with dynamic
characteristics and make intelligent decisions. A method of solution for a certain problem based on
reinforcement learning is explored.

4 Proposed Solutions

This paper uses the Markov Decision Process (MDP) model to calculate the optimization problem.
The goal is to minimize the network computing nodes’ energy consumption in the dispersed computing
environment. Firstly, reward functions, actions and the state within the MDP model are defined.
Secondly, a method based on Double Deep Q Network (DDQN) is proposed. This approach effectively
addresses the problem of dimensionality by learning the Q function.

4.1 Markov Decision Process Model

State space: The state in the MDP model represents the space of the dispersed computing
paradigm. For available resources, on time slot t, the state is decided by ci,j − ∑N

i=1 bi,jci,j and λi −∑M

j=1 bi,j in our proposed system, where the former is the residual available computing resource of
network computing nodes and the latter is the maximum number of offloaded nodes. These two
parameters are observed to maintain the constraints of computing and resource capacity of network
computing nodes. Additionally, if it reaches the suitable state, it is important to consider the energy
consumption state Ei

total at each time slot t to determine. Therefore, the state vector is defined as(
Ei

total, cj − ∑N

i=1 bi,jci,j, λi − ∑M

j=1 bi,j

)
at the time node T .

Action: The objective is to select the best action by mapping the state space to the action space. In
our proposed dispersed computing environment, agents are responsible for determining the resource
allocation of users’ computing tasks in each time period.

Reward: The actions of each agent are motivated by rewards. In the dispersed computing system,
the reward function is given as follows to minimize energy consumption. We believe that the best action
is produced with the lowest task reward value.

4.2 Markov Decision Process

The MDP problem is effectively solved through dynamic programming or linear programming.
However, when dealing with unknown and time-varying state transition probabilities and immediate
rewards in discrete time steps, reinforcement learning methods become more suitable for tackling such
problems. MDP is commonly used as the theoretical framework for reinforcement learning [40].

We approach the optimization problem by formulating it as an MDP. The agent interacts with the
environment through iterative processes and adaptive learning to determine the optimal actions. The
agent finds the current state at each time step t which is written as s (t) and chooses an appropriate
action a (t) based on the policy π . The action space a is finite, it is the same for state space s. The
policy π maps the current state to the corresponding action, providing guidance for decision-making
under different states. Subsequently, the agent switches to its next condition s (t + 1) based on a switch
probability p which receives a reward R. Over the long term, the state value function V represents the
cumulative discounted reward R of the agent in state s (t). It quantifies the long-term impact of the
policy π in the current state and serves as a measure of the state-value pair.

CMC, 2024, vol.80, no.1 651

Now, let us consider the state after executing action a (t) as s (t + 1), where the transition
probability from s (t) to s (t + 1) is denoted as p. By employing the MDP model, the state value function
is expressed using temporal differences through the Bellman equation [41]:

V (s (t)) = Eπ

[(∞∑
t=0

ϕRt

)
|s0 = st

]

= Eπ

[(
R (st, at) +

∞∑
t=1

ϕRt

)
|st = st+1

]

= R (st, at) + ϕ
∑
st+1

p (st+1|st, at) V π (st+1)

(5)

Building upon the aforementioned process, the agent strives to develop an optimal control strategy
π that maximizes the expected cumulative discount reward at the current state. This essentially
transforms the optimization problem into an optimal state function problem V , as depicted below
[41]:

V(s(t)) = maxπ

[
R (st, at) + ϕ

∑
st+1

p (st+1|st, at) V π (st+1)
]

s.t C1 − C3.
(6)

Therefore, the optimal strategy is obtained by solving the above problems. The optimal action in
state s (t) can be given as [41]

a∗
t = argmaxat

Vπ (st, at) (7)

4.3 Solution Based on DDQN

In practical scenarios, the curse of dimensionality often arises when dealing with high-dimensional
states and action spaces. To mitigate this issue, this paper proposes a novel DRL algorithm that deviates
from traditional Q-learning methods.

In the conventional implementation of a DQN, a single Q network is employed to evaluate actions
and is similar to multiple action-value functions, which can be numerous. However, this approach
may lead to significant errors and an overestimation of the action-value function, ultimately affecting
the choice of the optimal strategy. To address this concern, we adopt the DDQN algorithm. The
fundamental principle behind DDQN is to decouple action selection from evaluation by constructing
distinct action-value functions.

By updating DNN’s parameters, the DDQN-based approach enhances the approximation of the
optimal Q-values. In DDQN, the Q-value expression can be formulated by

Q (s, a) = Q (s, a, θ) (8)

In the DDQN framework, the primary neural network’s weight parameters are denoted as θ .
Additionally, it will be discussed for a target network later.

Unlike the general DQN algorithm, the DDQN algorithm incorporates an experience replay
buffer. The agent converts relevant experiences into memory tuples

(
st, at, Rt, s(t+1)

)
and stores them

in the replay buffer at each time step t. The agent utilizes the stored experiences from the buffer which
is to train the neural network. It randomly selects a small batch of experiences to fine-tune the neural
network and adjust its parameters. This process allows DDQN to leverage randomly chosen previous
experiences during each update. Several studies, such as those cited in [41,42], have demonstrated that

652 CMC, 2024, vol.80, no.1

experience replay improves training efficiency, reduces correlation between training data, and expedites
the convergence of DDQN.

In the DDQN algorithm, a target Q-network is introduced. The target Q-network and the Q-
network employ different neural network parameters although they have the same neural network
structure. The temporal difference signals from the Q-network are received by the target Q-network,
while the latter serves as an evaluator for the Q-function.

However, the target Q-network updates its weights periodically instead of continuously. This
approach enhances stability and accelerates the learning process.

The agent randomly selects a small batch of sample D with size R from the experience replay buffer
to remove temporal correlations in the training data. The loss function L is continuously minimized
to approach the target value and improve the accuracy of Q-function approximation during each
iteration, as shown below [34]:

L(θ) = E[R(st, at) + ϕQ(st+1, a∗; θ) − Q(st, at; θ)]2 (9)

The structure process and training process of DDQN are illustrated in Fig. 1. The initialization
phase involves setting the weights of the neural network and the experience replay buffer’s size. In
DDQN, the Q-network and the target Q-network initially share the same weights, denoted as θ =
θ ′. Next, a neural network is employed to establish the relationship between its corresponding value
function Q and each state-action pair. For further details, the decision maker needs to preprocess the
allocation strategy of the distributed computing platform adequately.

Figure 1: The training process of DDQN

During the training process of each episode, the agent first views the distributed computing
platform’s state. Then, to choose the action a for execution, the ε-greedy algorithm is applied. With
a probability of ε, the agent randomly selects an action. Otherwise, the state-action pair’s Q-value is
estimated using the Q-network to select action a.

Next, the agent accepts the reward value R and the next status by executing action a. It constructs
an experience tuple (s, a, R, s) and stores it. The Q-network randomly selects a small batch of samples

CMC, 2024, vol.80, no.1 653

from the replay buffer using an experience replay mechanism in the training process. Through
minimizing the loss function θ , DDQN updates the network parameters. This involves updating the
Q-network parameters using Stochastic Gradient Descent (SGD) and calculating the target Q-value.
In Algorithm 1, the specific process is provided.

Then, the agent gets the reward value R and the next status by executing action a builds the
experience tuple (s, a, R, s), and saves the experience tuple. The Q-network randomly selects small
batch samples through an experience replay mechanism in view of the training process. Through
minimizing the loss function θ , DDQN renews the network parameters, that is, the algorithm updates
the Q-network parameters by taking the Stochastic Gradient Descent (SGD) method for the loss
function θ after calculating the target Q-value. Finally, the specific implementation process is provided
in Algorithm 1.

Algorithm 1: DDQN-based method for dispersed computing resource allocation
Initialize replay memory C to capacity U ;
Initialize weights θ ;
Initialize weights θ = θ ′;
Initialize task;
for each episode:

Observe the initial state s0;
for k = 1 to N:
Select action a (t) according to ε-greedy policy;
For obtaining the reward r and next observation state s (t + 1), Execute a (t);
Store the experience (a (t), s (t), s (t + 1), r (a (t))) in D;
if M > D:
Random sample a minibatch experience from D;
Use the target Q network to calculate the Q-value Qtarget;
Use the Q network to Calculate the Q-value Qevaluate;
Calculate the loss function L (θ) of the evaluate network.;
Training evaluate network according to loss function L (θ);
update weights of target network;

End if
s (t) ← s (t + 1)

End for
End for

5 Numerical Simulations
5.1 Simulation Set

We consider the dispersed computing environment as a smaller area with multiple mobile users
and three network computing nodes. We consider user devices that are not computationally capable
or cannot meet the demand of computational tasks. Each user has a different size task. Here, we
consider two cases: (i) each mobile user has only a single task. The size of tasks per user is randomly
distributed in the range of 1–2.5 MB; (ii) each mobile user has multiple tasks. Each mobile user has
multiple computing tasks of different types and sizes. The number of tasks per mobile user is randomly
distributed in the span of 2–4, and the task’s size is distributed in 0.1–1 MB randomly. The user’s
transfer rate is equal to 1 MB/s. In the approach of this paper, the experience replay buffer’s capacity is

654 CMC, 2024, vol.80, no.1

C = 200 and the selected small batch of samples’ capacity is U = 32. Set The learning rate parameter
to lr = 0.01 and set the reward decay parameter to ϕ = 0.9. The energy consumption of users is decided
by the task size of users, i.e., larger tasks consume more energy.

5.2 Performance Analysis

First, the convergence property of the resource allocation method based on DDQN is verified.
Fig. 2 illustrates the convergence property of the DDQN-based method which is proposed with a total
of 24 user tasks. For the DDQN-based resource allocation method the energy consumption of the
system gradually drops while the number of training sets rises. In general, the DDQN-based method
with multiple iterations of training is able to converge quickly to a relatively stable value.

Figure 2: Convergence of the proposed DDQN-based method

5.2.1 One Task per User

Figs. 3–5 show the energy consumption, number of tasks computed, and resource consumption
of each dispersed computing platform under different numbers of users, respectively. To be closer to
the realistic scenario, each task is selected with a random size. Therefore, the task size is different
for each user with the different number of users. It is evident from Fig. 4 that the method based on
DDQN is capable of accomplishing tasks across various task quantities. The energy consumption of
each network computing node can be observed in Fig. 3. The network computing node 2’s energy
consumption is low compared to other network computing nodes because of the constraint on the
number of offloads of network computing node 2. It is evident from Fig. 5 that with the tasks’ number
drop, the computational tasks will be gradually allocated to the nodes with more resources. Network
computing node 3 has the most resources compared to the other two nodes and can accommodate the
largest number of computational tasks.

5.2.2 Multiple Tasks per User

Figs. 6–8 show that each user has a different number and size of tasks. Since different users have
different numbers of tasks, the network nodes need to consider the service count constraint on the
user tasks. The number of tasks varies at different numbers of users, i.e., the corresponding number
of tasks is [23,29,32,42,46,55]. In Fig. 6, while the number of tasks offloaded rises, multiple network
computing nodes are required to collaborate with each other to complete the user’s computing tasks. In

CMC, 2024, vol.80, no.1 655

Fig. 7, while the number of user tasks rises, task allocation is assigned to the node with more resources
remaining to meet the user’s computational tasks. In Fig. 8, when there are fewer tasks, each node
satisfies the task demand well. With the increasing number of tasks, the agent gives preference to the
network computing nodes with abundant remaining resources.

Figure 3: Task energy consumption under different task scales

Figure 4: Task allocation under different task scales

In order to further analyze the advantages and disadvantages of the algorithms. We conducted
comparison experiments with other algorithms, mainly including the offloading scheme based on
random offloading strategy, and the offloading scheme based on dueling DQN (dueling DQN). In the
random scheme, the user randomly selects NCPs that satisfy the offloading requirements as offloading
nodes. In greedy scheme, the user selects the NCP with the richest computational resources as the
offloading node. In dueling scheme, the user offloading policy is obtained based on dueling DQN
algorithm. The results of the comparison experiments are shown in Fig. 9. We consider different
transmission rates for each node, which ranges from [0.8, 1.2] Mb/s, and the CPU energy consumption
per cycle is 2−10. As shown in Fig. 9, we can observe that the algorithm proposed in this paper is able
to complete the computation of the task with lower total energy consumption.

656 CMC, 2024, vol.80, no.1

Figure 5: Computing resource consumption under different task scales

Figure 6: Task energy consumption under different task scales (multiple tasks)

Figure 7: Task allocation under different task scales (multiple tasks)

CMC, 2024, vol.80, no.1 657

Figure 8: Consumption resource allocation under different task scales (multiple tasks)

Figure 9: The total energy consumption for the three algorithms to complete the task computing

6 Conclusion

In this paper, we tackle the challenge of allocating resources for multiple users in a dispersed
computing environment, where each user has distinct resource requirements and the system conditions
vary over time. Our objective is to minimize energy consumption while considering both resource
and computational constraints. To tackle this problem, we formulate it as an energy minimization
problem with computational constraints and adopt an MDP model to capture the interplay between
the dispersed computational resource allocation policy and the system environment. To obtain the
optimal policy, we propose an approach based on DDQN. This approach utilizes the capabilities
of deep neural networks to approximate optimal Q-values and inform resource allocation decisions.
Additionally, we incorporate the experience replay mechanism to mitigate the dimensionality issues
caused by action spaces and high-dimensional states. To determine whether our approach is effective,
we conduct experimental simulations in various scenarios. The results demonstrate the efficacy of
our approach in achieving efficient resource allocation while considering the dynamic nature of the
dispersed computing environment.

Acknowledgement: None.

658 CMC, 2024, vol.80, no.1

Funding Statement: This work was supported by Beijing Metro Consultancy Corporation Ltd. (the
Research on 5G Key Technologies of Urban Rail Transit I).

Author Contributions: Conceptualization, T.G. and J.L.; methodology, T.G., J.L. and S.D.; software,
T.G., S.W. and J.L.; validation, T.G., S.D. and J.L.; formal analysis, S.D. and S.W.; investigation,
T.G., S.D., S.W. and J.L.; resources, S.D. and S.W.; writing—original draft preparation, T.G. and
J.L.; writing—review and editing, T.G., S.D., S.W. and J.L.; visualization, T.G., S.D., S.W. and J.L.
All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] N. R. AlNaimi, “Rail robot for rail track inspection,” MS thesis, Qatar University, Qatar, 2020.
[2] S. Siebert and J. Teizer, “Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial

Vehicle (UAV) system,” Autom. Constr., vol. 14, pp. 1–14, 2014. doi: 10.1016/j.autcon.2014.01.004.
[3] Y. Zhang, X. Yuan, W. Li, and S. Chen, “Automatic power line inspection using UAV images,” Remote

Sens., vol. 9, no. 8, pp. 824, 2017. doi: 10.3390/rs9080824.
[4] F. Song, Z. Ai, Y. Zhou, I. You, K. K. R. Choo and H. Zhang, “Smart collaborative automation for receive

buffer control in multipath industrial networks,” IEEE Trans. Ind. Inform., vol. 16, no. 2, pp. 1385–1394,
2019. doi: 10.1109/TII.2019.2950109.

[5] H. F. Wang, L. Zhai, H. Huang, L. M. Guan, K. N. Mu and G. Wang, “Measurement for cracks at the
bottom of bridges based on tethered creeping unmanned aerial vehicle,” Autom. Constr., vol. 119, no. 11,
pp. 103330, 2020. doi: 10.1016/j.autcon.2020.103330.

[6] X. Gao et al., “Conditional probability based multi-objective cooperative task assignment
for heterogeneous UAVs,” Eng. Appl. Artif. Intell., vol. 123, no. 1, pp. 106404, 2023. doi:
10.1016/j.engappai.2023.106404.

[7] L. Inzerillo, G. Di Mino, and R. Roberts, “Image-based 3D reconstruction using traditional and
UAV datasets for analysis of road pavement distress,” Autom. Constr., vol. 96, pp. 457–469, 2018. doi:
10.1016/j.autcon.2018.10.010.

[8] E. Páli, K. Mathe, L. Tamas, and L. Buşoniu, “Railway track following with the AR.Drone using vanishing
point detection,” in 2014 IEEE Int. Conf. Autom. Quality Testing, Robot., IEEE, 2014, pp. 1–6.

[9] F. Flammini, R. Naddei, C. Pragliola, and G. Smarra, “Towards automated drone surveillance in railways:
State-of-the-art and future directions,” in Adv. Concepts Intell. Vis. Syst.: 17th Int. Conf., Lecce, Italy,
Springer International Publishing, Oct. 24–27, 2016, pp. 336–348.

[10] F. Song, Y. Ma, I. You, and H. Zhang, “Smart collaborative evolvement for virtual group creation
in customized industrial IoT,” IEEE Trans. Netw. Sci. Eng., vol. 10, no. 5, pp. 2514–2524, 2023. doi:
10.1109/TNSE.2022.3203790.

[11] J. Manyika et al., The Internet of Things: Mapping the Value Beyond the Hype. vol. 3. New York, NY, USA:
McKinsey Global Institute, 2015, pp. 1–24.

[12] P. Calhoun, “DARPA emerging technologies,” Strateg. Stud. Q., vol. 10, no. 3, pp. 91–113, 2016.
[13] M. R. Schurgot, M. Wang, A. E. Conway, L. G. Greenwald, and P. D. Lebling, “A dispersed computing

architecture for resource-centric computation and communication,” IEEE Commun. Mag., vol. 57, no. 7,
pp. 13–19, 2019. doi: 10.1109/MCOM.2019.1800776.

[14] C. S. Yang, R. Pedarsani, and A. S. Avestimehr, “Communication-aware scheduling of serial tasks
for dispersed computing,” IEEE/ACM Trans. Netw., vol. 27, no. 4, pp. 1330–1343, 2019. doi:
10.1109/TNET.2019.2919553.

https://doi.org/10.1016/j.autcon.2014.01.004
https://doi.org/10.3390/rs9080824
https://doi.org/10.1109/TII.2019.2950109
https://doi.org/10.1016/j.autcon.2020.103330
https://doi.org/10.1016/j.engappai.2023.106404
https://doi.org/10.1016/j.autcon.2018.10.010
https://doi.org/10.1109/TNSE.2022.3203790
https://doi.org/10.1109/MCOM.2019.1800776
https://doi.org/10.1109/TNET.2019.2919553

CMC, 2024, vol.80, no.1 659

[15] M. García-Valls, A. Dubey, and V. Botti, “Introducing the new paradigm of social dispersed comput-
ing: Applications, technologies and challenges,” J. Syst. Archit., vol. 91, no. 7, pp. 83–102, 2018. doi:
10.1016/j.sysarc.2018.05.007.

[16] S. Husain, A. Kunz, A. Prasad, K. Samdanis, and J. Song, “Mobile edge computing with network resource
slicing for Internet-of-Things,” in 2018 IEEE 4th World Forum Internet Things (WF-IoT), IEEE, 2018, pp.
1–6.

[17] A. Alzahrani, N. Alalwan, and M. Sarrab, “Mobile cloud computing: Advantage, disadvantage and open
challenge,” in Proc. 7th Euro Am. Conf. Telemat. Inf. Syst., 2014, pp. 1–4.

[18] A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the Internet of Things realize its potential,”
Computer, vol. 49, no. 8, pp. 112–116, 2016. doi: 10.1109/MC.2016.245.

[19] F. Song, Z. Ai, H. Zhang, I. You, and S. Li, “Smart collaborative balancing for dependable network
components in cyber-physical systems,” IEEE Trans. Ind. Inform., vol. 17, no. 10, pp. 6916–6924, 2020.
doi: 10.1109/TII.2020.3029766.

[20] Q. Wu, S. Wang, H. Ge, P. Fan, Q. Fan and K. B. Letaief, “Delay-sensitive task offloading in vehicular fog
computing-assisted platoons,” IEEE Trans. Netw. Serv. Manag., vol. 21, no. 2, pp. 2012–2026, 2024. doi:
10.1109/TNSM.2023.3322881.

[21] A. Alrawais, A. Alhothaily, C. Hu, and X. Cheng, “Fog computing for the internet of things: Security and
privacy issues,” IEEE Internet Comput., vol. 21, no. 2, pp. 34–42, 2017. doi: 10.1109/MIC.2017.37.

[22] F. Song, Y. T. Zhou, Y. Wang, T. M. Zhao, I. You and H. K. Zhang, “Smart collaborative distribu-
tion for privacy enhancement in moving target defense,” Inf. Sci., vol. 479, pp. 593–606, 2019. doi:
10.1016/j.ins.2018.06.002.

[23] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and computation offloading,”
IEEE Commun. Surv. Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017. doi: 10.1109/COMST.2017.2682318.

[24] Q. Wu, W. Wang, P. Fan, Q. Fan, J. Wang and K. B. Letaief, “URLLC-awared resource allocation
for heterogeneous vehicular edge computing,” IEEE Trans. Vehicular Technol., pp. 1–16, 2024. doi:
10.1109/TVT.2024.3370196.

[25] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge computing:
The communication perspective,” IEEE Commun. Surv. Tut., vol. 19, no. 4, pp. 2322–2358, 2017. doi:
10.1109/COMST.2017.2745201.

[26] B. Liu, C. Liu, and M. Peng, “Resource allocation for energy-efficient MEC in NOMA-enabled
massive IoT networks,” IEEE J. Sel. Areas Commun., vol. 39, no. 4, pp. 1015–1027, 2020. doi:
10.1109/JSAC.2020.3018809.

[27] X. Yang, X. Yu, H. Huang, and H. Zhu, “Energy efficiency based joint computation offloading and
resource allocation in multi-access MEC systems,” IEEE Access, vol. 7, pp. 117054–117062, 2019. doi:
10.1109/ACCESS.2019.2936435.

[28] J. Chen, H. Xing, Z. Xiao, L. Xu, and T. Tao, “A DRL agent for jointly optimizing computation offloading
and resource allocation in MEC,” IEEE Internet Things J., vol. 8, no. 24, pp. 17508–17524, 2021. doi:
10.1109/JIOT.2021.3081694.

[29] J. Zhu, J. Wang, Y. Huang, F. Fang, K. Navaie and Z. Ding, “Resource allocation for hybrid
NOMA MEC offloading,” IEEE Trans. Wirel. Commun., vol. l9, no. 7, pp. 4964–4977, 2020. doi:
10.1109/TWC.2020.2988532.

[30] Z. Ali, S. Khaf, Z. H. Abbas, G. Abbas, F. Muhammad and S. Kim, “A deep learning approach for mobility-
aware and energy-efficient resource allocation in MEC,” IEEE Access, vol. 8, no. 7, pp. 179530–179546,
2020. doi: 10.1109/ACCESS.2020.3028240.

[31] L. Sun, L. Wan, and X. Wang, “Learning-based resource allocation strategy for Industrial IoT in
UAV-enabled MEC systems,” IEEE Trans. Industr. Inform., vol. 17, no. 7, pp. 5031–5040, 2021. doi:
10.1109/TII.2020.3024170.

[32] R. Chai, J. Lin, M. Chen, and Q. Chen, “Task execution cost minimization-based joint computation
offloading and resource allocation for cellular D2D MEC systems,” IEEE Syst. J., vol. 13, no. 4, pp. 4110–
4121, 2019. doi: 10.1109/JSYST.2019.2921115.

https://doi.org/10.1016/j.sysarc.2018.05.007
https://doi.org/10.1109/MC.2016.245
https://doi.org/10.1109/TII.2020.3029766
https://doi.org/10.1109/TNSM.2023.3322881
https://doi.org/10.1109/MIC.2017.37
https://doi.org/10.1016/j.ins.2018.06.002
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1109/TVT.2024.3370196
https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.1109/JSAC.2020.3018809
https://doi.org/10.1109/ACCESS.2019.2936435
https://doi.org/10.1109/JIOT.2021.3081694
https://doi.org/10.1109/TWC.2020.2988532
https://doi.org/10.1109/ACCESS.2020.3028240
https://doi.org/10.1109/TII.2020.3024170
https://doi.org/10.1109/JSYST.2019.2921115

660 CMC, 2024, vol.80, no.1

[33] D. Wang, H. Qin, B. Song, X. Du, and M. Guizani, “Resource allocation in information-centric wireless
networking with D2D-enabled MEC: A deep reinforcement learning approach,” IEEE Access, vol. 7, pp.
114935–114944, 2019. doi: 10.1109/ACCESS.2019.2935545.

[34] F. Song, M. Zhu, Y. Zhou, I. You, and H. Zhan, “Smart collaborative tracking for ubiquitous power
IoT in edge-cloud interplay domain,” IEEE Internet Things J., vol. 7, no. 7, pp. 6046–6055, 2019. doi:
10.1109/JIOT.2019.2958097.

[35] J. Bellendorf and Z. Á. Mann, “Classification of optimization problems in fog computing,” Future Gener.
Comput. Syst., vol. 107, no. 5, pp. 158–176, 2020. doi: 10.1016/j.future.2020.01.036.

[36] H. Yang et al., “Dispersed computing for tactical edge in future wars: Vision, architecture, and challenges,”
Wirel. Commun. Mob. Comput., pp. 1–31, 2021. doi: 10.1155/2021/8899186.

[37] P. Rahimzadeh et al., “SPARCLE: Stream processing applications over dispersed computing networks,” in
2020 IEEE 40th Int. Conf. Distrib. Comput. Syst. (ICDCS), 2020, pp. 1067–1078.

[38] C. Zhou, C. Gong, H. Hui, F. Lin, and G. Zeng, “A task-resource joint management model with intelligent
control for mission-aware dispersed computing,” China Commun., vol. 18, no. 10, pp. 214–232, 2021. doi:
10.23919/JCC.2021.10.016.

[39] A. Paulos et al., “Priority-enabled load balancing for dispersed computing,” in 2021 IEEE 5th Int. Conf.
Fog Edge Comput. (ICFEC), 2021, pp. 1–8.

[40] X. Wang et al., “Deep reinforcement learning-based air combat maneuver decision-making: Literature
review, implementation tutorial and future direction,” Artif. Intell. Rev., vol. 57, no. 1, pp. 1, 2024. doi:
10.1007/s10462-023-10620-2.

[41] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, and I. K. Dong, “Applications of deep reinforcement
learning in communications and networking: A Survey,” IEEE Commun. Surv. Tut., vol. 21, no. 4, pp.
3133–3174, 2019. doi: 10.1109/COMST.2019.2916583.

[42] Y. He, N. Zhao, and H. Yin, “Integrated networking, caching, and computing for connected vehicles: A
deep reinforcement learning approach,” IEEE Trans. Vehicular Technol., vol. 67, no. 1, pp. 44–55, 2018.
doi: 10.1109/TVT.2017.2760281.

https://doi.org/10.1109/ACCESS.2019.2935545
https://doi.org/10.1109/JIOT.2019.2958097
https://doi.org/10.1016/j.future.2020.01.036
https://doi.org/10.1155/2021/8899186
https://doi.org/10.23919/JCC.2021.10.016
https://doi.org/10.1007/s10462-023-10620-2
https://doi.org/10.1109/COMST.2019.2916583
https://doi.org/10.1109/TVT.2017.2760281

	Distributed Resource Allocation in Dispersed Computing Environment Based on UAV Track Inspection in Urban Rail Transit
	1 Introduction
	2 Related Works
	3 System Model and Problem Formulation
	4 Proposed Solutions
	5 Numerical Simulations
	6 Conclusion
	References

