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ABSTRACT

Visual object tracking plays a crucial role in computer vision. In recent years, researchers have proposed various
methods to achieve high-performance object tracking. Among these, methods based on Transformers have
become a research hotspot due to their ability to globally model and contextualize information. However, current
Transformer-based object tracking methods still face challenges such as low tracking accuracy and the presence of
redundant feature information. In this paper, we introduce self-calibration multi-head self-attention Transformer
(SMSTracker) as a solution to these challenges. It employs a hybrid tensor decomposition self-organizing multi-
head self-attention transformer mechanism, which not only compresses and accelerates Transformer operations but
also significantly reduces redundant data, thereby enhancing the accuracy and efficiency of tracking. Additionally,
we introduce a self-calibration attention fusion block to resolve common issues of attention ambiguities and
inconsistencies found in traditional tracking methods, ensuring the stability and reliability of tracking performance
across various scenarios. By integrating a hybrid tensor decomposition approach with a self-organizing multi-head
self-attentive transformer mechanism, SMSTracker enhances the efficiency and accuracy of the tracking process.
Experimental results show that SMSTracker achieves competitive performance in visual object tracking, promising
more robust and efficient tracking systems, demonstrating its potential to provide more robust and efficient tracking
solutions in real-world applications.
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1 Introduction

Visual object tracking is a significant research field within computer vision, focusing on inferring
object states throughout video sequences. The primary objective is to identify and track the target
object in the initial frame, followed by estimating its state in subsequent frames. This task necessitates
the utilization of diverse techniques and algorithms to ensure the consistent tracking of the target
across various frames, enabling continuous monitoring and analysis. Over the years, a variety of
techniques have been proposed to tackle this challenge, ranging from traditional methods based on
handcrafted features to more recent approaches harnessing deep learning and Transformer.
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Traditional target tracking algorithms include Mean Shift [1], Particle Filtering [1], Sparse
Representation [2] and Optical Flow [3]. The traditional algorithms were proposed relatively early,
have the disadvantages of large data volume and slow speed, and are gradually eliminated in the
development of target tracking. Tracking algorithms based on correlation filtering have been widely
researched due to higher tracking accuracy and faster computation. For example, Bolme et al. [4]
introduced a Minimum Output Sum of Squared Error (MOSSE) filter to achieve target tracking.
This marked the first instance of incorporating a correlation filter into object tracking, allowing the
tracker to pause and resume its position when the object reappears. Montero et al. [5] introduced
kernel techniques into correlation filters and proposed the CSK (Circulant Structure for Kernelized)
tracker, which achieved superior object tracking performance by employing circular shift sampling to
emulate the filter and optimizing coefficients. Danelljan et al. [6] focused their research on the detection
and tracking framework and introduced a robust scale estimation method. Their approach relies on
learning from a scale pyramid representation and employs independent filters for both translation and
scale estimation, significantly enhancing the precision and real-time performance of object tracking.
Li et al. [7] introduced a scale-adaptive scheme to address the issue of fixed template size in kernelized
correlation filter tracking. By implementing this scale-adaptive scheme, they further enhanced the
overall tracking performance. Bouraffa et al. [8] introduced an innovative adaptive manual feature
fusion strategy, which is used to fuse multi-channel features into the peak strength context-aware CF
(Correlation Filter) framework at the response level. Notably, this research creatively combines elastic
network regression and context awareness into the optimization problem, making it the first tracking
algorithm to embed multiple features simultaneously. While traditional object tracking methods are
relatively mature, they exhibit limited performance and require substantial domain expertise when
dealing with complex scenarios and variations in lighting conditions.

In recent years, deep learning methods have achieved excellent results in solving problems in the
field of computer vision target tracking by virtue of their powerful feature extraction and modelling
capabilities. Ma et al. [9] effectively leveraged features extracted from deep convolutional neural
networks, thereby significantly improving the accuracy and robustness of object tracking. However,
challenges persist in addressing issues such as low resolution and occlusion, which continue to pose
challenges in mitigating tracking drift. Valmadre et al. [10] introduced innovative improvements to
correlation filters by transforming them into a combination of differentiable layers and feature extrac-
tion networks, enabling end-to-end optimization. This transformation not only enhanced tracking
performance but also opened up new possibilities for the automation and end-to-end training of
object tracking methods. Gundogdu et al. [11] introduced an efficient backpropagation algorithm
and concurrently developed a convolutional neural network that enables end-to-end training. This
innovation not only enhances training efficiency but also reduces dependence on classification training
networks. Wang et al. [12] introduced a lightweight end-to-end network architecture, DCFNet,
designed to simultaneously learn convolutional features and perform the process of correlation
tracking, resulting in improved object tracking performance. Fan et al. [13] introduced a motion stare
prediction and localization network (MP-LN), which predicts and transforms a reasonable search area
based on the continuous motion status of the target, enabling more accurate motion state estimation.

However, these methods often struggled with variations in object appearance, motion, and occlu-
sion. The introduction of Transformers into visual object tracking offers a new paradigm, leveraging
their self-attention mechanisms to handle these challenges more effectively. TransTrack [14] utilized the
Transformer architecture, using the object features from the previous frame as queries for the current
frame, and introduces learned object queries to detect targets. This simplifies complex multi-step
configurations, enhancing tracking accuracy and efficiency. Chen et al. [15] introduced a simplified
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visual object tracking architecture named SimTrack. Its uniqueness lies in guiding serialized samples
and searches into the Transformer backbone for joint feature learning and interaction. In contrast to
traditional multi-branch frameworks, SimTrack comprises only a single branch backbone, eliminating
the complex interaction heads. This simplification not only makes the model more straightforward but
also enhances its learning capacity, effectively addressing feature inconsistency issues in the process.
However, SimTrack also encounters a challenge, namely the issue of feature redundancy, which can
lead to reduced real-time performance of the system. To address this issue, we propose introducing a
tensor decomposition self-attention mechanism and a self-calibration attention fusion block based on
SimTrack.

In conclusion, our contributions are summarized as follows:

a) We propose a hybrid tensor decomposition self-organizing multi-head self-attention Trans-
former mechanism for visual object tracking, capable of compressing and accelerating the
Transformer while effectively eliminating redundant information in a single-branch Trans-
former backbone.

b) We propose a self-calibration attention fusion block as an external Transformer module to
address attention ambiguities and inconsistencies, mitigating the performance degradation in
object tracking and thereby achieving stable tracking of the target.

c) We implement SMSTracker to conduct comprehensive experiments on the dataset, achieving
competitive results.

2 Related Work
2.1 Traditional Visual Object Tracking Algorithms

Traditional visual object tracking algorithms are typically categorized into generative model
approaches and discriminative model approaches [16]. The classification is based on the modeling
approach used for the initial target model. The working mechanism of generative models involves
modeling the target region in the current frame, then, in the next frame, using similarity measurement
as a criterion to select the region most similar to the target model as the predicted location and updating
it as the new target model. For example, Comaniciu et al. [1] constructed the Mean Shift vector
for building the target model, which consistently points towards the region with the densest sample
points and rapidly converges, thus facilitating efficient target tracking. Vojir et al. [17] introduced the
Adaptive Scale Mean Shift (ASMS) algorithm, which incorporates classic color histogram features
to improve scale estimation, effectively addressing scale expansion due to cluttered backgrounds and
scale implosion issues when dealing with similar objects. Nummiaro et al. [18] proposed a particle
filtering algorithm, which has a better ability to model nonlinear systems, thus achieving better results.
By employing machine learning techniques, an optimal discriminative function is trained to search
for the most matching solution region in subsequent frames, thereby determining the target region.
For instance, Kernel Correlation Filter with Detection Proposals (KCFDP) [19] provided promising
candidate frames with different scales and aspect ratios, which are then integrated into a correlation
filter tracker with enhanced features and robust updates. Although traditional visual object tracking
algorithms have achieved better results, they face the challenges of computational complexity, risk of
overfitting and complex environments in practical applications.

2.2 Visual Object Tracking Based on Deep Learning

With the continuous development in the field of computer vision, target tracking algorithms
based on deep learning are emerging and gradually occupying a mainstream position. Wang et al. [20]
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first attempted to apply deep learning to the field of target tracking, however, at that time, the
performance of the algorithm was not satisfactory compared to other traditional algorithms. Multi-
Domain Convolutional Neural Network (MDNet) [21] adopted VGG-M, a pre-trained model for
image classification tasks, as the initial model for its network and achieved significant accuracy
breakthroughs by training offline on different video sequences.

Inspired by Transformer, Zhao et al. [22] proposed visual Tracking with Transformer (TrTr), which
not only improves the accuracy but also makes the framework more concise. Guo et al. [23] proposed a
Siamese graph attention network for general object tracking (SiamGAT) that canceled the fixed feature
region cropping and instead uses goal-awareness to determine the cropping region and introduced
a graph attention mechanism to better capture the information relationship between images, thus
improving the tracking accuracy. TransT [24] takes advantage of the self-attention mechanism and
cross-attention mechanism in Transformer to globally model the template frame and search frame
feature maps, which can avoid the problem of convolutional inter-correlation operations falling
into local optimums during tracking. Cui et al. [25] proposed MixFormer, an end-to-end tracking
framework that allows for the simultaneous extraction of discriminative features for a specific target
and enables extensive communication between the target and the search. This approach provides
significant improvements in short-term tracking compared to other trackers. Bai et al. [26] proposed
introducing a Spatial Calibration Module (SCM) outside the Transformer to integrate semantically
similar patch tokens and their spatial relationships into a unified diffusion model. This dynamic
adjustment of spatial and semantic relationships enables the generated attention maps to capture
object boundaries more clearly and filter out background regions unrelated to objects.

Due to the fact that the Transformer model can capture global contextual information [27], many
researchers have proposed to use the multi-head attention mechanism of the Transformer model to
solve the problem of restricted sensory field in convolutional neural networks, which can efficiently
acquire global information, and the multi-head mechanism can map the coding vectors to multiple
different spaces, thus enhancing the expressive power of the model.

3 Methodology
3.1 Overview of SMSTracker

To simplify the model framework and enhance its learning capabilities, we adopt a single-branch
Transformer structure. To address the issue of feature information redundancy inherent in a single-
branch Transformer backbone, we employ a self-organizing multi-head self-attention Transformer
mechanism with hybrid tensor decomposition. To address the problem of ambiguous and inconsistent
attention, we introduce an attention self-calibration block to mitigate tracking performance degra-
dation due to environmental factors during target tracking. The architecture of the proposed Self-
calibration Multi-head Self-Attention Transformer for Visual Object Tracking (SMSTracker) is shown
in Fig. 1. The input sample and search images are first serialized and sent together to the Hybrid Tensor
Decomposition Transformer for joint feature and interaction learning. A self-calibrating attention
fusion block is integrated after the transformer to prevent degradation of the feature attention map.
The block comprises numerous attention fusion blocks, enabling it to utilize attention maps derived
from tensor decomposition multi-head self-attention mechanisms for weighted feature attention maps,
ensuring the stable tracking of target objects.



CMC, 2024, vol.80, no.1 609

L
inear M

apping of P
atch V

ector

H
ybrid T

ensor D
ecom

position T
ransform

er

A
ttention F

usion B
lock

A
ttention F

usion B
lock

Self-calibration Attention 
Fusion Block

P
rddictor

Search tokens

Sample tokens

Position embedding of the search tokens 

Position embedding of the sample tokens 

Figure 1: The architecture details of SMSTracker. First, the input sample and search images are
serialized and sent together to the Hybrid Tensor Decomposition Transformer for joint feature
and interaction learning. Then, the attention self-calibration fusion block comprising a plurality of
attention fusion blocks is integrated after Transformer. Finally, the target-related attention features
are utilized for target tracking through a predictor

3.2 Hybrid Tensor Decomposition Transformer

The overall structure of the Transformer and the Hybrid Tensor Decomposition Transformer
is illustrated in Fig. 2. We will now introduce this model from two perspectives: Hybrid Tensor
Embedding and Self-Attention, as well as the Hybrid Tensor Decomposition Transformer Feed-
Forward Network.

3.2.1 Hybrid Tensor Embedding and Self-Attention

The embedding layer, often a somewhat overlooked yet pivotal component of the model architec-
ture, deserves special attention. Traditionally, Wu et al. [28] employed a joint source-target vocabulary
approach. Dimension size of the embedding matrix is s × n, where ‘s’ represents the vocabulary
size, and ‘n’ denotes the embedding dimension. This strategy has proven effective in various natural
language processing tasks. However, the potential pitfalls of using tensor-training embeddings as
a direct replacement for the original embedding layer have been shown. It was observed that this
approach could lead to a notable decline in the machine translation model’s performance, raising
concerns about the effectiveness of such embeddings in certain contexts.
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Figure 2: The structure of Hybrid Tensor Decomposition Transformer. (a) is the original Transformer
structure and (b) is our proposed Hybrid Tensor Decomposition Transformer

To address this challenge, we propose methods that combine dense and sparse embedding.
Specifically, it does this by connecting a low-dimensional dense embedding matrix to a tensor-train
matrix containing three tensor-train cores. The formula is shown below:

wE = concatenate (we, wtt) (1)

where we represents the low-dimensional dense embedding matrix, the dimension of we is s × αn, the
dimension of wtt is s × (1 − α) n, and α ∈ [0, 1] is used to control the ratio of the two embeddings.

Self-attention enables the input X to undergo three distinct projection operations, obtaining
representations for query, key and value respectively. These representations are crucial for constructing
the attention matrix and computing the output. The formula is defined as:

Attention (q, k, v) = soft max
(

Xwq
(
wk

)T
X T (n)

− 1
2

)
Xwv (2)

where X is the input with dimension l × n, l is the sequence length and n is the model dimension.
Concatenate weight matrices into a single matrix by columns, and the formula is as follows:

w = concatenate
(
wq, wk, wv

)
(3)

Then, the w matrix is divided into a dense part wd and a part with three tensor-train cores wtt. The
definitions are as follows:

w = separate (wd, wtt) (4)

where wd has dimension n × 3βn, wtt has dimension n × 3 (1 − β) n, and β ∈ [0, 1] is used to control
the dense layer and the tensor-training cores layer.
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The input initially passes through the dense component, resulting in the separation of the
output into q1, k1 and v1. Simultaneously, the input also goes through the low-rank tensor-training
cores component, leading to the separation of the output into q2, k2 and v2. Subsequently, q1 is
concatenated with q2, k1 is concatenated with k2, and v1 is concatenated with v2, resulting in the
complete representations of query, key and value.

3.2.2 Hybrid Tensor Decomposition Transformer Feed-Forward Network

Since the performance of the Transformer is relatively less affected by the feed-forward network
compared to the self-attention network, we chose to build on the Hybrid Tensor Decomposition
Transformer by introducing a Low-rank Matrix Factorized layer in the feed-forward network to
enhance our model by introducing a Low-rank Matrix Factorized layer to improve the model
processing speed. The primary role of the feed-forward network within our model is to facilitate a non-
linear transformation of the input. This transformation is essential for capturing complex patterns
and relationships within the data, ultimately contributing to the model’s overall performance and
effectiveness. The formula is as follows:

feed − forward (X) = σ
(
Xw1 + b1

)
w2 + b2 (5)

where σ(·) represents the activation function ReLU, w1 has dimension n × nf , w2 has dimension nf × n,
b1 has dimension nf , b2 has dimension n. n is the dimension of our model and nf is the dimension
of the feed-forward network. The variables such as w1, w2, b1 and b2 are retained from the original
Transformer structure. Low-rank Matrix Factorized layer consists of four dense layers. The specific
formula is as follows:

Lfeed − forward (X) = σ
(
Xu1v1 + b1

)
u2v2 + b2 (6)

where σ(·) represents the activation function ReLU, u1 has dimension n× r, v1 has dimension r×nf , u2

has dimension nf ×r, v2 has dimension r×n, b1 has dimension nf and b2 has dimension n. Furthermore,
r is the order of the Matrix Factorization.

3.3 Self-Calibration Attention Fusion Block

During long time target tracking, the feature attention map is subject to visual impairment
problems such as target occlusion and model degradation problems. To solve this problem, we adopt
a self-calibration idea by inserting a Self-calibration Attention Fusion Block outside the Transformer
to refine and fuse attention and TD attention maps.

3.3.1 Structure of the Self-Calibration Attention Fusion Block

The specific structure of the Self-calibration Attention Fusion Block is shown in Fig. 3. The
input is processed by Transformer to produce an attention map, preserving the original discriminative
features. This feature attention map represents the basic outline and structural information of the
target. However, during extended target tracking, this feature attention map can be influenced by
apparent issues such as target occlusion, making model degradation more likely. To tackle this
problem, we adopt a self-calibration approach. We utilize a tensor decomposition self-attention
mechanism to obtain a TD attention map, which is then used to weight the feature attention map,
thereby achieving stable target tracking.

As shown in Fig. 3, the (i + 1)th Attention Fusion Block takes Ai and Bi as inputs and produces
Ai+1 and Bi+1 as outputs. By stacking multiple Attention Fusion Blocks, the strengths of the two maps
are dynamically adjusted through the weighted fusion of these two types of attention maps.
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Figure 3: The structure of the self-calibration attention fusion block

3.3.2 Attention Fusion Block

Attention fusion block consists of three sub-modules, including attention map measurement,
Laplacian information calculation and thresholding filtering. The attention fusion block specific detail
diagram is shown in Fig. 4.

Attention map measurement: Attention map measurement is a key component of the attention
fusion block that is used to evaluate and quantify the distribution of attention to inputs. Its main
purpose is to help us understand how much attention the model pays to different input elements in
order to better tune and optimize model performance. The following is a process for attention map
measurement: First, we construct a graph G < V , E >, where V represents vertices and E represents
edges. vi and vj are flat vectors, while Lii,j represents the cosine distance between vi and vj. To evaluate
attention information in G we design a model to describe the inflow and outflow of traffic at vi. The
traffic input is based on the initial attention map, where the attention score corresponds to the input
rate, and the contribution of neighboring nodes is that vi shares traffic with them. In addition, traffic
moves outward to nearby nodes simultaneously. In order to incorporate attention maps, we introduce
a “meaning flow” out of the nodes. As a result, the rate of change of the flow of vi can be determined.
Thus, we can measure the attention map Li, The formula is defined as follows:

Lii,j = (||vi|| ∗ ||vj||
)−1 ∗ vi ∗

[
vj

]T
(7)

where the greater value Lii,j indicates a higher degree of similarity shared between vi and vj.
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Figure 4: The structure of the attention fusion block

Laplacian information calculation: To capture attention relationships, we define an adjacency
matrix A to represent the connectivity of the edges in G, and a degree matrix D, a diagonal matrix
whose elements on the diagonal represent the degree of each node. Subsequently, we obtain the
Laplacian matrix L = D − A, with each element

(
L

)−1

i,j
representing the correlation between vi and

vj under equilibrium conditions. To resolve the problem of ambiguous and inconsistent attention, we
incorporate L with attention map measurement Li. We employ a tunable parameter θ to dynamically
tunable the semantic influence, rendering the fusion process adaptable to a wide range of scenarios.
The improved Laplacian matrix Lθ is defined as follows:

Lθ = I − D− 1
2 (A + θLi) D− 1

2 (8)

where I is the identity matrix. Then, the reallocated attention activation map is computed and the
formula is defined as follows:

Ai+1 = flatten (Ai)

(Lθ )i

(9)

where Ai+1 represents the output of the reallocated attention map, flatten (·) is a flattening operation
that transforms Ai into a sequence, and i represents the ith attention fusion block.
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But in practice there may be situations where
1

(Lθ )i

does not exist. To avoid this problem, we

use Newton Schulz iteration [29] to solve for
1

(Lθ )i

to approximate the attention fusion result. The

calculation process is as follows:

G0 = β (Lθ )
T

Gk = Gk−1 + Fk−1Gk−1

Fk = I − AGk

(10)

where β is a constant value, G0 is the initialization matrix, k denotes the number of iterations, I is the
identity matrix, Fk is the minimization of the estimation error.

Thresholding filtering: While the redistributed attention map Ai+1 provides a clearer picture of the
target contours and boundaries, it can also appear to spread attentional fusion beyond the target
boundaries, which can lead to an overevaluation of the bounding box. To address this issue, we
introduce a threshold filter aimed at enhancing the distinction in density between the target object
and the adjacent background, while concurrently diminishing external interference. The equation for
the threshold filter is as follows:

Γ (Ai, ρ) = ρ

[
Aiρ − exp (Aiρ) − exp (−Aiρ)

exp (Aiρ) + exp (−Aiρ)

]
(11)

where ρ ∈ (0, 1) is the threshold parameter. Then, Bi and Γ (Ai, ρ) perform an element-by-element
multiplication operation:

Bi+1 = Bi ◦ Γ (Ai, ρ) (12)

where ◦ denotes element-wise multiplication.

3.4 Loss Function

To train our SMSTracker, we calculate the loss between the prediction frame and the truth frame.
Cross entropy loss is used as classification loss in training with the following formula:

Lcls = 1
N

∑
i

− [yi × ln (pi) + (1 − yi) × ln (1 − pi)] (13)

where N is the number of samples, yi denotes the true label of the ith sample, pi denotes the probability
of predicting the correct result for the ith sample.

Additionally, L1 loss and GIoU (Generalized IoU) [30] are utilized for supervising the bounding
box prediction results. The loss function is defined as follows:

L = λ1Lcls + λ2LL1 + λ3LGIoU (14)

where Lcls is the classification loss, LL1 stands for 1-norm loss, and LGLoU stands for Generalised
Intersection over Union (GIoU) loss. λ1, λ2 and λ3 are the weighting parameters for each loss to balance
each component of the loss.
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4 Experiments
4.1 Experimental Setting

4.1.1 Dataset

SMSTracker is trained using four publicly available datasets, including OTB2015 [31], Track-
ingNet [32], LaSOT [33] and GOT-10k [34]. In order to enhance the robustness and generalization
ability of the model, we use data enhancement methods such as scale transformation and luminance
dithering. In each round of training, SMSTracker randomly selects a total of 30,000 training sample
pairs, which include a sample image and a search region image, and they belong to the same video
sequence.

OTB2015 comprises a total of 100 videos, which have been categorized into 11 attributes such
as Illumination Variation, Scale Variation, and Occlusion based on the different types of interference
present in the videos. This dataset utilizes manually annotated real labels, and it also includes one-
quarter of the videos in grayscale format.

TrackingNet is constructed by selecting 30,132 videos from the target detection dataset, Youtube-
BoundingBoxes, to form the training video set. Additionally, 511 videos were chosen to create the
testing video set. These training videos span across 23 different object categories and are divided into
12 training subsets, with each subset containing 2511 videos. The testing set of the TrackingNet dataset
comprises 511 videos.

LaSOT is a long tracking dataset with high-quality annotations, consisting of 1400 video
sequences. Out of these, 1120 are designated for training, and the remaining 280 are used for testing
purposes. LaSOT provides superior target annotation data, including detailed information such as
bounding boxes. It encompasses twelve challenging attributes, including illumination variation, full
occlusion, and partial occlusion.

GOT-10k is a large dataset consisting of 10,000 video sequences for training and 180 video
sequences for testing. Given that most videos in the GOT-10k dataset are relatively short in duration,
it places a stronger emphasis on evaluating tracker performance in short-term tracking scenarios. The
dataset includes a whopping 563 target categories, surpassing other tracking datasets by a wide margin.

4.1.2 Implementation Details

Our SMSTracker is implemented with Python 3.8.13 on PyTorch 1.7.1. The GPU used in our
experiments is NVIDIA A40 (48 G) and the cuda version is 11.2. The optimizer is AdamW [35] and
the batch size is set to be 16. The initial learning rate is set to 10−4 and the weight decay is set to 10−5

for a total of 300 iterations.

4.2 Qualitative Analysis

In order to better illustrate the difference between the SMSTracker algorithm and other algo-
rithms, six video sequences from the GOT-10k dataset are selected for comparison with the SimTrack
[15], STARK-S [36], and STMTrack [37] methods. The tracking results of the SMSTracker algorithm
and other state-of-the-art algorithms are shown in Fig. 5, where red denotes the SMSTracker algo-
rithm, green denotes the SimTrack algorithm, dark blue denotes the STMTrack algorithm, and light
blue denotes the STARK-S algorithm.
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Figure 5: Visualization of results on six video sequences

From Fig. 5, it can be observed that the SMSTracker algorithm accurately tracks the target when
it undergoes rapid movement, occlusion, scale variations, motion blur, low resolution, and in-plane
rotation. Compared to other algorithms, SMSTracker has higher target tracking accuracy. In addition,
SMSTracker shows greater stability in long-term target tracking. Therefore, it can be concluded that
SMSTracker achieves good results.

4.3 Quantitative Analysis

In order to verify the effectiveness of the tracking algorithm proposed in this paper, SMSTracker
is compared with excellent algorithms at home and abroad in recent years, and the index scores of each
algorithm on the four common datasets, namely, OTB2015, TrackingNet, LaSOT and GOT-10k, are
listed in detail.

OTB2015 uses precision and success rates as evaluation metrics. Compare with seven currently
advanced target tracking algorithms, SimTrack [15], MixFormer [25], ToMP [38], KeepTrack [39],
SiamGAT [23], TransT [24], and KYS [40] on the OTB2015 dataset. The comparison results are shown
in Table 1. We can conclude that the SMSTracker algorithm demonstrates excellent performance in
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two key performance metrics: precision and success rate. It achieves a precision of 93.9%, representing
a 1.2% improvement compared to KeepTrack, and a success rate of 71.5%, indicating a 0.4%
improvement over KeepTrack. These results strongly suggest the superiority of the SMSTracker
algorithm. It effectively mitigates challenges such as target occlusion and interference from similar
objects during the tracking process by analyzing the motion characteristics of the target.

Table 1: Comparison results with 7 state-of-the-art algorithms on OTB2015 dataset

Tracker Precision (%) Success Rate (%)

SimTrack 91.8 70.7
MixFormer 92.2 70.4
ToMP 90.8 70.0
Keep Track 92.7 71.1
SiamGAT 91.6 70.9
TransT 89.9 69.5
KYS 90.3 69.5
Our 93.9 71.5

TrackingNet uses Area Under the Curve (AUC) and Normalized Precision (PNorm) as evaluation
metrics. Compare SMSTracker with seven other tracking algorithms on the TrackingNet dataset. The
other seven trackers are SimTrack [15], STARK [36], TransT [24], Siam R-CNN [41], TrDiMP [42],
PrDiMP-50 [43] and KYS [40]. The comparison results are shown in Table 2. From Table 2, it is evident
that our algorithm outperforms current mainstream algorithms in both AUC and PNorm metrics.
Compared to SimTrack, there is a 0.1% improvement in the AUC metric and a 0.9% improvement
in the PNorm metric. This indicates that SMSTracker predicts target centers closer to the true target
center, enabling precise localization of the target’s position.

Table 2: Comparison results with 7 state-of-the-art algorithms on TrackingNet dataset

Tracker AUC (%) PNorm (%)

SimTrack 82.3 86.5
STARK 82.0 86.9
TransT 81.4 86.7
Siam
R-CNN

81.2 85.4

TrDiMP 78.4 83.3
PrDiMP-50 75.8 81.6
KYS 74.0 80.3
Our 82.4 87.4

LaSOT uses Area Under the Curve (AUC), Normalized Precision (PNorm) and Precision (P) as
evaluation metrics. Compare SMSTracker with seven other tracking algorithms on the LaSOT dataset.
The other seven trackers are SimTrack [15], SeqTrack [44], MixFormer [25], CSWinTT [45], TransT
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[24], KeepTrack [39], and DualTFR [46]. The comparison results are shown in Table 3. The AUC,
PNorm, and P metrics for SMSTracker are 72.2%, 81.4%, and 77.9%, respectively. Compared to the
baseline algorithm SimTrack, there are improvements of 2.9% in AUC, and 2.9% in PNorm. This suggests
that SMSTracker also excels in the field of long video tracking.

Table 3: Comparison results with 7 state-of-the-art algorithms on LaSOT dataset

Tracker AUC (%) PNorm (%) P (%)

SimTrack 69.3 78.5 –
SeqTrack 71.5 81.1 77.8
MixFormer 69.2 78.7 74.7
CSWinTT 66.2 75.2 70.9
TransT 64.9 73.8 69.0
KeepTrack 67.1 77.2 70.0
DualTFR 63.5 72.0 66.5
Our 72.2 81.4 77.9

GOT-10k introduces two metrics, Average Overlap (AO) and Success Rate (SR), as benchmarks
for evaluating tracker performance on the GOT-10k dataset. AO represents the average overlap
between all ground truth labels and the tracker’s predicted bounding boxes. SR is used to measure
the percentage of frames in the test set where the overlap exceeds a certain threshold. Common
thresholds include 0.5 and 0.75, corresponding to metrics known as SR0.5 and SR0.75. SR0.5 indicates
the proportion of frames where the overlap between predicted and true bounding boxes exceeds 0.5,
while SR0.75 represents the proportion of frames where the overlap exceeds 0.75. The success rate of
SMSTrack on GOT-10k is 85.1%, which is 2.7% higher than that of the baseline model SimTrack,
and the comparison results are plotted in Fig. 6. Conduct a comparative analysis of SMSTracker
with ten other tracking algorithms using the GOT-10K dataset. The other ten trackers are SeqTrack
[44], MixFormer [25], SBT [47], CSWinTT [45], STARK [36], TransT [24], TREG [48], SimTrack [15],
STMTrack [37] and STARK-S [36]. The comparison results are shown in Table 4. As can be seen in
Table 4, SMSTracker exhibits excellent performance, outperforming the current mainstream tracking
algorithms, with metrics of 74.6% for AO, 85.1% for SR0.5, and 71.5% for SR0.75. Compared with
SimTrack, there is an improvement of 4.8%, 2.7%, and 1.0% in AO, SR0.5, and SR0.75, respectively.
In addition, our model also demonstrates strong advantages in tracking speed. This indicates a higher
accuracy in regressing the target bounding box and a stronger ability to capture changes in target
dynamics.
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Figure 6: Comparison result on GOT-10k testing set in terms of success scores

Table 4: Comparison results with 10 state-of-the-art algorithms on GOT-10k dataset

Tracker AO (%) SR0.5 (%) SR0.75 (%) Speed (fps)

SeqTrack 74.5 84.3 71.4 49.7
MixFormer 72.6 82.2 68.8 43.2
SBT 70.4 80.8 64.7 41.9
CSWinTT 69.4 78.9 65.4 44.6
STARK 68.8 78.1 64.1 45.2
TransT 67.1 76.8 60.9 49.7
TREG 66.8 77.8 57.2 51.9
SimTrack 69.8 82.4 70.5 52.3
STMTrack 71.6 81.8 69.8 53.6
STARK-S 71.8 82.8 71.0 53.8
Our 74.6 85.1 71.5 55.3

4.4 Ablation Study

To assess the effectiveness of our proposed modules, we conducted comprehensive ablation
experiments on the LaSOT dataset, systematically analyzing the results across four distinct network
configurations. In these experiments, we employed SimTrack as our baseline model. For the second
model, we introduced the Hybrid Tensor Decomposition Self-Attention Mechanism (HTDA) into
SimTrack. This addition was aimed at mitigating redundancy within the transformer backbone
network. In the third model, we integrated the Self-Calibration Attention Fusion Block (SCAF)
with SimTrack. This incorporation was designed to address issues related to attention ambiguity and
inconsistency within the baseline model. In the fourth and final model, we combined both the HTDA
and SCAF modules into SimTrack, representing the comprehensive approach proposed in this study.
Through these experiments, we systematically evaluated the impact of these modules on tracking
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performance. The four models were trained separately and the results of the ablation experiments
are shown in Table 5.

Table 5: Ablation results of each module

Model AUC (%) PNorm (%) FLOPs

SimTrack 69.3 78.5 25.0 G
SimTrack + HTDA 71.8 80.9 18.9 G
SimTrack + SCAF 72.4 81.5 26.5 G
SimTrack + HTDA + SCAF 72.2 81.4 21.2 G

From Table 5, it is evident that the inclusion of the HTDA module and the SCAF module
has led to improvements in both AUC and PNorm when compared to the baseline algorithm. Upon
integrating the HTDA module, the AUC, PNorm, and FLOPs metrics were measured at 71.8%, 80.9%,
and 18.9 G, respectively. In comparison to SimTrack, this represents a 2.5% increase in AUC, a 2.4%
increase in PNorm, and a simultaneous reduction of 6.1 G in FLOPs. These results indicate that the
Hybrid Tensor Decomposition Self-attention Transformer significantly enhances tracking accuracy
while substantially reducing complexity. In the third model, the AUC, PNorm, and FLOPs metrics were
measured at 72.4%, 81.5%, and 26.5 G, respectively. Although complexity increased with a 1.5 G rise in
FLOPs, substantial improvements in tracking performance were observed with a 3.1% increase in AUC
and a 3% increase in PNorm. This indicates that the self-calibration attention fusion block can capture
sharper boundaries of the target object, filtering out background regions unrelated to the target object,
thereby achieving more precise target tracking. The proposed algorithm, which combines the strengths
of the Hybrid Tensor Decomposition Self-attention Transformer and the Self-calibration Attention
Fusion Block, achieved AUC, PNorm, and FLOPs metrics of 72.2%, 81.4%, and 21.2 G, respectively.
Compared to the baseline algorithm, this represents a 2.9% increase in AUC, a 2.9% increase in PNorm,
and a simultaneous reduction of 3.8 G in FLOPs. These findings indicate that the improved algorithm
strikes a reasonable balance between computational complexity and tracking performance, making it
highly relevant for practical target tracking tasks.

5 Conclusion

In this paper, we propose a target tracker called SMSTracker based on the Self-calibration Multi-
head Self-Attention Transformer. By amalgamating hybrid tensor decomposition Transformer, we
effectively eliminate redundancy while compressing and accelerating transformer operations, thus
enhancing the real-time capability of target tracking. Additionally, we incorporate a self-calibration
attention fusion block to capture sharper target boundaries, improving tracking performance stability.
Experimental results demonstrate that this approach outperforms existing methods in terms of
precision and success rate across multiple datasets, substantiating the superiority and applicability
of our method.
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