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ABSTRACT

Complex optimization problems hold broad significance across numerous fields and applications. However, as the
dimensionality of such problems increases, issues like the curse of dimensionality and local optima trapping also
arise. To address these challenges, this paper proposes a novel Wild Gibbon Optimization Algorithm (WGOA)
based on an analysis of wild gibbon population behavior. WGOA comprises two strategies: community search and
community competition. The community search strategy facilitates information exchange between two gibbon
families, generating multiple candidate solutions to enhance algorithm diversity. Meanwhile, the community
competition strategy reselects leaders for the population after each iteration, thus enhancing algorithm precision.
To assess the algorithm’s performance, CEC2017 and CEC2022 are chosen as test functions. In the CEC2017 test
suite, WGOA secures first place in 10 functions. In the CEC2022 benchmark functions, WGOA obtained the first
rank in 5 functions. The ultimate experimental findings demonstrate that the Wild Gibbon Optimization Algorithm
outperforms others in tested functions. This underscores the strong robustness and stability of the gibbon algorithm
in tackling complex single-objective optimization problems.
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1 Introduction

In recent years, the field of optimization has emerged a surge of complex problems, including those
with non-linear dynamics [1], intricate constraints [2], and notably, high dimensions. This evolving
landscape has brought optimization algorithms into the limelight of scholarly research. The increasing
dimensions in various domains such as resource allocation, scheduling, and network design, have
catalyzed the emergence of high-dimensional optimization challenges. These challenges are marked by
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an array of variables, which significantly complicates both analysis and solution process. Compared
with other problems, a distinctive aspect of high-dimensional optimization problems is the exponential
increase in the search space proportional to the number of decision variables involved.

Metaheuristic algorithms have their roots in the 1960s and 1970s, a period marked by the
exploration of heuristic methods derived from observing natural phenomena and human decision-
making to tackle complex optimization challenges. These innovative approaches, inspired by the
mechanisms of biological evolution, collective behavior of species, and physical processes, were
developed to simulate the exploration and learning behaviors found in nature. The aim was to navigate
the vast solution spaces of optimization problems efficiently, seeking out optimal or sufficiently
good solutions. These algorithms have found widespread application across various fields, notably in
engineering design, scheduling problems, network design, and machine learning, where they facilitate
resource arrangement, network configuration optimization, and learning model enhancement. The
application of metaheuristic algorithms spans a wide array of fields like segmentation [3,4] feature
processing [5], vision transformer [6], and multiple-disease detection [7].

Despite their versatility and demonstrated efficacy, metaheuristic algorithms are not without
limitations. Challenges include ensuring convergence to global optima in high-dimensional and com-
plex problem spaces, the complexity and sensitivity of algorithm parameters, which can significantly
affect performance, and the substantial computational resources required for large-scale problems.
Additionally, the lack of a rigorous theoretical foundation for some metaheuristic approaches makes
their behavior and efficiency difficult to predict accurately. Nevertheless, the adaptability and success
of metaheuristic algorithms in practical applications continue to support their widespread use and
ongoing development in the field of optimization, highlighting the balance between their potential
and limitations.

To address these challenges, this paper proposes a novel Wild Gibbon Optimization Algorithm
(WGOA) based on an analysis of the behavior of wild gibbon populations. The WGOA simplifies
the family structure of gibbons to consist of a female, a male, and an offspring, utilizing particles
without mass and volume to simulate the behavioral patterns of gibbon populations during foraging
and territory acquisition. This search pattern enhances the algorithm’s ability to provide high-precision
solutions for high-dimensional optimization problems. The main contributions of the algorithm
include the following main points:

• A community search strategy is proposed in this work. This strategy involves leading the particle
swarm with particles that have male gibbon identities to perform global searches. This approach
helps in determining the personal optima. This strategy is proposed and developed by the
authors to enhance the global search capability of the algorithm.

• A community competition strategy is proposed in this work. This strategy entails the global
optimal group competing with the positions explored by the male gibbons to ensure the
superiority of the group’s position. This method is introduced by the authors to improve the
algorithm’s convergence towards the global optimum.

• The combination of the community search strategy and community competition strategy
enables the algorithm to conduct broad-scale searches in the initial phases and precise searches
in later stages. This integration significantly enhances both the diversity and accuracy of the
solution set, ensuring robust and reliable results.

The remainder of this thesis will explain this algorithm in detail. Section 2 introduces related work
of this study. Section 3 describes the details of the algorithm. Section 4 shows the contents of the
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simulations and the results of the experiments. Section 5 summarizes the content of this study and
future work.

2 Related work

Metaheuristic algorithms [8–10] are high-level heuristic methods used to find approximate solu-
tions to complex optimization problems. These methods are often inspired by natural phenomena,
biological evolution, and behaviors in different species [11–13]. Metaheuristic algorithms have shown
great performance in various applications, such as image segmentation [14–16], path planning for
mobile robots [17,18], and manufacturing energy optimization problems [19–21]. In recent years, many
researchers have developed new metaheuristic algorithms to address these optimization challenges.
Su et al. [22] introduced the RIME optimization algorithm (RIME) inspired by the physical phe-
nomenon of rime-ice. The RIME algorithm implements the exploration and exploitation behaviors
in the optimization methods by simulating the soft-rime and hard-rime growth process of rime-
ice. Song et al. [23] proposed the Phasmatodea population evolution (PPE) algorithm based on
the evolution characteristics of the Phasmatodea population. Połap et al. [24] proposed a red fox
optimizer (ROF), searching for food, hunting, and developing population while escaping from hunters.
These meta-heuristic algorithms have shown good optimization performance in many real-world
optimization problems. However, with the further study of these algorithms in the application fields,
some researchers have raised some problems of these original meta-heuristic algorithms such as
premature convergence [25] and slow convergence speed [26].

To overcome these problems, many scholars have optimized these original algorithms from
different aspects. Some scholars have applied the method of adopting new search strategies. Li et al. [27]
developed an adaptive particle swarm optimization with decoupled exploration and exploitation
(APSO-DEE) to effectively balance exploration and exploitation. The APSO-DEE adopted two
novel learning strategies, a local sparseness degree measurement in fitness landscape and an adaptive
multi-swarm strategy. Zhang et al. [28] developed a charging safety early warning model for electric
vehicles based on the improved grey wolf optimization (IGWO) algorithm. The IGWO improves the
classic grey wolf optimization (GWO) algorithm by utilizing a search method based on clustering
search results, which can boost wolf diversity and avoid slipping into the local optimum owing
to insufficient information exchange among wolves. In the context of optimizing deep learning
and evolutionary algorithms, meta-heuristic methods have been integrated with neural networks
[29–31] and applied to various optimization problems [32–34]. Tang et al. [35] also proposed a whale
optimization algorithm combined with an artificial bee colony (ACWOA) to address the problems of
slow convergence and the tendency to fall into local optima in the classic whale optimization algorithm
(WOA). Thawkar et al. [36] presented a butterfly optimization algorithm and ant lion optimizer
(BOAALO) for breast cancer prediction. The experimental results show that BOAALO outperforms
the original butterfly optimization algorithm (BOA) and ant lion optimizer (ALO) in terms of each
given statistical measure. Deb et al. [37] proposed a novel meta-heuristic considering the hybridization
of chicken swarm optimization (CSO) with ant lion optimization (ALO) for effectively and efficiently
coping with the charger placement problem. The amalgamation of CSO with ALO can enhance the
performance of ALO, thereby preventing it from getting stuck in the local optima. Emam et al. [38]
proposed a modified Reptile search algorithm (mRSA), which combines the RSA algorithm with the
Runge kutta optimizer (RUN). The mRSA mitigates the limitations of RSA, which include being stuck
in local optima areas and having an insufficient balance between exploitation and exploration.



1206 CMC, 2024, vol.80, no.1

Despite several improvement measures taken to enhance the effectiveness of meta-heuristic opti-
mization algorithm in solving practical problems, challenges persist in dealing with high-dimensional
problems. High-dimensional optimization problems usually involve large-scale sets of parameters
or variables, leading to a significant increase in the dimensionality of the solution space. In high-
dimensional space, the number of local optimal solutions increases as the solution space expands.
This is due to the fact that the solution space of high-dimensional problems is more extensive
and the local optimal solutions have more diverse forms in each dimension. The existence of more
local optimal solutions in the solution space increases the possibility that the algorithms stay in
local optimal solutions during the search process. As a result, the algorithm is more likely to fall
into local optima, which in turn increases the difficulty of the problems. Researchers have developed
a number of algorithms specifically for high-dimensional optimization problems to address these
challenges. MiarNaeimi et al. [39] proposed the Horse herd optimization algorithm (HOA) inspired
by the herding behavior of horses for high-dimensional optimization problems. HOA performs well in
solving high-dimensional complex problems, due to the large number of control parameters it extracts
from the behavior of horses of different ages. Ma et al. [40] proposed a two-stage hybrid ACO for high-
dimensional feature selection (TSHFS-ACO). These optimization algorithms can alleviate some of
the challenges associated with high-dimensional optimization problems, but there are still limitations.
When solving high-dimensional problems, although the two-stage strategy of the TSHFS-ACO can
alleviate the algorithm from getting into local optima, there still exist errors in feature selection,
which may result in the removal of potentially useful features on the test set, thereby impacting the
performance of this model. The HOA has a strong ability to balance the two phases of exploration and
exploitation, but it suffers from premature convergence, which limits its effectiveness in finding optimal
solutions. Therefore, a novel algorithm based on gibbon territory contention behavior is proposed to
solve high-dimensional problems, called the gibbon algorithm.

Zhong et al. [41] introduced the Beluga Whale Optimization (BWO) algorithm, inspired by beluga
whale behaviors, which effectively solves optimization problems through self-adaptive mechanisms,
Levy flight integration, and competitive performance compared to 15 other metaheuristic algorithms,
validated across various benchmark functions and real-world engineering problems. Inspired by
African vultures’ foraging and navigation behaviors, Abdollahzadeh et al. [42] introduced the African
Vultures Optimization Algorithm (AVOA), demonstrating superior performance in solving optimiza-
tion problems compared to existing algorithms across various benchmark functions and engineering
design problems, supported by statistical evaluation. In addition, to solve high dimensional complex
optimization problems, Harris Hawks Optimization (HHO) [43], Dung Beetle Optimizer (DBO) [44],
Whale Optimization Algorithm (WOA) [45], Runge Kutta Optimizer (RUN) [46], Krill Herd (KH)
[47], Artificial Gorilla Troops Optimizer (GTO) [48], Novel Hippo Swarm Optimization (NHSO) [49]
are also proposed.

3 Materials and Methods
3.1 Behavior of Gibbon

The gibbon is one of the primates belonging to the family Hominidae. They are mainly found in
the tropical rainforests of South East Asia, including Thailand, Indonesia, Malaysia and Southern
China. They are social animals used to living in groups. As such, they generally form family units
and colonies within their populations, maintaining the structure and order of the group through
social interaction. Family units generally consist of a pair of adult males and females and their minor
children. Within a family unit, there may be multiple adult males with certain social hierarchies and
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competitive relationships, and it is usually the alpha male that dominates the decision-making and
defense of the family unit. In order to compete for food resources and habitat environments, they
establish their own territories in the forest and defend them. The size of the territory depends on the
availability of resources and the number of family units. The quality of territory has a direct impact
on gibbon reproduction and survival, thus a particular kind of territorial competition is present in
gibbon populations. Family units mark and claim territories through musical calls, which are unique to
their species and an important form of communication between them. When competing for territory,
the alpha male will roam to determine the distribution of resources and environmental conditions
in different territories. This means moving quickly between trees by swinging his long arms to gain
a territorial view. In a given area, multiple family units may form a larger group, called a “colony”.
There may be some degree of competition or cooperation between the various family units in the herd.

3.2 Wild Gibbon Optimization Algorithm

Inspired by the competition and survival patterns of gibbon populations, the behavior of gibbons
was simulated, and the Wild Gibbon Optimization algorithm (WGOA) was designed, which relates
the superiority and inferiority process resulting from gibbon population competition to an optimized
objective function. During the simulation, it is assumed that the family contains three members: male
gibbons, female gibbons, and child gibbons. The physiological factors such as mass and volume of
the members are ignored, and they are represented as a point in space, respectively. The value of a
gibbon’s preference for a territory depends on the food abundance, and habitat superiority of that
territory, which is related to the optimal value of the objective function. The territorial replacement
behavior of gibbons arising from population competition is then modeled as a process of solution
updating.

In the gibbon family, the male gibbon is considered to be the leader of social behaviors such
as territorial conservation and population competition. Male gibbons evaluate their environment by
roaming in trees to facilitate locating a superior survival environment. This assessment process is
modeled as a search process for solutions and mainly works on local search. Female gibbon is able
to maintain the stability of family relationships and therefore can keep the balance during particle
updating. Child gibbon can achieve roaming over a larger area of the family territory and can improve
the global property in the particle search process. After finding a superior survival environment, male
gibbons lead their families to migrate, allowing both male and child gibbons to live around the superior
environment.

In simulation experiments, particles without weight and volume are used to simulate the behavior
of gibbons. Each particle is endowed with three layers of memory, with the first layer representing
male gibbons, the second layer representing female gibbons, and the third layer representing juvenile
gibbons. Each particle participates in evolution as a collective entity of a gibbon family. Based on the
environmental assessment process and family migration process of the gibbon population, two search
strategies are proposed: the community search strategy and the community competition strategy. The
cooperation of these two strategies can balance the local search while expanding the search scope, thus
avoiding falling into local optimum and improving the search accuracy. The pseudo-code for the basic
steps of WGOA is shown in Algorithm 1. The flowchart of WGOA is shown in Fig. 1.
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Figure 1: The flowchart of the WGOA

Algorithm 1: Wild Gibbon Optimization Algorithm
Require: Fitness function, F
Require: Maximum number of evolution, T
Require: Gibbons, Gib = Gib(1), Gib(2), ..., (n)
Require: Leader of gibbons, BestGib
Require: Position of Personal historical best territories, Pbest − history
Require: Position of Global best historical house, Gbest history
1: mm = 3
2: Each Gib contains mm memory layers
3: For mm = 1, 3
4: Calculate the positions with F
5: Record the results as Gib(1) (mm), Gib(2) (mm), . . . , and Gib(n) (mm)
6: End For
7: Sort the memories of each particle.
8: Best positions place in the first layer
9: Worst positions place in the last layer
10: t = 1
11: while t < T do
12: Do the Community search strategy
13: Do the Community competition strategy
14: t = t + 1
15: end while
16: Choose the best from Gib
17: Output BestGib
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3.3 Community Search Strategy

In the gibbon family, female and child gibbons follow the male gibbon, leading to the elimination
of poorer territories due to the dominant role of male gibbons in territory exploration. In the
experiments, particles without weight and volume are used to simulate the behavior of gibbons. Within
the community search strategy, each particle with three memory layers simulates a gibbon family.
Among them, the first layer of memory records the best position, representing male gibbons; the
second layer of memory records the second-best position, representing female gibbons; the third layer
of memory records the third-best position, representing juvenile gibbons.

In each iteration, the group is searched by the leader particle according to Eq. (1). If the leader
particle discovers a better position, the group particles are updated to ensure the superiority of the
group’s position. Otherwise, the group particles remain unchanged. This process is completed through
Eq. (2). At the same time, the other two particles in the group, represented by the female gibbon and
the child gibbon, work to maintain a balance between global and local searches.

α = Gib (ii)t
(kk) + BestGibt (ll)

2
β = ∣

∣Gib (ii)t
(kk) + BestGibt (ll)

∣
∣

GibCandidate(ii)t+1(kk, ll) = GD(α, β) (1)

where Gib(ii)t is the position of the iith gibbon in the tth iteration, BestGibt is the best gibbon in the
tth iteration, kk = [1, 2, 3] and ll = [1, 2, 3] stand for the memory layer of the Gib and the BestGib,
GibCandidate(ii) is the new position that explored by this iteration, and GD() is Gaussian distribution
with a mean α and a standard deviation β.

Gib(ii)t+1 = Best
(
3, (GibCandidate(ii)t+1, Gib

(
ii)t+1

))
(2)

where Gib(ii)t+1 is the position of the iith gibbon in the (t + 1)th iteration. Best (3, array) is a function
used to find the best 3 position form the input array.

The pseudo-code of community search strategy is shown in Algorithm 2. Under this strategy, the
information of the particles will be fully utilized, making the global search more efficient.

Algorithm 2: Community Search Strategy
Require: Number of gibbons n
Require: Gibbons, Gib = Gib(1), Gib(2), ..., (n)
Require: Leader of gibbons, BestGib
1: ii = 1
2: while ii < n do
3: Calculate the candidate positions of Gib (ii) by Eq. (1)
4: Update position of Gib (ii) in the next iteration with Eq. (2)
5: ii = ii + 1
6: end while

3.4 Community Competition Strategy

Male gibbons have a stronger fighting ability, allowing them to compete with other families for
superior territories. After this competition, the victor will occupy the best territory known so far.
According to this modal, in the community competition strategy, the position of the global optimal
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particle is updated. This strategy maintains three historical best positions to enhance local search.
The number of these historical positions matches the number in the particle group of the community
search strategy. The global optimal particle group is updated when the leader particle searches for a
preferred location. Specifically, the new position found by the leader particle is compared with the
current global optimal group positions. If the new position is superior, the global optimal group is
updated, thereby ensuring favorable conditions for the group’s position. Following this, the global
best particle is updated using Eq. (3).

BestGibCandit+1 = Best
(
Gib (1)

t
(1) , Gib (2)

t
(1) , . . . , Gib (n)

t
(1)

)

BestGibt+1 = Best(BestGibCandit+1, BestGibt) (3)

where BestGibCandi(ii)t+1 is the candidate position of the best gibbons in the (t + 1)th iteration,
Gib(ii)t(1) is the best memory of the iith gibbon in the tth iteration, BestGibt+1 is the position of the
best gibbons in the (t + 1)th iteration. Best (array) is a function used to find the best position form the
input array.

The pseudo-code of community competition strategy is shown in Algorithm 3. This strategy
improves the diversity of particles while facilitating the local exploration of particles. These two
strategies can work together effectively to ensure that the global search range is increased while the
search efficiency is improved. This cooperation promotes the balance of local and global search during
iteration.

Algorithm 3: Community Competition Strategy
Require: Gibbons, Gib = Gib(1), Gib(2), ..., (n)
Require: Leader of gibbons, BestGib
Require: Number of gibbons, n
Require: Objective function, F
1: jj = 1
2: while jj < n do
3: Calculate the position of BestGib in the next iteration by Eq. (3)
4: jj = jj + 1
5: end while

This is followed by an analysis regarding the time complexity. From the pseudo-code of this
WGOA, it can be seen that the algorithm mainly consists of particle swarm initialization, community
search strategy and community competition strategy. For a particle swarm of size N, the time
complexity of the algorithm for random initialization is O(N). In both strategies, only the linear
computation with a factor of three is added, which do not increase in computational complexity.
Therefore, the time complexity of WGOA is equivalent to the time complexity of the particle swarm
algorithm, both being O(N).

4 Results
4.1 Experimental Methods

To better show the experimental results, CEC2017 and CEC2022 benchmark functions are
selected as the test function. CEC2017 contains 29 test functions, which include uni-modal func-
tions, simple multi-peaked functions, hybrid functions and composite functions. For the uni-modal
functions, the algorithm has a low difficulty in finding the optimal value, and these functions have
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a unique global optimal value, which can show the ability of the algorithm to search globally.
Simple multi-peaked functions, hybrid functions and composite functions all have multiple local
optima and a unique global optimum. The algorithm is more difficult to find the superiority in these
functions. The functions can test whether the algorithm can jump out of the local optimum, has high
search efficiency and other comprehensive capabilities. The CEC2022, which contains 13 different
benchmark functions, has been recognized for its ability to detect the effectiveness of algorithms
in solving high-dimensional optimization problems. To ensure fairness, Function Evaluation Times
(FES) are used to evaluate the performance of all algorithms. To show the performance of the WGOA
algorithm, 9 excellent meta-heuristics are selected as a control group: Beluga Whale Optimization
(BWO) [41], African Vultures Optimization Algorithm (AVOA) [42], Harris Hawks Optimization
(HHO) [43], Dung Beetle Optimizer (DBO) [44], Whale Optimization Algorithm (WOA) [45], Runge
Kutta Optimizer (RUN) [46], Krill Herd (KH) [47], Artificial Gorilla Troops Optimizer (GTO) [48]
and RIME. To ensure equity, all algorithms were employed with their respective optimal parameters.
To ensure the fairness of the experiment, the parameters in the algorithm will be consistent with the
control group, where the particle population size is 100, every algorithm will stop when it reaches the
max fitness-function evaluations (FES) times 100,000. Each group of experiments will be run 30 times
independently to reduce the error caused by experimental chance.

4.2 Experimental Results

To compare the experimental and control groups with higher efficiency, we subtract the optimal
value obtained by the experimental results from the theoretical optimal value of the function. The
smaller the result obtained, the higher the accuracy of the algorithm is indicated. This result will be
calculated using Eq. (4) and is denoted as PT .

PT = Practicaloptimum − Theoreticaloptimum (4)

where Practicaloptimum stands for the results obtained by the algorithm after the final iteration,
Theoreticaloptimum stands for the theoretical optimum solution.

The MEAN and STD of 30 sets of independent runs are recorded. Numerical results of CEC2017
are shown in Tables 1–5. Numerical results of CEC2022 are shown in Tables 6 and 7. Average rank of
the CEC 2017 and CEC2020 are shown in Tables 8 and 9.

Table 1: PTs of the WGOA, WOA [41], AVOA [42], HHO [43], DBO [44], BWO [45], RUN [46], KH
[47], GTO [48] and RIME [22] for CEC2017 F1–F6

F1 F2
Mean Std Rank Mean Std Rank

WGOA 1.5677E+04 1.6460E+04 2 1.5117E+06 5.8701E+05 6
WOA 3.8130E+07 1.4923E+07 6 6.3278E+05 1.4586E+05 5
AVOA 7.0409E+03 7.4188E+03 1 2.0679E+29 1.1260E+30 9
HHO 2.0353E+08 2.4336E+07 8 3.3689E+04 9.0611E+03 1
DBO 7.0133E+07 5.1897E+07 7 3.1625E+05 2.2364E+04 4
BWO 2.3965E+11 5.9748E+09 10 3.0691E+05 1.7515E+04 3
RUN 3.1056E+04 1.4964E+04 3 1.2809E+19 5.4147E+19 8
KH 6.7754E+05 3.6529E+05 5 1.6835E+05 3.0296E+04 2

(Continued)



1212 CMC, 2024, vol.80, no.1

Table 1 (continued)

F1 F2
Mean Std Rank Mean Std Rank

GTO 2.7575E+10 8.1273E+09 9 2.5563E+08 1.1159E+09 7
RIME 2.2039E+05 5.2497E+04 4 7.8920E+48 4.2157E+49 10

F3 F4
Mean Std Rank Mean Std Rank

WGOA 1.7255E+02 4.9743E+01 1 7.6376E+02 1.4101E+02 5
WOA 6.3948E+02 1.1579E+02 5 9.7206E+02 1.3303E+02 7
AVOA 1.9893E+04 6.9086E+03 9 2.5897E+02 4.7446E+01 2
HHO 4.4460E+02 8.8535E+01 3 9.1924E+02 5.7905E+01 6
DBO 4.7949E+02 1.3438E+02 4 1.0877E+03 1.6992E+02 8
BWO 7.7138E+04 4.2721E+03 10 1.5532E+03 2.4414E+01 10
RUN 6.4269E+02 2.4138E+02 6 2.5697E+02 4.8561E+01 1
KH 2.9256E+02 4.7394E+01 2 6.8078E+02 6.5403E+01 4
GTO 3.5120E+03 1.1616E+03 7 1.1205E+03 1.9394E+02 9
RIME 1.7095E+04 3.6351E+03 8 2.7812E+02 3.8458E+01 3

F5 F6
Mean Std Rank Mean Std Rank

WGOA 3.3550E+01 8.9035E+00 1 8.0839E+02 1.4168E+02 4
WOA 7.9474E+01 1.0534E+01 5 2.5941E+03 1.5901E+02 8
AVOA 7.8227E+02 5.9745E+01 9 4.2041E+01 4.5169E+00 2
HHO 7.5938E+01 2.8957E+00 4 2.7393E+03 1.1084E+02 9
DBO 7.1517E+01 8.2798E+00 3 1.5373E+03 4.0682E+02 6
BWO 1.0769E+02 2.1711E+00 7 3.0502E+03 4.0082E+01 10
RUN 8.1528E+02 4.1280E+01 10 5.9126E+01 2.3011E+00 3
KH 5.9920E+01 3.4014E+00 2 1.3684E+03 1.2743E+02 5
GTO 8.7430E+01 1.2545E+01 6 2.1498E+03 2.6910E+02 7
RIME 3.4981E+02 5.4910E+01 8 3.5690E+00 1.3945E+00 1

Table 2: PTs of the WGOA, WOA [41], AVOA [42], HHO [43], DBO [44], BWO [45], RUN [46], KH
[47], GTO [48] and RIME [22] for CEC2017 F7–F12

F7 F8
Mean Std Rank Mean Std Rank

WGOA 6.9690E+02 1.2280E+02 2 3.1028E+04 9.9944E+03 6
WOA 1.0806E+03 1.1978E+02 5 3.4413E+04 7.5232E+03 7
AVOA 2.1387E+03 1.6353E+02 10 8.8201E+02 8.4873E+01 2
HHO 1.0479E+03 6.5269E+01 4 2.8504E+04 2.8439E+03 5
DBO 1.2171E+03 1.3817E+02 7 3.5978E+04 9.9184E+03 8
BWO 1.6927E+03 4.2342E+01 8 6.9486E+04 4.2354E+03 10

(Continued)
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Table 2 (continued)

F7 F8
Mean Std Rank Mean Std Rank

RUN 1.8655E+03 2.6186E+02 9 8.8937E+02 7.9785E+01 3
KH 7.7637E+02 7.0616E+01 3 2.4353E+04 2.0390E+03 4
GTO 1.0811E+03 2.2076E+02 6 6.6399E+04 1.9632E+04 9
RIME 4.4024E+02 7.0102E+01 1 3.6914E+02 6.0521E+01 1

F9 F10
Mean Std Rank Mean Std Rank

WGOA 2.1368E+04 8.3580E+03 7 2.9221E+03 1.6627E+03 2
WOA 1.9977E+04 2.7157E+03 5 6.1770E+03 1.9767E+03 3
AVOA 2.1459E+04 1.2188E+03 8 1.5063E+04 1.5755E+03 7
HHO 1.7961E+04 1.4556E+03 4 1.9665E+03 2.0934E+02 1
DBO 1.6820E+04 1.2688E+03 3 1.3515E+04 1.5218E+04 4
BWO 2.9499E+04 6.3392E+02 9 1.8062E+05 1.7467E+04 9
RUN 2.0892E+04 1.0554E+03 6 1.4015E+04 1.6551E+03 5
KH 1.4499E+04 1.0657E+03 2 1.9329E+04 8.0750E+03 8
GTO 3.0969E+04 3.7263E+03 10 2.3825E+05 1.5330E+05 10
RIME 3.9488E+03 4.5068E+03 1 1.4154E+04 1.2409E+03 6

F11 F12
Mean Std Rank Mean Std Rank

WGOA 6.1830E+07 3.3193E+07 5 4.9692E+03 5.3134E+03 1
WOA 6.2045E+08 2.2725E+08 8 5.1688E+05 2.3925E+06 3
AVOA 1.2659E+03 2.5884E+02 2 1.0450E+07 4.0807E+06 8
HHO 2.9424E+08 9.7373E+07 6 3.3110E+06 7.5765E+05 4
DBO 4.3304E+08 2.4942E+08 7 5.7140E+06 7.3043E+06 6
BWO 1.6016E+11 1.1024E+10 10 3.4787E+10 2.4279E+09 10
RUN 8.4926E+02 9.9614E+01 1 7.7047E+06 2.2883E+06 7
KH 1.7966E+07 7.4078E+06 4 2.5157E+04 5.3910E+03 2
GTO 1.8062E+09 9.9299E+08 9 4.6604E+06 5.8679E+06 5
RIME 1.7574E+03 3.6115E+02 3 1.3046E+08 4.9179E+07 9

Table 3: PTs of the WGOA, WOA [41], AVOA [42], HHO [43], DBO [44], BWO [45], RUN [46], KH
[47], GTO [48] and RIME [22] for CEC2017 F13–F18

F13 F14
Mean Std Rank Mean Std Rank

WGOA 1.1175E+06 5.8295E+05 6 3.2521E+03 3.4868E+03 1
WOA 1.8007E+06 8.1298E+05 7 1.3555E+05 2.9979E+05 5
AVOA 3.9292E+04 1.5474E+04 2 2.4554E+05 1.1736E+05 6
HHO 8.4966E+05 2.6113E+05 4 8.1435E+05 3.1016E+05 7

(Continued)
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Table 3 (continued)

F13 F14
Mean Std Rank Mean Std Rank

DBO 3.9007E+06 3.7220E+06 9 1.5755E+06 3.6424E+06 9
BWO 3.5458E+07 1.1002E+07 10 1.5787E+10 2.1423E+09 10
RUN 2.8022E+04 1.1870E+04 1 2.1031E+04 5.8728E+03 3
KH 8.7140E+05 3.4445E+05 5 7.1500E+03 2.4382E+03 2
GTO 2.2201E+06 1.5461E+06 8 5.2315E+04 3.6952E+04 4
RIME 9.5127E+04 4.1220E+04 3 8.4374E+05 4.3763E+05 8

F15 F16
Mean Std Rank Mean Std Rank

WGOA 4.9185E+03 8.2894E+02 2 3.8093E+03 7.1820E+02 2
WOA 7.7092E+03 1.3522E+03 6 5.2774E+03 9.1474E+02 7
AVOA 2.4926E+04 1.2295E+04 9 4.8914E+03 7.4908E+02 6
HHO 5.2354E+03 7.2397E+02 3 4.3198E+03 7.4277E+02 5
DBO 6.0135E+03 8.6341E+02 4 5.4550E+03 8.7846E+02 8
BWO 1.6842E+04 1.0233E+03 7 8.4532E+05 3.7918E+05 10
RUN 1.8187E+04 2.3760E+03 8 4.0636E+03 4.8366E+02 3
KH 4.2599E+03 5.2187E+02 1 3.5548E+03 5.2781E+02 1
GTO 6.9138E+03 2.1154E+03 5 5.4699E+03 1.3644E+03 9
RIME 3.7635E+04 1.5407E+04 10 4.0727E+03 6.2767E+02 4

F17 F18
Mean Std Rank Mean Std Rank

WGOA 4.7528E+06 3.7204E+06 8 7.9838E+03 7.8596E+03 2
WOA 2.0015E+06 8.1858E+05 5 1.3487E+07 5.6442E+06 9
AVOA 4.0356E+03 7.0556E+02 3 3.6792E+05 1.2191E+05 5
HHO 2.0541E+06 9.1889E+05 6 3.6142E+06 1.5835E+06 8
DBO 6.5477E+06 5.3686E+06 9 2.1052E+06 2.1435E+06 7
BWO 8.3552E+07 2.0975E+07 10 1.5805E+10 1.7126E+09 10
RUN 3.5319E+03 5.9796E+02 2 6.4992E+04 1.1775E+04 3
KH 1.2013E+06 4.3295E+05 4 4.7389E+03 3.0637E+03 1
GTO 3.1042E+06 3.3526E+06 7 3.3295E+05 2.8573E+05 4
RIME 3.2502E+03 4.5328E+02 1 1.5933E+06 5.9653E+05 6

Table 4: PTs of the WGOA, WOA [41], AVOA [42], HHO [43], DBO [44], BWO [45], RUN [46], KH
[47], GTO [48] and RIME [22] for CEC2017 F19–F24

F19 F20
Mean Std Rank Mean Std Rank

WGOA 2.9705E+03 5.6892E+02 1 9.4915E+02 1.1106E+02 1
WOA 4.4757E+03 5.2130E+02 5 1.8251E+03 2.1791E+02 6

(Continued)
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Table 4 (continued)

F19 F20
Mean Std Rank Mean Std Rank

AVOA 8.3904E+03 4.8741E+03 8 3.8013E+03 7.4846E+02 10
HHO 3.6570E+03 4.4489E+02 3 1.6809E+03 1.5178E+02 5
DBO 3.8992E+03 6.0504E+02 4 1.5055E+03 1.6818E+02 4
BWO 5.1118E+03 1.5528E+02 6 2.3934E+03 7.6848E+01 7
RUN 1.6872E+05 1.1367E+05 10 2.6502E+03 4.4172E+02 8
KH 3.3372E+03 5.3436E+02 2 1.1991E+03 1.2050E+02 2
GTO 5.8085E+03 9.1755E+02 7 1.3624E+03 2.3766E+02 3
RIME 3.2574E+04 2.0310E+04 9 2.9207E+03 4.3967E+02 9

F21 F22
Mean Std Rank Mean Std Rank

WGOA 2.1945E+04 8.0321E+03 8 1.2019E+03 9.3203E+01 1
WOA 2.1942E+04 2.3233E+03 7 2.5253E+03 2.0821E+02 6
AVOA 1.2277E+03 1.3200E+02 3 1.6835E+04 1.3892E+03 10
HHO 2.0294E+04 1.5673E+03 6 2.1995E+03 1.5807E+02 4
DBO 1.8413E+04 1.1721E+03 5 1.8726E+03 2.0519E+02 2
BWO 3.1303E+04 4.4623E+02 9 3.3068E+03 1.3140E+02 7
RUN 8.4620E+02 1.0216E+02 2 1.6506E+04 1.5905E+03 9
KH 1.7747E+04 1.2882E+03 4 2.2996E+03 2.1457E+02 5
GTO 3.2379E+04 3.9019E+03 10 1.8948E+03 2.2716E+02 3
RIME 5.8369E+02 6.5612E+01 1 1.5244E+04 1.1363E+03 8

F23 F24
Mean Std Rank Mean Std Rank

WGOA 1.7227E+03 1.3124E+02 4 7.9099E+02 5.7055E+01 1
WOA 3.4818E+03 4.1824E+02 9 1.1266E+03 5.9195E+01 4
AVOA 1.4453E+03 1.4074E+02 3 2.4078E+03 2.4322E+02 8
HHO 3.1410E+03 3.0699E+02 7 1.0178E+03 7.4656E+01 3
DBO 2.5953E+03 3.5158E+02 6 1.3647E+03 1.3416E+03 6
BWO 5.4920E+03 2.9178E+02 10 2.1805E+04 9.4738E+02 10
RUN 9.7780E+02 6.8252E+01 2 1.5397E+03 1.1323E+02 7
KH 3.2856E+03 4.5343E+02 8 8.1371E+02 5.8881E+01 2
GTO 2.2856E+03 3.0515E+02 5 3.3629E+03 5.6783E+02 9
RIME 8.1075E+02 5.2710E+01 1 1.2438E+03 6.5469E+01 5
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Table 5: PTs of the WGOA, WOA [41], AVOA [42], HHO [43], DBO [44], BWO [45], RUN [46], KH
[47], GTO [48] and RIME [22] for CEC2017 F25–F29

F25 F26

Mean Std Rank Mean Std Rank

WGOA 1.2850E+04 1.9719E+03 4 5.0002E+02 5.1864E-04 1
WOA 2.8387E+04 3.8823E+03 9 2.6027E+03 7.2273E+02 5
AVOA 8.1493E+02 4.4454E+01 2 1.8566E+04 2.1450E+03 9
HHO 2.1292E+04 1.6191E+03 7 1.5970E+03 3.1080E+02 4
DBO 1.6757E+04 3.7584E+03 5 1.2052E+03 2.0344E+02 2
BWO 4.4898E+04 1.2044E+03 10 7.4614E+03 6.3316E+02 8
RUN 8.1361E+02 4.3220E+01 1 2.1394E+04 5.6354E+03 10
KH 2.2457E+04 1.1833E+03 8 3.0045E+03 6.8529E+02 6
GTO 1.8719E+04 2.5344E+03 6 1.2209E+03 1.8820E+02 3
RIME 8.4668E+02 6.5230E+01 3 6.9515E+03 5.1394E+02 7

F27 F28

Mean Std Rank Mean Std Rank

WGOA 5.0002E+02 4.7272E-04 1 3.7622E+03 6.0296E+02 4
WOA 8.8104E+02 5.7330E+01 5 1.1264E+04 1.8351E+03 9
AVOA 1.2792E+03 2.0989E+02 7 5.6797E+02 3.2048E+01 2
HHO 7.6602E+02 4.6493E+01 3 5.7401E+03 5.9383E+02 6
DBO 1.4117E+04 6.0294E+03 9 6.4891E+03 1.2113E+03 7
BWO 2.2864E+04 5.9721E+02 10 1.3306E+05 4.7235E+04 10
RUN 1.2784E+03 1.6283E+02 6 5.6291E+02 4.2581E+01 1
KH 6.4636E+02 4.1165E+01 2 5.4926E+03 6.6055E+02 5
GTO 4.3238E+03 9.7466E+02 8 8.4484E+03 2.0045E+03 8
RIME 7.8421E+02 3.9729E+01 4 6.5587E+02 4.8622E+01 3

F29

Mean Std Rank

WGOA 1.5855E+04 3.2028E+04 4
WOA 2.0027E+08 9.8424E+07 9
AVOA 4.8590E+03 5.0543E+02 2
HHO 2.1301E+07 4.9017E+06 6
DBO 2.2893E+07 2.3374E+07 7
BWO 2.9081E+10 3.3400E+09 10
RUN 5.8021E+03 7.4118E+02 3
KH 1.2999E+06 5.3681E+05 5
GTO 5.1322E+07 3.8151E+07 8
RIME 3.7331E+03 5.7162E+02 1
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Table 6: PTs of the WGOA, WOA [41], AVOA [42], HHO [43], DBO [44], BWO [45], RUN [46], KH
[47], GTO [48] and RIME [22] for CEC2022 F1–F6

F1 F2
Mean Std Rank Mean Std Rank

WGOA 5.1159E-14 2.2884E-14 1 1.3901E+01 1.4514E+01 1
WOA 1.4858E+01 1.5330E+01 7 5.6630E+01 1.5234E+01 7
AVOA 2.5958E-13 9.8663E-14 2 2.6864E+01 2.5043E+01 2
HHO 1.9476E+00 7.7307E-01 5 5.5207E+01 1.8025E+01 5
DBO 1.8089E+01 3.1546E+01 8 5.9187E+01 2.4143E+01 9
BWO 7.4803E+03 2.0712E+03 9 5.8559E+01 9.9755E+00 8
RUN 2.6542E-04 2.9923E-04 3 3.0282E+01 2.3708E+01 3
KH 1.1759E+01 5.9322E+01 6 5.5283E+01 1.5073E+01 6
GTO 3.6622E+04 3.3693E+04 10 6.4862E+01 1.4499E+01 10
RIME 2.8662E-03 1.2520E-03 4 5.1721E+01 1.2818E+01 4

F3 F4
Mean Std Rank Mean Std Rank

WGOA 3.6394E-03 1.5352E-02 1 5.1539E+01 1.5281E+01 2
WOA 5.4440E+01 1.3638E+01 10 1.0718E+02 3.3928E+01 10
AVOA 1.1188E+01 6.3203E+00 4 8.8847E+01 2.8227E+01 7
HHO 4.0496E+01 1.0076E+01 9 8.2735E+01 1.5019E+01 6
DBO 1.2562E+01 5.8152E+00 5 9.3127E+01 2.3445E+01 8
BWO 1.9513E+00 2.0463E-01 3 6.9310E+01 1.5179E+01 4
RUN 2.0894E+01 9.3235E+00 6 7.9442E+01 1.0956E+01 5
KH 2.7576E+01 8.9493E+00 7 5.4140E+01 1.3360E+01 3
GTO 3.4113E+01 1.4208E+01 8 9.5114E+01 2.8326E+01 9
RIME 2.1920E-02 1.1610E-02 2 4.0921E+01 9.6251E+00 1

F5 F6
Mean Std Rank Mean Std Rank

WGOA 1.4787E+01 3.3232E+01 2 7.2065E+03 1.4311E+04 6
WOA 2.2439E+03 1.1357E+03 10 4.0025E+03 5.1540E+03 3
AVOA 1.3714E+03 3.6450E+02 7 4.8519E+03 5.8672E+03 4
HHO 1.4525E+03 2.4893E+02 8 8.2177E+03 6.4828E+03 7
DBO 3.6632E+02 2.5492E+02 3 8.1969E+04 3.9576E+05 10
BWO 5.9969E+02 5.3413E+02 5 3.0037E+04 1.7356E+04 9
RUN 7.9802E+02 2.2139E+02 6 1.7821E+03 7.0591E+02 1
KH 4.7308E+02 3.4549E+02 4 2.1868E+03 2.1341E+03 2
GTO 1.8871E+03 1.8669E+03 9 2.7473E+04 9.8438E+04 8
RIME 4.9575E-01 6.9862E-01 1 5.8755E+03 5.5991E+03 5
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Table 7: PTs of the WGOA, WOA [41], AVOA [42], HHO [43], DBO [44], BWO [45], RUN [46], KH
[47], GTO [48] and RIME [22] for CEC2022 F7–F12

F7 F8
Mean Std Rank Mean Std Rank

WGOA 4.1525E+01 1.4704E+01 3 2.1486E+01 8.6583E-01 2
WOA 1.6103E+02 4.7676E+01 9 4.5938E+01 2.3066E+01 9
AVOA 8.0620E+01 3.1980E+01 5 2.7885E+01 7.4866E+00 5
HHO 9.4890E+01 2.8364E+01 6 4.3127E+01 1.2934E+01 8
DBO 6.9988E+01 3.4356E+01 4 3.0668E+01 7.6034E+00 6
BWO 3.3800E+01 5.4200E+00 2 2.3308E+01 4.0673E-01 3
RUN 9.6125E+01 2.9179E+01 7 2.5906E+01 3.1172E+00 4
KH 1.0973E+02 1.8141E+01 8 3.9228E+01 3.6102E+01 7
GTO 2.6124E+02 1.1976E+02 10 1.4235E+02 1.4138E+02 10
RIME 2.7681E+01 8.9808E+00 1 2.1284E+01 4.4547E-01 1

F9 F10
Mean Std Rank Mean Std Rank

WGOA 1.6534E+02 2.9621E-13 1 1.5661E+02 1.1885E+02 6
WOA 1.8120E+02 5.2072E-01 7 1.3278E+03 1.0443E+03 10
AVOA 1.8078E+02 8.0723E-09 2 2.6289E+02 2.4370E+02 7
HHO 1.8138E+02 2.9318E-01 8 3.3453E+02 3.5019E+02 8
DBO 1.8145E+02 2.0522E+00 9 1.0050E+02 1.0607E-01 1
BWO 1.8100E+02 1.5593E-01 6 1.0975E+02 3.4526E+01 4
RUN 1.8078E+02 1.1474E-03 4 1.1085E+02 3.8776E+01 5
KH 1.8079E+02 2.1736E-02 5 3.3617E+02 5.0264E+02 9
GTO 1.8264E+02 2.0246E+00 10 1.0200E+02 8.0501E-01 2
RIME 1.8078E+02 3.7357E-04 3 1.0566E+02 5.2349E+01 3

F11 F12
Mean Std Rank Mean Std Rank

WGOA 3.1667E+02 3.7905E+01 4 2.0000E+02 3.0964E-04 1
WOA 3.3152E+02 7.9007E+01 5 3.0983E+02 5.9608E+01 8
AVOA 3.1333E+02 7.3030E+01 2 2.6564E+02 1.7424E+01 6
HHO 3.8712E+02 1.4355E+02 9 3.2118E+02 5.3942E+01 9
DBO 3.0448E+02 1.5254E+02 1 2.7884E+02 3.7238E+01 7
BWO 4.0704E+02 1.5717E+01 10 2.4006E+02 3.7017E+00 3
RUN 3.1345E+02 3.4532E+01 3 2.4962E+02 7.6971E+00 4
KH 3.3579E+02 1.2266E+02 6 3.3431E+02 4.4116E+01 10
GTO 3.3904E+02 9.6021E+01 7 2.6340E+02 1.6562E+01 5
RIME 3.4681E+02 8.1833E+01 8 2.3956E+02 4.3115E+00 2
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Table 8: Average rankings of WGOA, WOA [41], AVOA [42], HHO [43], DBO [44], BWO [45], RUN
[46], KH [47], GTO [48] and RIME [22] for CEC2017

Algorithms +/−/= Mean Rank

WGOA ∼ 3.207 1
WOA 24/2/3 5.655 6
AVOA 16/11/2 6.207 8
HHO 21/3/5 4.897 5
DBO 24/1/4 5.862 7
BWO 28/1/0 8.966 10
RUN 16/10/3 4.862 4
KH 17/7/5 3.655 2
GTO 28/1/0 6.931 9
RIME 15/12/2 4.759 3

Table 9: Average rankings of WGOA, WOA [41], AVOA [42], HHO [43], DBO [44], BWO [45], RUN
[46], KH [47], GTO [48] and RIME [22] for CEC2022

Algorithms +/−/= Mean Rank

WGOA ∼ 2.500 1
WOA 11/0/1 7.917 9
AVOA 9/1/2 4.417 4
HHO 11/0/1 7.333 8
DBO 9/1/2 5.917 6
BWO 10/2/0 5.500 5
RUN 8/3/1 4.250 3
KH 10/1/1 6.083 7
GTO 10/1/1 8.167 10
RIME 6/3/3 2.917 2

The FES-convergence figures of CEC2017 are shown in Figs. 2–7. Friedman test results for the
GWOA algorithm and the control group algorithms in CEC2017 and CEC2022 are shown in Fig. 8.
The results of The FES-convergence figures of CEC2022 are shown in Figs. 9–11. In Figs. 2–7 and
9–11, the horizontal axis represents the FES, and the vertical axis represents the error.
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Figure 2: Convergence curves and error bars of WGOA, WOA, AVOA, HHO, DBO, BWO, RUN, KH,
GTO and RIME on CEC2017 F1–F5
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Figure 3: Convergence curves and error bars of WGOA, WOA, AVOA, HHO, DBO, BWO, RUN, KH,
GTO and RIME on CEC2017 F6–F10
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Figure 4: Convergence curves and error bars of WGOA, WOA, AVOA, HHO, DBO, BWO, RUN, KH,
GTO and RIME on CEC2017 F11–F15
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Figure 5: Convergence curves and error bars of WGOA, WOA, AVOA, HHO, DBO, BWO, RUN, KH,
GTO and RIME on CEC2017 F16–F20
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Figure 6: Convergence curves and error bars of WGOA, WOA, AVOA, HHO, DBO, BWO, RUN, KH,
GTO and RIME on CEC2017 F21–F25



CMC, 2024, vol.80, no.1 1225

Figure 7: Convergence curves and error bars of WGOA, WOA, AVOA, HHO, DBO, BWO, RUN, KH,
GTO and RIME on CEC2017 F26–F29
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Figure 8: Friedman test results for the WGOA, WOA, AVOA, HHO, DBO, BWO, RUN, KH, GTO
and RIME on CEC2017 (left) and CEC2022 (right)

Figure 9: (Continued)
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Figure 9: Convergence curves and error bars of WGOA, WOA, AVOA, HHO, DBO, BWO, RUN, KH,
GTO and RIME on CEC2022 F1–F5

Figure 10: (Continued)
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Figure 10: Convergence curves and error bars of WGOA, WOA, AVOA, HHO, DBO, BWO, RUN,
KH, GTO and RIME on CEC2022 F6–F10

To further verify the performance of GWOA, a Wilcoxon rank-sum test under 0.05 level was
conducted. The experimental results for CEC2017 are presented in Table 8, and the experimental
results for CEC2022 are presented in Table 9.

4.3 Discussion

In the CEC2017 benchmark functions, WGOA ranked first in mean values among 10 functions
and second among 6 functions. WGOA also achieved the first position in standard deviation among
5 functions and the second position among 4 functions. In a suite comprising 29 test functions and
a selection of 10 competing algorithms, the WGOA achieved the foremost position with an average
ranking of 3.207, marking it as the preeminent algorithm amongst all contenders.

In the CEC2022 benchmark functions, WGOA obtained the first rank in mean values among 5
functions and the second rank in mean values among 3 functions. WGOA achieved the first position
in standard deviation among 3 functions and the second position in standard deviation among 2
functions. Across a total of 12 test functions and a cohort of 10 evaluation algorithms, the WGOA
secured the leading average rank of 2.500, situating it at the apex of the algorithmic hierarchy.
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The exceptional performance of the Wild Gibbon Optimization Algorithm (WGOA) is attributed
to the synergistic interplay between community search and community competition strategies. The
community search is dedicated to enhancing the algorithm’s diversity by furnishing it with a plethora
of candidate positions in each iteration. Conversely, the community competition aims to augment the
algorithm’s precision by exploring more promising solutions within the local search space.

Figure 11: Convergence curves and error bars of WGOA, WOA, AVOA, HHO, DBO, BWO, RUN,
KH, GTO and RIME on CEC2022 F11–F12

In CEC2017, WGOA outputs best results in F3, F5, F12, F14, F19, F20, F22, F24, F26, and F27.
In CEC2022, WGOA outputs best results in F1, F2, F3, F9, F12. However, During the processing of
functions F6 and F10 of CEC2022, the WGOA exhibited slow convergence rates. This can be attributed
to the algorithm’s search strategies failing to adequately balance exploitation and exploration when
addressing such problems. Given the limitations of WGOA in handling these types of issues, integrating
an adaptive mechanism into WGOA represents a significant avenue for future work.

5 Conclusions

In this paper, a novel meta-heuristic algorithm called the Wild Gibbon Optimization Algorithm
(WGOA) is proposed. The algorithm is inspired by the competition among gibbon populations and is
used to solve high-dimensional optimization problems. This algorithm combines a community search
strategy and a community competition strategy. The community search strategy is used in the evolution
of individual optima, and the community competition strategy is used in the evolution of global
optima. The cooperation of these two strategies can be used to balance local search and global search,
which can improve the high-dimensional search accuracy. Compared to the original algorithm, both
strategies make only linear dimensional changes with O(N) time complexity in terms of computational
complexity. In this study, the CEC2017 and CEC2022 benchmark function are selected to evaluate the
algorithm, and nine excellent optimization algorithms are selected to compare with WGOA. In the
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CEC2017, the WGOA achieved the foremost position with an average ranking of 3.207, marking it as
the preeminent algorithm amongst all contenders. In the CEC2022, the WGOA secured the leading
average rank of 2.500, situating it at the apex of the algorithmic hierarchy. These experimental results
indicate that the algorithm has a superior ability in solving optimization problems.

However, on some hybrid functions, the Wild Gibbon Optimization Algorithm (WGOA) does
not achieve optimal performance and tends to fall into local optima. Furthermore, an increase in the
computational burden may occur as the number of members in the gibbon family continues to grow.
Therefore, incorporating an adaptive mechanism into WGOA constitutes an important area of future
work. On another note, applying WGOA to real-world problems such as neural network parameter
optimization and multi-objective feature selection represents a viable direction for future research.
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