
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.050626

ARTICLE

A Prediction-Based Multi-Objective VM Consolidation Approach for Cloud
Data Centers

Xialin Liu1,2,3,*, Junsheng Wu4, Lijun Chen2,3 and Jiyuan Hu5

1School of Computer Science, Northwestern Polytechnical University, Xi’an, 710005, China
2School of Computer Science and Technology, Xi’an University of Posts and Telecommunications, Xi’an, 710021, China
3Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi’an University of Posts and Telecommunications,
Xi’an, 710021, China
4School of Software and Microelectronics, Northwestern Polytechnical University, Xi’an, 710005, China
5School of Automation, Xi’an University of Posts and Telecommunications, Xi’an, 710021, China

*Corresponding Author: Xialin Liu. Email: liuxialin@xupt.edu.cn

Received: 12 February 2024 Accepted: 11 June 2024 Published: 18 July 2024

ABSTRACT

Virtual machine (VM) consolidation aims to run VMs on the least number of physical machines (PMs). The
optimal consolidation significantly reduces energy consumption (EC), quality of service (QoS) in applications, and
resource utilization. This paper proposes a prediction-based multi-objective VM consolidation approach to search
for the best mapping between VMs and PMs with good timeliness and practical value. We use a hybrid model
based on Auto-Regressive Integrated Moving Average (ARIMA) and Support Vector Regression (SVR) (HPAS)
as a prediction model and consolidate VMs to PMs based on prediction results by HPAS, aiming at minimizing
the total EC, performance degradation (PD), migration cost (MC) and resource wastage (RW) simultaneously.
Experimental results using Microsoft Azure trace show the proposed approach has better prediction accuracy and
overcomes the multi-objective consolidation approach without prediction (i.e., Non-dominated sorting genetic
algorithm 2, Nsga2) and the renowned Overload Host Detection (OHD) approaches without prediction, such as
Linear Regression (LR), Median Absolute Deviation (MAD) and Inter-Quartile Range (IQR).

KEYWORDS
VM consolidation; prediction; multi-objective optimization; machine learning

1 Introduction

Cloud computing is a computational paradigm that offers its users scalable services in an on-
demand pattern. The most prominent feature of cloud computing is that it provides users with virtu-
alized resources [1]. Cloud computing utilizes various technologies, such as virtualization, distributed
computing, and storage. It eliminates front-end capital and customers’ ongoing maintenance. Cloud
computing permits customers to increase and decrease resource demands and pay accordingly [2].
Cloud providers (CPs) should allocate and deallocate resources on demand. As a result, operating
costs are reduced [3].

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.050626
https://www.techscience.com/doi/10.32604/cmc.2024.050626
mailto:liuxialin@xupt.edu.cn

1602 CMC, 2024, vol.80, no.1

VM consolidation can improve the utilization of resources by reducing EC in cloud data centers
[4]. VM consolidation process consists of three phases in general [4]:

1. Detection of overload/underload PMs. Identifying overloaded PMs and migrating VMs to pre-
vent potential PD or even Service Level Agreements (SLA) violations. Identifying underloaded
PMs, migrating all VMs on the PMs, and turning the PMs off to reduce EC.

2. VM selection. The candidate VMs from overload PMs are selected to keep the PM under
average load. Some policies, such as Maximum Correlation Coefficient (MCC), Minimum
Migration Time (MMT), and Minimum Utilization (MU) are utilized.

3. PM selection. The destination PMs for the VMs coming from overload/underload PMs. Some
objectives, such as EC, RW, and MC, can be considered.

Most works consolidate VMs based on PM/VM current resource utilization. In other words,
all three phases of VM consolidation should be performed based on current resource utilization.
However, due to the unsteadiness and high changeability of the workload, PM/VM resource utilization
is unstable and highly variable. Improving these three phases of VM consolidation is essential
to matching VM’s dynamic change of workload and resource capacity. The first phase of VM
consolidation requires an approach that predicts future resource usage. Otherwise, the detection results
of overload/underload will soon become invalid, and a high number of needless VM migrations may
be caused not only because the workload is highly variable but also because there are large numbers of
PMs and VMs in the data center, it takes neglected time to make and implement migration decisions.
For instance, according to a migration decision, a VM should be migrated from an overload PM
to another underload PM. Unfortunately, this underload PM cannot accommodate the VM when
implementing the migration decision due to real-time changes in workload. The unreliable detection
result in the first phase may result in the selected VMs and destination PMs not being the optimal
options in the second and third phases. The unreliable detection result increases the overheads, such
as the EC for VM migration, PD, and network traffic [5,6].

On the other hand, the existing works consider a few optimization goals. The obtained consoli-
dation solutions may need to be improved in other optimization goals and hinder their application in
practice. It is essential to consider more goals while consolidating VMs, as more factors influence the
quality of the consolidation solution in practice:

(1) Although VM migration can reduce EC, VM migration also gives rise to VM PD or SLA
violation on new PMs because sharing hardware resources among more VMs increases
resource contention.

(2) The MC of a VM in different cloud data centers varies greatly because it is heavily dependent
on data center’s configuration, such as network architecture and bandwidth usage, and the
application executed on the VM.

(3) Maximizing resource utilization has always been an essential resource management goal in
data centers.

The above considerations may be conflicting when combined. Therefore, finding an effective
strategy that considers compromise among all the goals is essential.

This paper introduces a novel prediction-based multi-objective VM consolidation approach that
stands out for its two key innovations. The first innovation is a hybrid method that combines ARIMA
and SVR to predict future resource usage. The second innovation is the consideration of multiple
objectives such as EC, PD, MC, and RW, and the optimization of these objectives using Nsga2 based

CMC, 2024, vol.80, no.1 1603

on future resource utilization. This approach allows for the search for the optimal solution in a more
timely and practical manner.

The main contributions of this paper are summarized as follows:

1. We propose a prediction approach based on the ARIMA-SVR model to forecast future VM
resource demand, which can capture both linear and nonlinear features of resource demand
data. Specifically, we use the ARIMA model to predict the future resource demand of VM
preliminarily. Because the ARIMA model can only capture linear time series features, we use
the SVR model to assist the ARIMA model. The SVR model predicts future errors. Adding
the forecasts of the ARIMA and SVR models obtains the final prediction.

2. We design a framework to predict future resource demands of VMs in a cloud data center.
This framework depicts the process for predicting future VM resource demand. We propose
an algorithm to estimate the parameters of the SVR model and train it.

3. Our proposed prediction-based multi-objective VM consolidation approach, which leverages
future resource demands of VMs for multi-objective optimization, offers significant practical
value. It enables the obtained consolidation solution to be both timely and practical. To validate
the effectiveness of our approach, we have conducted a series of rigorous experiments.

We organize this paper as follows: Section 2 reviews the related works on resource usage
prediction in cloud data centers and multi-objective VM consolidation. Section 3 provides our problem
formulation. Section 4 provides the specifics of the proposed approach, including the prediction
framework and algorithms. Section 5 is devoted to performance evaluation and shows the superiority
of the proposed approach. We conclude the paper and describe future work in Section 6.

2 Related Works
2.1 Resource Usage Prediction in Cloud Environment

The VM’s resource demand may change over time. Accurate prediction of VM’s future resource
demand improves resource utilization efficiency. Some approaches have been developed to predict
cloud resource demand. Reference [7] used a gray model to predict the host’s CPU and RAM resource
usage. The gray model does not require a large number of training data. However, it cannot guarantee
accurate prediction of workloads with frequent fluctuations. Exploiting a Gray-Markov (G-M)-
based model predicts future usage of resources [8]. Reference [9] used a Discrete-Time Markov chain
(DTMC) model to predict future resource usage. It presents a multi-objective VM placement approach
to search for the optimal solution for the VM placement problem by exploiting the ε-dominance-based
multi-objective artificial bee colony (ε-MOABC) algorithm.

Other researchers use machine learning (ML) technology to predict resource usage. Reference
[10] proposed a Host States Naive Bayesian Prediction (HSNBP) model in cloud data centers. The
HSNBP model can forecast overload hosts using The Naive Bayesian (NB) classifier. Reference [11]
proposed an ARIMA model for forecasting workload. Due to the simplicity of implementation, LR
was used to estimate future resource usage in many types of research. Reference [12–15] proposed
employing LR methods to predict CPU usage. However, the LR technique considers only the linear
features in time series data. The relationship between resource demand data and time appears more
curved. In [16], the authors replaced the LR with a K-Nearest Neighbor Regression (KNNR). To avoid
needless VM migration, reference [17] proposed a Bayesian network-based estimation model for live
VM migration. Reference [18] presented a self-directed workload forecasting method (SDWF). SDWF
utilizes a Multilayer Neural Network (MNN) to learn historical data and forecast the next possible

1604 CMC, 2024, vol.80, no.1

workload value. Reference [19] presented a Multi-Resource Feed-forward Neural Network (MR-
FNN) to predict the multiple resource demands concurrently. MR-FNN uses a differential evolution
algorithm to enhance its learning and prediction capability. Reference [2] employed SVR to predict
the future usage of multi-attribute host resources. They applied a Sequential Minimal Optimization
(SMO) algorithm to train the SVR model. Reference [20] proposed a framework for cloud resource
allocation based on reinforcement learning (RL) mechanism and fuzzy logic (FL).

To enhance prediction accuracy, some researchers use hybrid or ensemble learning methods.
Reference [21] presented a hybrid method that combines LR and RL techniques to handle changes in
workload trace. In [22], host overload detection is based on an ARIMA model. Reference [23] proposed
a new Swarm Intelligence Based Prediction Approach (SIBPA) to predict the resource demands of a
cloud user. SIBPA combines the Multiple SVRs and ARIMA models to consider mapping the linear
and nonlinear attributes in time series. It uses the Particle Swarm Optimization (PSO) approach to
select the best features for prediction results. Reference [24] employed ARIMA and Auto-Regressive
Neural Network (ARNN) to predict the usage of resources. Reference [3] developed different ML
prediction models to perform a consolidation, including LR, Multilayer Perceptron (MLP), SVR,
Decision Tree Regression (DTR), and Boosted Decision Regression (BDR). Reference [25] presented
an ensemble learning-based workload forecasting method. The proposed framework employs multiple
MNNs as base predictors. It used an algorithm illuminated by black hole theory to select the best
weight. Reference [26] proposed an Intelligent Regressive Ensemble Approach for Prediction (REAP),
which uses eight ML methods to predict CPU usage. Reference [27] proposed an ensemble prediction
for forecasting the future needs of resources. The proposed predictor consists of four fundamental
prediction models: MA, exponential smoothing (ES), LR, and double ESs. Other researchers use
Deep Learning techniques to predict resource usage. Reference [28] proposed a host load predictive
model based on a long short-term memory model in a recurrent neural network (LSTM-RNN).
Reference [29] developed the workload prediction based on LSTM networks, which uses four LSTMs.
Reference [30] proposed a deep RL-based resource management. Table 1 compares all the above
prediction approaches regarding application domain, strengths, and weaknesses. These approaches
do not consider prediction-based multi-objective optimization. Thus, the issued decision can be
insignificant because real-world problems are often multi-objective optimization problems. In this
paper, we propose a prediction model based on which we optimize multiple objectives simultaneously.
In addition, the proposed prediction model can capture both linear and nonlinear features of resource
demand data.

Table 1: Comparison of the existing prediction approaches

Paper Technique uesd Domain Strength Weakness

[7] Gray Resource management Balances workload and
lower power
consumption.

Cannot guarantee exact
prediction results.

[8] G-M VM consolidation - Prediction accuracy
increases.
- Effectively reduces the
number of migrations,
EC, and SLA
violations.

Suitable only for
short-medium-term future
resource utilization.

(Continued)

CMC, 2024, vol.80, no.1 1605

Table 1 (continued)

Paper Technique uesd Domain Strength Weakness

[9] Markov-MOABC VM consolidation Minimizes EC, RW,
and maximizes the
reliability.

Suitable only for short-term
future resource utilization.

[10] NB VM consolidation Reduces SLA violation
rates while keeping
energy cost efficient.

Need to know the prior
probability that depends on
some hypothesis.

[11] ARIMA Resource provisioning - Simple
implementation.
- Efficiency in resource
utilization.

Suitable only for predicting
stationary future resource
utilization.

[12] LR VM live migration - Simple
implementation.
- Reduces EC and SLA
violation rates.

Suitable only for short-term
future utilization and
capturing linear relationship.

[13] LR VM consolidation - Simple
implementation.
- Reduces the EC.

Suitable only for short-term
future utilization and
capturing linear relationship.

[14] LR VM consolidation - Simple
implementation.
- Reduces both load
and the power
consumption.

Suitable only for short-term
future utilization and
capturing linear relationship.

[15] LR VM consolidation - Simple
implementation.
- Saves energy by
eliminating the
repeated migration of
the same VM.

Suitable only for short-term
future utilization and
capturing linear relationship.

[16] KNNR VM consolidation Minimizes EC and
maintains performance.

High complexity.

[18] MNN-Black hole Resource management - Reduces the mean
squared forecasting
errors.
- Captures nonlinear
relationship.

Need optimization algorithm
for training neurons.

[19] SVR Resource management Reduces RW and saves
energy.

Parameters must be discreetly
set.

[2] FNN VM autoscaling and
placement

Achieves the high data
center energy efficiency
and avoiding SLA
violations.

- Require sufficient data.
- Need optimization
algorithm to train the weights
of FNN.

[20] RL-FL Resource management Reduces the total cost
and increases the
resource utilization.

Training result is unstable.

[21] LR-RL Resource provisioning Improves resource
utilization and response
time.

Suitable only for predicting
stationary future resource
utilization.

(Continued)

1606 CMC, 2024, vol.80, no.1

Table 1 (continued)

Paper Technique uesd Domain Strength Weakness

[22] Auto
regressive-ARIMA

VM consolidation Reduces EC, the
number of VM
migrations. QoS
guarantees.

Parameters must be discreetly
set.

[23] ARIMA-MSVR-PSO IT budget Predicts dynamic
behavior in a long term.

Parameters must be discreetly
set.

[24] ARIMA-AR-NN Resource management Minimizes EC,
maintaining QoS and
reducing cost.

Need optimization algorithm
for training neurons.

[25] MNN-Black hole Resource management Reduces the RW, EC
and carbon footprints.

Need optimization algorithm
for training neurons.

[26] BRR-BRNN-SVM-
DT-ELM-LM-NN-RF

Resource management Improves the accuracy
rate and reducing the
execution time.

Suitable only for
short-medium-term future
utilization and capturing
linear relationship.

[27] MA-ES-LR-DES VM placement Reduces EC. Time-consuming.
[28] LSTM-RNN Resource provisioning Decreases EC while

keeping a high QoS.
- Time-consuming.
- Parameters need to be
carefully set.

[29] LSTM-RNN Resource provisioning Dynamic resource
scaling, reduces the
number of active
machines.

- Time-consuming.
- Parameters need to be
carefully set.

[30] DRL Resource management Improves resource
utilization.

Very complicated and
time-consuming.

2.2 Multi-Objective VM Consolidation

This section presents the optimization approaches to VM consolidation proposed in existing
works. We divide these approaches into categories: (1) multi-objective approach transformed into
mono-objective and (2) multi-objective approach.

(1) Multi-objective transformed into mono-objective approach

They combine multiple objectives into a mono-objective. This approach may be classified as I. the
weighted sum method. The user gives the weight of each objective. II. the constraint method. Choosing
only one objective as mono-objective and considering other objectives as constraints.

I. The weighted sum method

They combine all objectives into a mono-objective by attaching each weight to each objective. A
multi-objective energy-efficient VM consolidation using adaptive beetle swarm optimization (ABSO)
algorithm is proposed [31]. The proposed ABSO is a hybridization of PSO and BSO. Reference [32]
studied consolidation problems of processor-intensive and disk-intensive workloads and formulated
the problem as the four-objective functions. The objective functions are (1) total energy consumed
by the processor, disk, VM migration and turning PMs ON and OFF, (2) consolidation fitness of
multiple disk-intensive VMs, (3) processor utilization of PM on which at least one disk intensive
VM is running and (4) number of PMs with too high processor utilization. To solve the presented
multi-objective optimization problem, it first calculates the optimum point for each objective, then
weights the difference ratios between each objective function and its optimum point and sums them

CMC, 2024, vol.80, no.1 1607

finally. The Simulated Annealing (SA) method obtains the optimal solution. Reference [33] proposed
a method based on the Monarch Butterfly Optimization algorithm (MBO) for VM placement to
maximize packaging efficiency and reduce the number of active physical servers. Reference [1] aimed
at controlling manufacturing costs and treated MCs, the energy cost of servers, the cost of creating
VMs, and the total penalty cost for tasks whose demands are not satisfied as four objective functions.
The user determines the weights.

The approaches above are all priori methods, and they must clarify prior information’s impacts on
their solution. First, it is challenging to set weights accurately. Second, the metric used in calculating
the objective function is diverse for diverse objectives, resulting in a significant error in the weighted
objective function value.

II. The constraints method

They treat one of the objectives as one objective and consider the others as constraints. Reference
[5] minimized the number of the required hosts for hosting VMs under SLA constraint. Reference
[34] aimed at reducing the EC, composed of three parts: cost of assigning new VMs to PMs, MC, and
cost of keeping PMs turned on, and treated the demands of CPU, memory, and network bandwidth as
resource constraints. Reference [35] presented security-aware VM consolidation, which treats reducing
the security risk of a PM as an objective, and the risk increase for each VM does not exceed the value
of the proposed Risk Increase Threshold (RITH) as a constraint. Reference [36] proposed a failure-
aware VM consolidation approach, which regards failures arising as a constraint before performing
VM consolidation. Reference [37] presented an Interval-valued Fuzzy Logic (FL) mechanism aiming
at power conservation while optimizing performance.

Constraints limit the variation range of independent variables on an objective. The solution
obtained by this constraint may differ from the exact solution to that objective.

(2) Multi-objective method

A multi-objective optimization problem includes multiple objective functions and multiple con-
straints. To compare the two solutions, the concept of Pareto dominance is introduced. Reference
[38] proposed a two-objective approach and made a tradeoff between these objectives using a Fuzzy
Analytic Hierarchy Process (FAHP). Reference [39] aimed at energy saving and network bandwidth
consumption and proposed a two-objective approach that treats the number of the required hosts
for hosting VMs and the number of VM migrations as objective functions under SLA constraint.
Reference [9] proposed a VM placement approach to obtain the optimal solution using the ε-MOABC
algorithm, which can efficiently balance the overall EC, RW, and system reliability. Reference [40]
proposed an approach that uses an assembly of sine cosine algorithm (SCA) and ant lion optimizer
(ALO) for optimal VM assignment. The three objectives are EC, RW, and SLA levels. Reference [41]
proposed a multi-objective ant colony (AC) system algorithm for VM consolidation. The goal is to
minimize total RW and EC simultaneously. Reference [42] proposed an energy-aware and QoS-aware
multi-objective AC Optimization (ACO) approach for VM consolidation.

The discussed multi-objective approaches have focused on only two or three factors and treat
other factors as constraints, such as SLA. As for the VM consolidation problem, the factors may
conflict with each other (i.e., minimizing EC and minimizing SLA violation, etc.). Therefore, each
factor should be regarded as an objective instead of a constraint. Table 2 compares the approaches
mentioned above.

1608 CMC, 2024, vol.80, no.1

Table 2: Comparison of the existing multi-objective VM consolidation approach

App Mo We Con Mul Goals Strategy Limitation

[31] √ EC, MC and resource utilization Uses a hybridization of PSO
and BSO.

DSWA/DOFD

[32] √ EC, consolidation fitness,
processor utilization and number
of PMs with too high processor
utilization

Uses SA algorithm. DSWA/DOFD

[33] √ EC, RW Uses MBO. DSWA/DOFD
[1] √ Controls manufacturing costs Uses discrete cuckoo

optimization algorithm based
on group technology (GT).

DSWA/DOFD

[5] √ The number of the required PMs Uses an LP formulation and
heuristics to control VM
migration.

SOES

[34] √ EC Uses a snapshot-based
solution.

SOES

[35] √ The security risk of a PM Utilizes a three-dimensional
security assessment model.

SOES

[36] √ The occurrence of failures, the
hazard rate of physical resources

Utilizes failure prediction
technique based on
exponential smoothing.

SOES

[37] √ Energy savings, PD Uses an Interval-valued FL. SOES
[38] √ EC, SLA Uses a AHP. FG
[39] √ The number of the required PMs,

the number of VM migration
Uses a mixed single-parent
genetic algorithm.

FG

[9] √ EC, RW, and the system
reliability

Introduces a DTMC model
to predict future resource
usage and uses ε-MOABC
algorithm.

MGI/DCPD

[40] √ RW, power consumption and
performance

Uses a combination of the
SCA and ALO.

MGI/DCMC

[41] √ RW and EC Uses a multi-objective AC
system algorithm.

FG

[42] √ Energy efficiency, system
performance and
SLA-compliance

Uses multi-objective AC
optimization approach.

FG

Note: Legend: App: Approach; Mo: mono-objective approach; We: The weighted sum approach; Con: The constraints approach; Mul:
Multi-objective approach; DSWA: Difficult to set weights accurately; DOFD: The dimensions of the objective function are different; SOES:
The solution obtained may not be the exact solution; FG: Few goals; MGI: The model for the goal is incomplete; HCT: Higher computing
time; DCPD: Does not consider PD while VM consolidation; DCMC: Does not consider MC while VM consolidation.

3 Problem Formulation
3.1 Multi-Objective Optimization Formulation

To consolidate VMs dynamically when resource usage changes, we need to get an optimal
allocation between VMs and PMs, which can optimize multiple system goals. Our work uses two-
dimensional resources (i.e., CPU and memory) to characterize VMs and PMs because the VM’s image
file is stored in network-attached storage (SAN) in VM live migration technology. We propose a
prediction-based multi-objective VM consolidation approach that minimizes a data center’s total EC,
RW, MC, and PD.

CMC, 2024, vol.80, no.1 1609

3.1.1 EC Modeling

Our previous work [43] introduced an EC model that considers EC in diverse states, EC of states
switching, and EC of live migrations. The model we adopted in this paper significantly contributes to
the VM consolidation field. Its inclusion in our research underscores the importance of considering
EC in various scenarios, enhancing the robustness and applicability of our approach.

3.1.2 Performance Modeling

We can measure system performance in terms of such characteristics as turnaround time, maxi-
mum execution time, and maximum access capacity. It is challenging to evaluate and measure these
characteristics directly. More importantly, these characteristics can vary with diverse applications. To
assess and measure conveniently, we model PD when SLAV occurs and treat minimizing PD as one
of the optimization objectives. We define that the SLA is delivered when 100% of the performance
requested by an application inside a VM is provided at any time. As a result, SLA is violated when the
system does not fully provide the performance requested by an application inside a VM at some point.
There are two cases where the system cannot entirely perform an application request. One is that a
PM serving applications is experiencing 100% utilization, and another is a live VM migration is in
progress (i.e., it requires a specific MC such as migration latency and downtime). Therefore, we adopt
two metrics proposed in [44] to calculate SLAV: SLA violation Time per Active Host (SLATAH) and
the overall PD due to VM migrations (PDM).

SLATAH = 1
N

∑N

i=1

Tsi

Tai

PDM = 1
M

∑M

j=1

Cdj

Crj

(1)

SLATAH and PDM are calculated with Eq. (1). Where N is the number of PMs, Tsi is the total
time during which the ith PM has experienced the utilization of 100%, Tai is the total time during which
the ith PM is in the active mode, M is the number of VMs, Cdj is the estimate of the PD of the jth VM
caused by migration and Crj is the total CPU capacity requested by the jth VM during its lifetime.
From both of the above, SLAV is defined by Eq. (2).

SLAV = SLATAH · PDM (2)

The value of SLAV is a real number between 0 and 1, usually expressed as a percentage. A larger
value indicates a more severe SLAV.

3.1.3 MC Modeling

MC is highly dependent on data center conditions, such as network architecture, bandwidth usage,
the application itself (i.e., how many pages the application updates during migration), and VM memory
usage (i.e., memory read or write intensity). MC includes migration latency and downtime.

Migration latency is related to the VM size, workload characteristics, and network transmission
rate. All memory pages are copied to the target PM in the pre-copy phase while the VM remains
running. During the phase, some pages will be modified many times and must be copied many times
to ensure data consistency between source PM and target PM [45]. The continuous formation of
dirty pages means that pre-copy should be carried out in several rounds, and the dirty pages to be
transmitted during one round should be generated in the previous round. There are four conditions
used to terminate iterations: (1) the number of iterations exceeds a pre-defined threshold (n > nth), (2)
the total amount of memory transmitted exceeds a given value (m > mth), (3) the number of dirty pages
in the previous round drops below a given value (p < pth) and (4) the dirty page rate exceeds a given

1610 CMC, 2024, vol.80, no.1

bandwidth (d > Bth) [46]. At the stop-and-copy phase, the VM is hung, and all remaining dirty pages
and CPU registers are copied onto the target PM.

Let variable d be the memory dirtying rate during migration and constant B be the memory
transmission rate during migration. We observed that migration latency highly depends on (1) the
total amount of memory Vmig that has to be transmitted from the source to the target PM and (2) the
memory transmission rate B. It is proportional to Vmig and is inversely proportional to B, and we can
calculate it as:

Tmig = Vmig

B
(3)

According to [47], the amount of memory transmitted in round i is the following as Eq. (4):

vmig,i =
{

vmem i = 0
d · l · ti−1 0 < i < n

(4)

where vmem is the memory size of the VM when migration starts, l is the page size and ti−1 is the duration
of round i − 1. Consequently, Vmig is calculated as in Eq. (5).

Vmig =
∑n

i=0
vmig,i (5)

where n is the number of rounds in the pre-copying phase, and which is plus 1 due to that all remaining
dirty pages are transmitted at the final stop-and-copy phase.

A subset of memory pages called writable working sets (WWS) will be updated, much faster
than memory transfer speed. These pages are typically used to run process stacks, local variables, and
buffers. The hottest page should be skipped until the VM hangs. Therefore, the amount of memory
transmitted in each round should be subtracted from the size of WWS. Reference [45] believed that
the number of the hottest pages is almost proportional to the number of dirty pages in the previous
round, and proposes that the size of WWS in round i is calculated as:

Wi = γ · vmig,i (6)

where γ is a correlation coefficient.

Downtime is another part of MC. The VM is hung throughout the stop-and-copy phase and
duplicates the remaining dirty pages to the target PM. After the migration process is completed, the
VM is resumed on target PM. According to [45], downtime Tdown is defined as in Eq. (7).

Tdown = d · l · tn

B
(7)

where tn is the length of time of the last pre-copy round. Both Tmig and Tdown depend on ti (0 ≤ i ≤ n),
namely, how much time is spent in round i and the total number of rounds n before the final stop-and-
stop phase. In addition, the value of n is affected by termination conditions of iteration. We cannot
calculate them directly according to Eqs. (3)–(7). We propose a more practical model to calculate MCs.
We describe the pseudo-code for the model in Algorithm 1.

We propose an overall formula that synthesizes both migration latency and downtime to direct
migration choice as follows:

MC = a · Tmig + b · Tdown (8)

CMC, 2024, vol.80, no.1 1611

Algorithm 1: Performance model for migration
Input: nth, mth, pth, vmem, B, d, l, γ Output: Tmig, Tdown, Vmig

Initialize: v0 ← vmem, Vmig ← 0, Tmig ← 0, Tdown ← 0
1 for i = 0 to nth do
2 ti ← vi/B
3 vi+1 ← d · l · ti − γ · vi

4 Tmig + ← ti

5 Vmig+ ← vi

6 if Vmig > mth or vi/l < pth or d > Bth

7 break
8 end if
9 end for
10 Tdown ← vi+1/B
11 Tmig+ ← Tdown

3.1.4 RW Modeling

If no VMs utilize the remaining resources available, we believe those resources are wasted.
Minimizing resource wastage in VM consolidation is one of our objectives. Table 3 sums up the
notations in our approach. As depicted in Eq. (9), we define wr

j as a vector representing the RW of
PM j in term of resource r.

Table 3: Notations used in RW modeling

Notation Signification

N Number of VMs.
M Number of PMs.
R Number of dimensions of resource.
xij VM-to-PM assignment Boolean variable, which is equal to 1 if VM i is assigned

to PM j, 0 otherwise.
yj PM selection Boolean variable, which is equal to 1 if PM j is active, 0 otherwise.
Cr

j Non-negative capacity of PM j in term of resource r.
Dr

i Non-negative demand of VM i in term of resource r.
wr

j RW of PM j in term of resource r.

wr
j = yj ·

(Cr
j − ∑N

i=1(xij · Dr
i))

Cr
j

(9)

To quantify RW on multiple dimensions, we define the RW of PM j as the magnitude of wr
j as

Eq. (10). The total RW is defined in Eq. (11).

Wj = |wr
j | (10)

W =
∑M

j=1
Wj (11)

1612 CMC, 2024, vol.80, no.1

3.1.5 Optimization Formulation

We aim to minimize EC, MC, and RW and maximize performance simultaneously. In the above
model, we use the predicted values of VM resource demands (i.e., CPU demand prediction for EC,
memory demand prediction for MC, and CPU and memory demand predictions for performance and
RW) to calculate the objective function value.

Suppose fi(x) is the ith objective function entailed by a consolidation solution x. Let f1(x) be the
function of EC described by [43], f2(x) be the function of performance defined by Eq. (2), f3(x) be the
function of MC described by Eq. (8), and f4(x) be the function of RW described by Eq. (11). We can
formulate VM consolidation problem as:

Minimize : [f1 (x), f2 (x), f3 (x), f4 (x)]

• Constraint 1:
∑M

j=1 xij = 1. This means that one VM can be on only one PM.
• Constraint 2:

∑N

i=1 Dr
i · xij ≤ Cr

j yj. This guarantees that VM resource demands are not beyond
PM capacity.

• Constraint 3: yj, xij ∈ {0, 1} .

3.2 The Suggested Prediction Approach

3.2.1 ARIMA Prediction Method

This paper uses the ARIMA model to map linear patterns in time series. ARIMA is a prediction
and analysis model of time series. It can provide fast predictions [48]. It is very suitable for the
prediction of the scaling of cloud resources. Through difference, it can transform the nonstationary
time series into a stationary time series, and then apply AR and MA techniques to the time series.
Reference [23] gives ARIMA model as follows:

yt = α0 + β1yt−1 + β2yt−2 + · · · + βpyt−p + εt − α1εt−1 − α2εt−2 − · · · − αqεt−q (12)

where βi (i = 1, 2, . . . , p) is AR coefficient at lag p, αi (i = 0, 1, . . . , q) is MA coefficient at lag q, and εt

is the forecast error at period t, and yt is the actual value. The integers p and q are the orders of the
model. In this paper, the Box-Jenkins method [49] fits ARIMA (p, d, q) model.

3.2.2 SVR Prediction Method

SVR is strong at extracting nonlinear patterns of time series. It optimally maps nonlinear input
data to a higher-dimensional feature space through the transformation of the kernel function and then
performs LR in feature space.

We give the original input training set as: {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi ∈ X ⊂ Rn, yi ∈
Y ⊂ R, i = 1, 2, . . . , n, n is a total number of samples. We need to find a separating hyperplane, such
as f (x) = wTx + b = 0, where w is normal vector, and b is a bias. We can write the distance from point
x to hyperplane w, b as:

r = |wTx + b|
||w|| (13)

We write the margin width of the decision boundary as:

γ = 2
||w|| (14)

CMC, 2024, vol.80, no.1 1613

We aim to minimize the number of samples that do not fulfill the constraint of decision boundary
as much as possible. Thus, we write the optimization problem as:

min
w,b

1
2
||w||2 + C

∑n

i=1
lε(f (xi) − yi) (15)

where C is regularization constant, lε is the loss function, and defined as:

lε (f (xi) − yi) =
{

0 |f (xi) − yi| ≤ ε

|f (xi) − yi| − ε otherwise
(16)

To relax the samples’ margin requirements, slack variables ξi and ξ ∗
i are led into. We can display

the optimization of SVR with slack variables below:

min
w,b,ξi ,ξ

∗
i

1
2
||w||2 + C

∑n

i=1
ξi + ξ ∗

i (17)

s.t. f (xi) − yi ≤ ε + ξi, (18)

yi − f (xi) ≤ ε + ξ ∗
i ,

ξi ≥ 0, ξ ∗
i ≥ 0, i = 1, 2, . . . , n.

Using Lagrange multipliers forms the dual optimization problem given by:

max
α,α̂

∑n

i=1
yi (α̂i − αi) − ε (α̂i + αi) − 1

2

∑n

i=1

∑n

j=1
(α̂i − αi)

(
α̂j − αj

)
xT

i xj (19)

s.t.
∑n

i=1
(α̂i − αi) = 0, (20)

0 ≤ αi, α̂i ≤ C, i = 1, 2, . . . , n.

where α and α̂ are Lagrange multipliers. After solving αi and α̂i, we express prediction function
f (x) as:

f (x) =
∑n

i=1
(α̂i − αi) xT

i x + b (21)

Let function ϕ (x) map n-dimensional vector x into m-dimensional vector x, where m > n. We can
write f (x) as:

f (x) =
∑m

i=1
(α̂i − αi) ϕ (xi)

T
ϕ(x) + b (22)

By using the kernel function, we can convert the calculation in the feature space into the calculation
in the original space. The kernel function is defined as:

k
(
xi, xj

) =< ϕ (xi), ϕ
(
xj

)
>= ϕ (xi)

T
ϕ(xj) (23)

Therefore, we can overwrite f (x) as:

f (x) =
∑m

i=1
(α̂i − αi) k(x, xi) + b (24)

3.2.3 SMO

SMO is an algorithm usually used to solve optimization problems during the training process of
SVM. This paper exploits it to solve the optimization problem in the training process of SVR. We

1614 CMC, 2024, vol.80, no.1

describe the dual problem of SVR in Eq. (19). Let λi = α̂i − αi, i = 1, 2, . . . , m, consider feature
mapping and define kij = φ (xi)

T
φ

(
xj

) = k
(
xi, xj

)
, and we can express this problem as a minimization

problem as below:

min
λ

∑m

i=1
ε (|−λi| − (yiλi) + 1

2

∑m

i=1

∑m

j=1
λiλjkij (25)

s.t.
∑m

i=1
λi = 0, (26)

−C ≤ λi ≤ C, i = 1, 2, . . . , m.

If variables λ3, . . . , λm are regarded as constants, and then λ1 + λ2 = − ∑m

i=3 λi = ς , assuming that
variable λi ≤ 0 (otherwise, the result remains the same), we can simplify the objective function as:

W (λ1, λ2) = 1
2
λ2

1k11 + 1
2
λ2

1k22 + λ1λ2k12 +
∑m

j=3
λ1λjk1j +

∑m

j=3
λ2λjk2j − ε (λ1 + λ2) − y1λ1 − y2λ2 (27)

On substituting λ1 = ς − λ2 to Eq. (27), keep only the items with λ2, we can overwrite Eq. (27) as:

W (λ2) = 1
2
λ2

2k11 − ςλ2k11 + 1
2
λ2

2k22 + ςλ2k12 − λ2
2k12 −

∑m

j=3
λ2λjk1j +

∑m

j=3
λ2λjk2j + y1λ2 − y2λ2 (28)

Find the partial derivative of function W concerning λ2 and let the derivative be zero as below:

∂W
∂λ2

= (k11 + k22 − 2k12) λ2 −
(
ςk11 − ςk12 +

∑m

j=3
λjk1j −

∑m

j=3
λjk2j + y2 − y1

)
= 0 (29)

Let vi = ∑m

j=3 λjkij = f (xi) − ∑2

j=1 λjkij − b, i = 1, 2, . . . , m, and substitute ς = λ1 + λ2, there are:

(k11 + k22 − 2k12) λ2 = (k11 + k22 − 2k12) λ2 + E2 − E1 (30)

Ei = f (xi) − yi, i = 1, 2, . . . , m. (31)

Consequently, suppose that the solution of the last round is λold
2 and the new solution of this round

without clipping is λ
new,unc
2 , we get:

λnew,unc
2 = λold

2 + E2 − E1

k11 + k22 − 2k12

(32)

By clipping the original solution, we get:

λnew
2

⎧⎪⎨⎪⎩
H λ

new,unc
2 > H

λ
new,unc
2 L < λ

new,unc
2 < H

L λ
new,unc
2 < L

(33)

where L = λold
1 + λold

2 − C, H = C. Because of the linear relationship between variables λ1 and λ2, we
can get:

λnew
1 = λold

1 + λold
2 − λnew

2 (34)

After optimizing the two variables, we need recalculate threshold b and error Ei. According to
Karush-Kuhn-Tucker (KKT) conditions, when −C < λi < C, there are ξi = 0 or ξ ∗

i = 0 and Eq. (35)

CMC, 2024, vol.80, no.1 1615

holds:{
f (xi) − yi − ε = 0 −C < λi < 0
yi − f (xi) − ε = 0 0 < λi < C

(35)

If −C < λnew
1 < 0,

b = yi + ε −
∑m

j=1
λjkij (36)

Therefore,

bnew
1 = y1 + ε −

∑m

i=3
λiki1 − λnew

1 k11 − λnew
2 k21 (37)

Due to:

E1 = f (x1) − y1 =
∑m

i=3
λiki1 + λold

1 k11 + λold
2 k21 + bold − y1 (38)

We get:

bnew
1 = −E1 + ε + (

λold
1 − λnew

1

)
k11 + (

λold
2 − λnew

2

)
k21 + bold (39)

If −C < λnew
2 < 0, we get:

bnew
2 = −E2 + ε + (

λold
1 − λnew

1

)
k12 + (

λold
2 − λnew

2

)
k22 + bold (40)

In the same way, if 0 < λnew
1 < C and 0 < λnew

2 < C, we get:

bnew
1 = −E1 − ε + (

λold
1 − λnew

1

)
k11 + (

λold
2 − λnew

2

)
k21 + bold (41)

bnew
2 = −E2 − ε + (

λold
1 − λnew

1

)
k12 + (

λold
2 − λnew

2

)
k22 + bold (42)

We take the new value of b as:

bnew = bnew
1 + bnew

2

2
(43)

We can calculate Ei as:

Ei =
∑m

i=1
λikij + bnew − yi (44)

The SMO process is repeated until all variables λi (i = 1, 2, . . . , m) are obtained.

4 Prediction-Based Multi-Objective VM Consolidation
4.1 Resource Usage Prediction

Dealing with dynamic resource requirements is necessary to minimize the total EC, MC, PD, and
RW in a cloud data center. Knowing resource requirements in advance and buying time to calculate
the optimization solution requires predicting future resource demand based on historical resource
demand. This paper proposes a hybrid prediction approach based on ARIMA and SVR (HPAS) to
predict VM resource demand using available resource demand history. We depict the framework of our
prediction approach in Fig. 1. We utilize the resource demand trace generated from Microsoft Azure.
We divide the resource demand data into two parts at a ratio of 6 to 4. For ARIMA, we train and test

1616 CMC, 2024, vol.80, no.1

it to predict the future resource demand of VM. For SVR, we carry out the preprocessing phase. Then,
we use the prepared and normalized resource demand data to train and test the SVR model. The SVR
model predicts future errors. We depict the prediction model workflow in Fig. 2. We use an ARIMA
model to predict the resource demand initially. As mentioned, the ARIMA model can only capture
linear time series features. We use additional ARIMAs to calculate the errors but only consider linear
attributes. History of residuals from multiple time slots (i.e., slots t − 1, . . . , t − n + 1) generated by
ARIMAs is used to predict future error (i.e., slot t). Therefore, we use the residuals as inputs of the
SVR model. Adding the forecasts of the ARIMA model (i.e., Xt) and the SVR model (i.e., Êt) obtains
the final prediction (Ôt).

Figure 1: The prediction framework of resource demand

Figure 2: The prediction model workflow

From the above, we can see that in HPAS, ARIMA fully captures the linear features of live data
from the past n time slots, but inevitably overlooks nonlinear features. We accumulate the error of using
ARIMA only for prediction in the past n−1 time slots through n−1 additional ARIMAs. These errors

CMC, 2024, vol.80, no.1 1617

contain sufficient nonlinear features of live data and serve as inputs for SVR. Therefore, SVR can fully
capture the nonlinear features of live data from the past n − 1 time slots. SVR predicts the nonlinear
part of VM resource demand in time slot t and finally revises the initial ARIMA prediction of VM
resource demand for time slot t. Consequently, HPAS results in better predictive performance than
only one of ARIMA and SVR.

We present the pseudo-code for predicting resource demand per VM in Algorithm 2. Initially, we
enter the dataset into the suggested model (line 1). We partition the dataset into two parts: the training
part and the testing one (line 2). The training part estimates the ARIMA model by analyzing AC
and partial PAC functions and programming (lines 3–4). Next, we preprocess the generated resource
demand data for SVR (line 5). We use the boxplot method to detect outliers, remove them, and use
interpolation to fill in missing values to implement regression smoothly. We then apply the K-fold
Cross Validation (k-CV) strategy to select the best parameters of the kernel function (i.e., γ , C, and ε)
used by SVR (line 6). We perform the training process with the normalized resource demand data and
the suitable parameters (line 7). In the testing phase, the test evaluates the suggested model’s prediction
accuracy (line 8). Finally, we obtained the prediction result (lines 9–13).

Algorithm 2: HPAS
Input: stateHistory // State history of VM
Output: prediction of VM resource demand in next time slot
1 Enter the workload dataset xi ∈ X ⊂ Rn (VM resource demand) to the model
2 Divide the dataset into training part and testing one
3 Determine p, d and q by analyzing ACF and PACF on training set
4 Determine the parameters α and β of ARIMA by programing on training set
5 Preprocess data (cleaning and normalizing) for SVR
6 Apply k-CV strategy to find the best parameters of the kernel function used by SVR
7 Execute training process of the SVR model on training dataset using Algorithm 3
8 Test the model on testing dataset
9 Predict ŷt according to Eq. (12) for stateHistory
10 Predict z1, z2, . . . , zstateHistory.size() according to Eq. (12) for each state in stateHistory
11 Get error history errHistory according to stateHistory and z1, z2, . . . , zstateHistory.size()

12 Predict Êt according to Eq. (24) for errHistory
13 return ŷt + Êt

We performed the training process to get the best parameters of the SVR model using Algorithm
3. The first line is initialization. We then pick two variables (line 4). The first variable λk

1 selects the
sample with the most severe violation of KKT conditions in the training set. If all samples meet the
KKT condition, select a sample randomly. After selecting λk

1, the second variable λk
2 selects the sample

with enough change for |E1 − E2|. Next, we optimize λk
1 and λk

2 repeatedly using Eqs. (32)–(34), (39)–
(44) until we reach maximum iteration or satisfy the termination condition (lines 5–10). Finally, we
complete the optimization of all the variables λi(i = 1, . . . , n) and b.

4.2 VM Consolidation

The main goal of this work is to consolidate VMs into PMs based on the prediction result.
We propose an efficient prediction-based multi-objective VM consolidation algorithm that aims to
minimize the total EC, PD, MC, and RW in a cloud data center, depending on future resource demand.

1618 CMC, 2024, vol.80, no.1

Algorithm 3: The estimate of the parameters of SVR model
Input: Training data T = {(x1, y1), (x2, y2), . . . , (xn, yn)} , xi ∈ X ⊂ Rn, yi ∈ Y ⊂ R, i = 1, 2, . . . , n,
precision ε

Output: The values of parameters λ and b
1 i = 0, λ0 = 0, b0 = 0
2 While (i < n or stopping criterion is not met)
3 k = 0
4 Select two optimization variables as λk

1, λk
2

5 While (No. iterations or stopping criterion is not met)
6 Calculate λ

new,unc
2 according to Eq. (32)

7 Calculate λk+1
2 according to Eq. (33)

8 Calculate λk+1
1 according to Eq. (34)

9 Calculate bk+1 and Ei according to Eqs. (39)–(44)
10 k = k + 1
11 i = i + 2
12 return λ and b

4.2.1 Overload/Underload PM Detection

Algorithm 4 represents the overload/underload PM detection procedure. We used a warm-up
window to ensure computational tractability [44]. This paper’s first warmUpWindowSize time slots
were regarded as a warm-up phase (line 5). During the warm-up phase, we calculate the CPU usage
of PM and choose overload/underload PM (lines 1–6, lines 11–12). After the warm-up phase, we use
the prediction result of Algorithm 2 to calculate the CPU usage of PM and choose over/lower utilized
PMs (line 8).

Algorithm 4: Overload/underload host detection
Input: host, upperThreshold/lowerThreshold
Output: Boolean
1 vmList = host.getVmList()
2 totalMips = 0
3 FOR v IN vmList
4 stateHistory = v.getStateHistory()
5 IF (stateHistory.size() <= warmUpWindowSize)
6 totalMips + = v. getCurrentMips()
7 ELSE
8 totalMips + = HPAS(stateHistory)
9 END

10 END
11 hostUtilization = totalMips/host.getTotalMips()
12 return hostUtilization ≥ upperThreshold or hostUtilization ≤ lowerThreshold

CMC, 2024, vol.80, no.1 1619

All the VMs of underload hosts need to migrate, and we shut all the underload hosts down to save
EC and decrease RW.

4.2.2 VM Selection

We chose the MMT policy for VM selection. MMT policy selects a VM that requires the minimum
time to complete a migration. The migration time is the amount of RAM the VM utilizes divided by
the spare network bandwidth available for the PM.

4.2.3 VM Placement

We perform multi-objective optimization VM placement to reduce EC, PD, MC, and RW
simultaneously. We develop a multi-objective optimization VM placement (MOVP) approach based
on the Nsga2 algorithm.

Pareto dominance is widely used in the search for a multi-objective optimization solution. Consider
two solutions u, v ∈ X , u dominate v, denoted as u > v, if and only if f (u) is superior to or equal to f (v)
in each objective function and strictly superior in at least one objective function. It is called solution
x is non-dominant for set X , if there is no dominant member in X . The solution of multi-objective
optimization is called the Pareto optimal set. No other solution dominates the solutions in the Pareto
optimal set. The corresponding set of objective values defines the Pareto frontier.

Each placement solution is a vector x as described in Section 3.1.5. In MOVP, the objective
functions are defined in Sections 3.1.1–3.1.4, as described in Section 3.1.5. It is worth noting that
when calculating the values of these objective functions, we use the resource demand values (i.e.,
CPU utilization and Memory usage) of the VM predicted through HPVS. Using the predicted value
of resource demands instead of the current value for MOVP can give the placement solution good
timeliness and practical value. We present the pseudo-code for VM placement in Algorithm 5, which
inputs the PM, VM sets, and initial placement solution x0. Initially, we built a random parent
population P0 (line 1). We use selection, crossover, and mutation operators to create an offspring
population Q0 of size Pop_size (lines 3–5). In each generation, a merged population Rt of size 2·Pop_size
is formed to prevent individuals from being lost in the next generation in line 7. Next, we sort
the population Rt in non-domination order and arrange individuals into different frontiers (line 9).
Function crowding − distance − assignment is used to ensure the diversity of individuals (line 10). We
choose individuals from several frontiers (frontier order from low to high, i.e., F1,F2, and so on) for
new population Pt+1. To determine exactly Pop_size individuals, we sort the individuals of the last
frontier Fi using the crowd-comparison operator in descending order (lines 14, 21) and select enough
individuals (lines 15–22). Then, we generate offspring Qt+1 of Pt+1 for the next iteration (lines 23–28).
Function decisionMaking is an operator that chooses favorite individuals from current Pareto optimal
set Pt (line 30).

1620 CMC, 2024, vol.80, no.1

Algorithm 5: MOVP
Input: P = {p1, . . . , pM} , V = {v1, . . . , vN} , x0

Output: x
1 P0 ← initializePopulation (Pop_size) ; R0, Q0 ← ∅, t ← 0, x ← x0

2 for i ← 1 to
Pop_size

2
do

3 parents ← selection (P0)

4 offspring ← crossover (parents)
5 offspring ← mutation (offspring)

6 Q0 ← Q0 ∪ offspring
7 end for
8 while (t ≤ Max_Generatios)
9 Rt ← Pt ∪ Qt

10 F ← fast − non − dominated − sort(Rt)

11 crowding − distance − assignment(F)
12 Pt+1 ← ∅ and i ← 1
13 if |Fi| > Pop_size
14 sort (Fi)

15 Pt+1 ← Pt+1 ∪ F0[1 : Pop_size]
16 else
17 while |Pt+1| + |Fi| ≤ Pop_size
18 Pt+1 ← Pt+1 ∪ Fi

19 i ← i + 1
20 end if
21 sort (Fi)

22 Pt+1 ← Pt+1 ∪ Fi[1 : (Pop_size − |Pt+1|)]
23 for i ← 1 to

Pop_size
2

do

24 parents ← selection (Pt+1)

25 offspring ← crossover (parents)
26 offspring ← mutation (offspring)

27 Qt+1 ← Qt+1 ∪ offspring
28 end for
29 t ← t + 1
30 x ← decisionMaking(Pt)

31 return x

Fast − non − dominated − sort and crowding − distance − assignment are the two fundamental
operations of Nsga2, which will not be further elaborated here to save space.

5 Evaluation

This section evaluates the proposed approach based on the results obtained. First, the prediction
accuracy of the suggested prediction model is evaluated, and then the prediction-based consolidation
of the proposed approach is evaluated.

CMC, 2024, vol.80, no.1 1621

5.1 Experimental Setup

We performed a simulation on CloudSim version 5.0. We simulated a cloud data center with 50
heterogeneous PMs in five configurations. Table 4 describes the characteristics of these machines. VMs
are supposed to correspond to Amazon EC2 instance types. The experiments use four types of VMs,
as shown in Table 5. After each VM consolidation step, VM resource demand changes according to
workload data.

Table 4: Configuration of PMs

Server CPU model Cores Frequency (MHZ) RAM (GB)

IBM system x3200 M3 Intel Xeon X3480 4 3067 8
IBM system x3250 M3 Intel Xeon X3480 4 3067 8
IBM x3450 Intel Xeon E5462 8 2800 16
IBM system x3550 M3 Intel Xeon X5675 12 3067 16
IBM system x3500 M4 Intel Xeon E5-2680 16 2700 24

Table 5: VM types (EC2 VM types)

VM type CPU (MIPS) RAM (GB)

High-CPU medium instance 2500 0.87
Extra large instance 2000 3.75
Small instance 1000 1.74
Micro instance 500 0.613

We use the parameters of HPAS, C, ε, and γ to adjust the tradeoff between model complexity and
training error, define the accuracy requirement, and facilitate the mapping of input data, respectively
[19]. We obtain a better performance of HPAS when C is 150, ε is 0.01, and γ is 0.0001.

Table 6 presents MOVP’s parameters. The first seven are used by Algorithm 1, which MOVP
invokes.

Table 6: The parameters of MVOP

Notation Description Value

N_TH Pre-copy rounds threshold 20
M_TH Amount of memory transmitted

threshold
1000 MB

P_TH Number of dirty pages threshold 10000
B_TH Bandwidth threshold 0.6
B Bandwidth 1 Gbps
l Page size 4 KB
γ Correlation coefficient 0.001

(Continued)

1622 CMC, 2024, vol.80, no.1

Table 6 (continued)

Notation Description Value

CrossoverRate Crossover rate 0.6
MutationRate Mutation rate 0.1
Max_Generatios Max iteration generations 100
popSize Population size 30

We performed each experiment 10 times for our proposed approach, and reported the mean values
for different metrics.

5.2 Workload Model

It is essential to conduct experiments using workload traces from a real system. We used MicroSoft
Azure trace as resource demand data. This data trace contains information about every VM running
on Azure from 16 November 2016, to 16 February 2017. The data-trace corresponds to tens of millions
of VMs from tens of thousands of first- and third-party users.

In Sections 5.3 and 5.4, we conducted comparative experiments between the proposed and
benchmark algorithms using diverse datasets obtained from Azure Trace. These datasets’ average CPU
load rates are low to high, and their memories are relatively stable. We give the characteristics of all
the datasets in Table 7.

Table 7: Dataset characteristic

Dataset Average CPU load rate (%) Memory usage (GB)

1 16.7 4.8
2 22.6 4
3 36 3.5
4 46.8 3.3
5 56.8 3.3
6 65.2 3.4
7 74 3.4
8 87 3.3

5.3 Evaluation of Prediction Accuracy

5.3.1 Evaluation Metrics

We use several metrics to evaluate prediction accuracy for the suggested prediction model. The
evaluation metrics include Root Mean Square Error (RMSE), Mean Absolute Percentage (MAPE),
Mean Absolute Error (MAE), and R-squared (R2) [50].

CMC, 2024, vol.80, no.1 1623

5.3.2 Results

We compare HPAS’ forecast accuracy with state-of-the-art approaches to its efficacy. ARIMA
and SVR are two promising prediction methods for linear and nonlinear loads, respectively. The back
propagation neural network (BP-NN) is one of the most widely used neural network models. Thus, we
adopt them as baseline approaches.

We used 400 VMs and adopted Microsoft Azure data trace as the VM’s resource demand. Table 8
shows the comparison in terms of evaluation metrics in four hours. The table indicates that ARIMA
performs worst, followed by SVR and BP-NN. HPAS performs best. The low value of RMSE indicates
high accuracy. The value of RMSE for HPAS is the lowest. In terms of MAPE and MAE, HPAS
performs the best. As we all know, the value of R2 close to 1 indicates a good fit of data. HPAS is
closer to 1 than existing approaches.

Table 8: Comparison analysis of different prediction method

Performance parameter HPAS ARIMA SVR BP-NN

RMSE 13.8 41.51 24.36 27.02
MAPE 0.71 2.72 1.67 1.99
MAE 22.72 383 132.11 301.23
R2 0.77 0.49 0.56 0.51

In summary, HPAS shows better prediction accuracy, followed by SVR, BP-NN, and ARIMA.
HPAS’ better prediction accuracy can be explained by the proposed approach’s powerful capacity to
capture linear and nonlinear data features simultaneously.

Table 9 compares diverse kernel functions used in HPAS. We want to see whether HPAS uses RBF
kernel functions, which can produce better RMSE, MAPE, MAE, and R2 results, compared to Linear,
Polynomial, and Sigmoid kernel functions. If R2 is negative (i.e., Linear and Sigmoid), it indicates that
the fitting result is unreliable because the two kernel functions do not match data.

Table 9: Comparison using diverse kernel functions for HPAS

Performance parameter RBF Linear Polynomial Sigmoid

RMSE 13.8 148.85 16.56 20.45
MAPE 2.72 5.54 6.77 5.74
MAE 132.11 937.39 144.17 159.61
R2 0.77 −2.15 0.42 −0.18

Fig. 3 provides prediction using different prediction methods. For ARIMA and SVR, the predic-
tion is accurate for a few time slot points and cannot reflect the trend of changes in actual values,
as shown in Fig. 3a,b. For BP-NN, The predicted value is generally smaller than the actual value
and cannot reflect the trend of changes in actual values either, as shown in Fig. 3c. HPAS gives
better prediction results, as shown in Fig. 3d. In the initial stage (the time slot before point 55), the
relationship between actual and predicted values is quite chaotic due to the small number of samples
in the prediction set. Afterward, as the number of samples in the prediction set increases, the predicted
values reflect the trend of changes in actual values at many points, such as the sharp shapes near time

1624 CMC, 2024, vol.80, no.1

slot points 57, 61, 63, 71, 101, and 121. At some points, the predicted value almost coincides with the
actual value, such as time slot points 58, 63, 67, 69, 80, 86, 88, 99, 107, 112, 118, and 124.

Figure 3: Comparison of actual and predicted values using different prediction method (a–d)

We can conclude that HPAS’ predictions will become more accurate as the prediction sample set
grows. The results convey that HPAS produces more accurate forecasts than other prediction methods.

CMC, 2024, vol.80, no.1 1625

5.4 Evaluation of VM Consolidation

5.4.1 Evaluation Metrics

We evaluate our approach using metrics corresponding to the objectives proposed in Section 4,
such as EC, SLA violation, MC, and RW. We also use the number of VM migrations and computation
time as additional metrics.

5.4.2 Results

We first compare our approach with the multi-objective VM consolidation approach without
prediction. We chose the VM consolidation approach adopting the Nsga2 algorithm for multi-
objective optimization as a baseline approach.

Fig. 4 illustrates the metrics produced by the two approaches for six different datasets in four
hours. Our consolidation approach consumed less power than Nsga2 except for datasets 4 and 6. EC
was reduced by 3.1% in the worst case and by 37.7% in the best case compared to Nsga2. SLAV was
significantly reduced for all the datasets. It was reduced by 11.3% in the worst case and by 88.5% in the
best case compared to Nsga2. MC was reduced by 4% in the worst case and by 48.7% in the best case
compared to Nsga2. The number of VM migrations was significantly reduced for all the datasets. It
was reduced by 24.5% in the worst case and by 68.7% in the best case compared to Nsga2. There was
a slight reduction in RW. In terms of computation time, our approach spent more time than Nsga2.
It was increased by 431% in the worst case and 3% in the best case compared to Nsga2, which can be
explained by the fact that our approach integrates two prediction models (i.e., ARIMA and SVR), and
their training and prediction processes are time-consuming tasks, especially SVR. Another reason is
that calling the ARIMA model multiple times to obtain error history data takes some time.

In summary, the proposed approach has an excellent performance in terms of EC, SLAV, MC, and
number of VM migrations, which is attributed to the high predictive capacity of our approach. Our
approach provides the foresight of overload and underload detection, avoiding the issue of detection
results becoming invalid soon after, which also provides the foresight of VM selection, avoiding the
issue of selecting too many or too few VMs, and the foresight of destination PM selection, avoiding
the issue of target PM accommodating too many or too few VMs.

Next, we compare our approach with the renowned OHD approaches without prediction, such as
LR, MAD, and IQR. LR predicts CPU utilizations using LR. MAD and IQR measure the workload
stability by calculating the median absolute deviation and interquartile range of CPU utilization. Fig. 5
illustrates the metrics produced by all the approaches for six different datasets in two hours.

As shown in Fig. 5, our approach consumed less energy than any of the three approaches.
Compared to the best of the three algorithms (i.e., LR), EC was reduced by 3.1% in the worst case
and by 42.2% in the best case. SLAV was significantly reduced for all the datasets. Compared to the
best of the three algorithms (i.e., MAD), SLAV was reduced by 52.2% in the worst case and by 88.8%
in the best case. MC was greatly reduced except for dataset 5. Compared to the best of the three
algorithms (i.e., MAD), it was reduced by 8% in the worst case and by 55.3% in the best case. The
number of VM migrations was significantly reduced for all the datasets. Compared to the best of the
three algorithms (i.e., MAD), it was reduced by 4.9% in the worst case and by 75.9% in the best case.
The excellent performance of our approach can be explained by the fact that MAD and IQR provide
adaptive utilization thresholds based on statistics and cannot learn, LR has weak predictive ability
for nonlinear data, and our approach can better predict future resource demand for both linear and
nonlinear data, enabling overload and underload detection more accurate.

1626 CMC, 2024, vol.80, no.1

Figure 4: Comparison between the proposed approach and Nsga2 with different dataset

There is not much improvement in RW. Regarding computation time, our approach spent more
time than the three approaches. This is explained by the fact that LR, MAD, and IQR only require
simple calculations compared to our approach.

CMC, 2024, vol.80, no.1 1627

Figure 5: Comparison between the proposed approach and the existing OHD algorithms with different
dataset

6 Conclusion and Future Work

In this paper, we have proposed a prediction-based multi-objective VM consolidation approach,
which predicts future VM resource demand using HPAS, then consolidates VMs to PMs based on
prediction results by HPAS, aiming at simultaneously minimizing the total EC, PD, MC, and RW. We
have evaluated the proposed approach through simulation using real workload traces from Microsoft
Azure. The results illustrate that the proposed prediction model shows better prediction accuracy, and
the proposed consolidation approach overcomes the multi-objective consolidation approach without
prediction and the renowned OHD approaches without prediction, such as LR, MAD, and IQR.

1628 CMC, 2024, vol.80, no.1

Our approach powerfully captures both linear and nonlinear features of data, enabling timely
overload and underload detection, accurate VM and destination PM selections, and avoiding of
unnecessary VM migrations.

As this work is the first step in developing the best VM consolidation approach, we only evaluated
our approach in a simulation environment. In the future, we plan to study the effect of the proposed
approach in a real cloud environment. In two hours, the time spent on training, predicting, and multi-
objective optimization 2–13 s. The time cost is reasonable for small and medium-sized cloud data
centers. However, combining grouping technology based on this work is more suitable for large-sized
cloud data centers.

Acknowledgement: We sincerely appreciate Xinfeng Shu’s valuable guidance and suggestions in this
study. At the same time, we also appreciate the experimental equipment provided by Shaanxi Key
Laboratory of Network Data Analysis and Intelligent Processing. In addition, we would like to
thank all colleagues and collaborators who participated in this study for their hard work and selfless
dedication, which enabled the successful completion of this study.

Funding Statement: This study was funded by Science and Technology Department of Shaanxi
Province, Grant Numbers: 2019GY-020 and 2024JC-YBQN-0730. This organization did not influence
the study design, data collection, analysis, interpretation, manuscript writing, or the decision to submit
the manuscript for publication.

Author Contributions: Conceptualization: Xialin Liu; Methodology: Xialin Liu; Software: Xialin Liu;
Validation: Jiyuan Hu; Formal Analysis: Xialin Liu; Investigation: All authors; Resources: Junsheng
Wu; Data Curation: Lijun Chen; Writing–Original Draft: Xialin Liu; Writing–Review & Editing: All
authors; Visualization: Lijun Chen; Funding Acquisition: Junsheng Wu. All authors reviewed the
results and approved the final version of the manuscript.

Availability of Data and Materials: All data and materials included in this study are available upon
request by contacting the corresponding author.

Conflicts of Interest: We declare that we have no financial and personal relationships with other people
or organizations that can inappropriately influence our work, and there is no professional or other
personal interest of any nature or kind in any product, service, or company that could be construed
as influencing the position presented in, or the review of, the manuscript entitled “A Prediction-Based
Multi-Objective VM Consolidation Approach for Cloud Data Centers”.

References
[1] M. Tavana, S. Shahdi-Pashaki, E. Teymourian, F. J. Santos-Arteaga, and M. Komaki, “A discrete cuckoo

optimization algorithm for consolidation in cloud computing,” Comput. Ind. Eng., vol. 115, no. 1, pp. 495–
511, Jan. 2018. doi: 10.1016/j.cie.2017.12.001.

[2] D. Saxena and A. K. Singh, “A proactive autoscaling and energy-efficient VM allocation framework using
online multi-resource neural network for cloud data center,” Neurocomputing, vol. 426, no. 6, pp. 248–264,
Feb. 2021. doi: 10.1016/j.neucom.2020.08.076.

[3] S. Mashhadi Moghaddam, M. O’Sullivan, C. Walker, S. Fotuhi Piraghaj, and C. P. Unsworth, “Embed-
ding individualized machine learning prediction models for energy efficient VM consolidation within
Cloud data centers,” Future Gener. Comput. Syst., vol. 106, no. 1, pp. 221–233, Jan. 2020. doi:
10.1016/j.future.2020.01.008.

https://doi.org/10.1016/j.cie.2017.12.001
https://doi.org/10.1016/j.neucom.2020.08.076
https://doi.org/10.1016/j.future.2020.01.008

CMC, 2024, vol.80, no.1 1629

[4] N. K. Biswas, S. Banerjee, U. Biswas, and U. Ghosh, “An approach towards development of new
linear regression prediction model for reduced energy consumption and SLA violation in the domain
of green cloud computing,” Sustain. Energy Technol., vol. 45, no. 4, pp. 101087, Jun. 2021. doi:
10.1016/j.seta.2021.101087.

[5] T. C. Ferreto, M. A. S. Netto, R. N. Calheiros, and C. A. F. de Rose, “Server consolidation with migration
control for virtualized data centers,” Future Gener. Comput. Syst., vol. 27, no. 8, pp. 1027–1034, Oct. 2011.
doi: 10.1016/j.future.2011.04.016.

[6] I. Takouna, E. Alzaghoul, and C. Meinel, “Robust virtual machine consolidation for efficient energy and
performance in virtualized data centers,” presented at the 2014 IEEE Int. Conf. Green. Comput., Taipei,
Taiwan, Sep. 1–3, 2014.

[7] J. Jheng, F. Tseng, H. Chao, and L. D. Chou, “A novel VM workload prediction using grey forecasting
model in cloud data center,” presented at the 2014 Int. Conf. Inf. Net., Phuket, Thailand, Feb. 10–12, 2014.

[8] S. Y. Hsieh, C. S. Liu, R. Buyya, and A. Y. Zomaya, “Utilization-prediction-aware virtual machine
consolidation approach for energy-efficient cloud data centers,” J. Parallel. Distr. Comput., vol. 139, pp.
99–109, May 2020. doi: 10.1016/j.jpdc.2019.12.014.

[9] M. H. Sayadnavard, A. Toroghi Haghighat, and A. M. Rahmani, “A multi-objective approach for energy-
efficientand reliable dynamic VM consolidation in cloud data centers,” Eng. Sci. Technol., vol. 26, no. 2,
pp. 100995, Feb. 2021. doi: 10.1016/j.jestch.2021.04.014.

[10] L. Li, J. Dong, D. Zuo, and J. Liu, “SLA-aware and energy-efficient VM consolidation in cloud data centers
using host states naive bayesian prediction model,” presented at the 2018 IEEE. Int. Conf. Ubiq. Comput.,
Melbourne, VC, AUS, Dec. 11–13, 2018.

[11] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, “Workload prediction using ARIMA model and
its impact on cloud applications’ QoS,” IEEE Trans. Cloud Comput., vol. 3, no. 4, pp. 449–458, Aug. 2015.
doi: 10.1109/TCC.2014.2350475.

[12] F. Farahnakian, P. Liljeberg, and J. Plosila, “LiRCUP: Linear regression based CPU usage prediction
algorithm for live migration of virtual machines in data centers,” presented at the 2013 Euro. Conf. Soft.
Eng. Adv. Appl., Santander, Spain, Sep. 4–6, 2013.

[13] F. Farahnakian et al., “Using ant colony system to consolidate VMS for green cloud computing,” IEEE
Trans. Serv. Comput., vol. 2, pp. 187–198, Oct. 2015. doi: 10.1109/TSC.2014.2382555.

[14] N. T. Hieu, M. D. Francesco, and A. Ylä-Jääski, “Virtual machine consolidation with usage prediction for
energy-efficient cloud data centers,” presented at the 2015 IEEE 8th Int. Conf. Clou. Comput., New York,
USA, Jun. 27–Jul. 2, 2015.

[15] S. B. Shaw, J. P. Kumar, and A. K. Singh, “Energy-performance trade-off through restricted virtual machine
consolidation in cloud data center,” presented at the 2017 Int. Conf. Inte. Comput. Cont., Coimbatore,
India, Jun. 23–24, 2017.

[16] F. Farahnakian, T. Pahikkala, P. Liljeberg, and J. Plosila, “Energy aware consolidation algorithm based on
k-nearest neighbor regression for cloud data centers,” presented at the 2013 IEEE/ACM Int. Conf. Util.
Clou. Comput., Dresden, Germany, Dec. 9–12, 2013.

[17] Z. Li, C. Yan, X. Yu, and N. Yu, “Bayesian network-based virtual machines consolidation method,” Future
Gener. Comput. Syst., vol. 69, no. 7, pp. 75–87, Apr. 2017. doi: 10.1016/j.future.2016.12.008.

[18] J. Kumar, A. K. Singh, and R. Buyya, “Self directed learning based workload forecasting model for cloud
resource management,” Inform. Sci., vol. 543, no. 1, pp. 345–366, Jan. 2021. doi: 10.1016/j.ins.2020.07.012.

[19] L. Abdullah, H. Li, S. Al-Jamali, A. Al-Badwi, and C. Ruan, “Predicting multi-attribute host resource
utilization using support vector regression technique,” IEEE Access, vol. 8, pp. 66048–66067, Mar. 2020.
doi: 10.1109/ACCESS.2020.2984056.

[20] T. Thein, M. M. Myo, S. Parvin, and A. Gawanmeh, “Reinforcement learning based methodology for
energy-efficient resource allocation in cloud data centers,” J. King Saud Univ-Comput., vol. 32, no. 10, pp.
1127–1139, Dec. 2020. doi: 10.1016/j.jksuci.2018.11.005.

https://doi.org/10.1016/j.seta.2021.101087
https://doi.org/10.1016/j.future.2011.04.016
https://doi.org/10.1016/j.jpdc.2019.12.014
https://doi.org/10.1016/j.jestch.2021.04.014
https://doi.org/10.1109/TCC.2014.2350475
https://doi.org/10.1109/TSC.2014.2382555
https://doi.org/10.1016/j.future.2016.12.008
https://doi.org/10.1016/j.ins.2020.07.012
https://doi.org/10.1109/ACCESS.2020.2984056
https://doi.org/10.1016/j.jksuci.2018.11.005

1630 CMC, 2024, vol.80, no.1

[21] M. Ghobaei-Arani, S. Jabbehdari, and M. A. Pourmina, “An autonomic resource provisioning approach
for service-based cloud applications: A hybrid approach,” Future Gener. Comput. Syst., vol. 78, no. 3, pp.
191–210, Jan. 2018. doi: 10.1016/j.future.2017.02.022.

[22] Y. Liu, X. Sun, W. Wei, and W. Jing, “Enhancing energy-efficient and QoS dynamic virtual machine
consolidation method in cloud environment,” IEEE Access, vol. 6, pp. 31224–31235, May 2018. doi:
10.1109/ACCESS.2018.2835670.

[23] H. A. Kholidy, “An intelligent swarm based prediction approach for predicting cloud com-
puting user resource needs,” Comput. Commun., vol. 151, no. 1, pp. 133–144, Feb. 2020. doi:
10.1016/j.comcom.2019.12.028.

[24] Z. U. Qazi, H. Shahzad, and K. G. Muhammad, “Adaptive resource utilization prediction system for
infrastructure as a service cloud,” Comput. Intell. Neurosci., vol. 2017, pp. 4873459, Jul. 2017. doi:
10.1155/2017/4873459.

[25] J. Kumar, A. K. Singh, and R. Buyya, “Ensemble learning based predictive framework for virtual
machine resource request prediction,” Neurocomputing, vol. 397, no. 5, pp. 20–30, Jul. 2020. doi:
10.1016/j.neucom.2020.02.014.

[26] G. Kaur, A. Bala, and I. Chana, “An intelligent regressive ensemble approach for predicting resource
usage in cloud computing,” J. Parallel. Distr. Comput., vol. 123, no. 1, pp. 1–12, Jan. 2019. doi:
10.1016/j.jpdc.2018.08.008.

[27] J. Subirats and J. Guitart, “Assessing and forecasting energy efficiency on cloud computing platforms,”
Future Gener. Comput. Syst., vol. 45, no. 1, pp. 70–94, Apr. 2015. doi: 10.1016/j.future.2014.11.008.

[28] K. Mason, M. Duggan, E. Barrett, J. Duggan, and E. Howley, “Predicting host CPU utilization in the
cloud using evolutionary neural networks,” Future Gener. Comput. Syst., vol. 86, no. 4, pp. 162–173, Sep.
2018. doi: 10.1016/j.future.2018.03.040.

[29] J. Kumar, R. Goomer, and A. K. Singh, “Long short term memory recurrent neural network (LSTM-
RNN) based workload forecasting model for cloud datacenters,” Procedia Comput., vol. 125, no. 3, pp.
676–682, 2018. doi: 10.1016/j.procs.2017.12.087.

[30] Y. Zhang, J. Yao, and H. Guan, “Intelligent cloud resource management with deep reinforcement learning,”
IEEE Cloud Comput., vol. 4, no. 6, pp. 60–69, Dec. 2017. doi: 10.1109/MCC.2018.1081063.

[31] B. Hariharan, R. Siva, S. Kaliraj, and P. N. Senthil Prakash, “ABSO: An energy-efficient multi-objective
VM consolidation using adaptive beetle swarm optimization on cloud environment,” J. Amb. Intell. Hum.
Comput., vol. 14, no. 3, pp. 2185–2197, Aug. 2021. doi: 10.1007/s12652-021-03429-w.

[32] M. Sharifi, H. Salimi, and M. Najafzadeh, “Power-efficient distributed scheduling of virtual machines
using workload-aware consolidation techniques,” J. Supercomput., vol. 61, no. 1, pp. 46–66, Jul. 2011. doi:
10.1007/s11227-011-0658-5.

[33] M. Ghetas, “A multi-objective monarch butterfly algorithm for virtual machine placement in cloud com-
puting,” Neur. Comput. Appl., vol. 33, no. 17, pp. 11011–11025, Jan. 2021. doi: 10.1007/s00521-020-05559-2.

[34] S. Mazumdar and M. Pranzo, “Power efficient server consolidation for cloud data center,” Future Gener.
Comput. Syst., vol. 70, pp. 4–16, May 2017. doi: 10.1016/j.future.2016.12.022.

[35] M. A. Elshabka, H. A. Hassan, W. M. Sheta, and H. M. Harb, “Security-aware dynamic VM consolida-
tion,” Egypt. Inform. J., vol. 13, pp. 277–284, Sep. 2020. doi: 10.1016/j.eij.2020.10.00.

[36] Y. Sharma, W. Si, D. Sun, and B. Javadi, “Failure-aware energy-efficient VM consolidation in
cloud computing systems,” Future Gener. Comput. Syst., vol. 94, pp. 620–633, May 2019. doi:
10.1016/j.future.2018.11.052.

[37] B. M. P. Moura, G. B. Schneider, A. C. Yamin, H. Santos, R. H. S. Reiser and B. Bedregal, “Interval-valued
fuzzy logic approach for overloaded hosts in consolidation of virtual machines in cloud computing,” Fuzz.
Sets Syst., vol. 446, no. 4, pp. 144–166, Oct. 2022. doi: 10.1016/j.fss.2021.03.001.

[38] N. Kord and H. Haghighi, “An energy-efficient approach for virtual machine placement in cloud based
data centers,” presented at the 2013 5th Conf. Info. Know. Tech., Shiraz, Iran, May 28–30, 2013.

[39] Q. Liao and Z. Wang, “Energy consumption optimization scheme of cloud data center based on SDN,”
Procedia Comput. Sci., vol. 131, no. 5, pp. 1318–1327, Jan. 2018. doi: 10.1016/j.procs.2018.04.327.

https://doi.org/10.1016/j.future.2017.02.022
https://doi.org/10.1109/ACCESS.2018.2835670
https://doi.org/10.1016/j.comcom.2019.12.028
https://doi.org/10.1155/2017/4873459
https://doi.org/10.1016/j.neucom.2020.02.014
https://doi.org/10.1016/j.jpdc.2018.08.008
https://doi.org/10.1016/j.future.2014.11.008
https://doi.org/10.1016/j.future.2018.03.040
https://doi.org/10.1016/j.procs.2017.12.087
https://doi.org/10.1109/MCC.2018.1081063
https://doi.org/10.1007/s12652-021-03429-w
https://doi.org/10.1007/s11227-011-0658-5
https://doi.org/10.1007/s00521-020-05559-2
https://doi.org/10.1016/j.future.2016.12.022
https://doi.org/10.1016/j.eij.2020.10.00
https://doi.org/10.1016/j.future.2018.11.052
https://doi.org/10.1016/j.fss.2021.03.001
https://doi.org/10.1016/j.procs.2018.04.327

CMC, 2024, vol.80, no.1 1631

[40] S. Gharehpasha and M. Masdari, “A discrete chaotic multi-objective SCA-ALO optimization algorithm
for an optimal virtual machine placement in cloud data center,” J Amb. Intell. Hum. Comp., vol. 12, Nov.
2020. doi: 10.1007/s12652-020-02645-0.

[41] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, “A multi-objective ant colony system algorithm for virtual
machine placement in cloud computing,” J. Comput. Syst Sci., vol. 79, no. 8, pp. 1230–1242, Dec. 2013.
doi: 10.1016/j.jcss.2013.02.004.

[42] M. H. Malekloo, N. Kara, and M. E. Barachi, “An energy efficient and SLA compliant approach for
resource allocation and consolidation in cloud computing environments,” Sustain. Comput-Infor., vol. 17,
pp. 9–24, Mar. 2018. doi: 10.1016/j.suscom.2018.02.001.

[43] X. Liu, J. Wu, L. Chen, and L. Zhang, “Energy-aware virtual machine consolidation based on evolu-
tionary game theory,” Concurr. Comp-Pract. E, vol. 34, no. 10, pp. e6830.1–e6830.16, May 2022. doi:
10.1002/cpe.6830.

[44] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms and adaptive heuristics for energy
and performance efficient dynamic consolidation of virtual machines in cloud data centers,” Concurr.
Comp-Pract. E, vol. 24, no. 13, pp. 1397–1420, Oct. 2011. doi: 10.1002/cpe.1867.

[45] Z. Wei et al., “Performance degradation-aware virtual machine live migration in virtualized servers,”
presented at the 2012 Int. Conf. Para. Dist. Comput., Appl. Tech., Beijing, China, Dec. 14–16, 2012.

[46] H. Liu, H. Jin, C. Z. Xu, and X. Liao, “Performance and energy modeling for live migration of virtual
machines,” Cluster Comput., vol. 16, no. 2, pp. 249–264, Dec. 2011. doi: 10.1007/s10586-011-0194-3.

[47] Q. Huang, F. Gao, R. Wang, and Z. Qi, “Power consumption of virtual machine live migration in clouds,”
presented at the 2011 Int. Conf. Comm. Mob. Comput., Qingdao, China, Apr. 18–20, 2011.

[48] M. Valipour, M. E. Banihabib, and S. M. R. Behbahani, “Comparison of the ARMA, ARIMA, and the
autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir,” J.
Hydrol., vol. 476, no. 10, pp. 433–441, Jan. 2013. doi: 10.1016/j.jhydrol.2012.11.017.

[49] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis: Forecasting and Control. New Jersey,
USA: Wiley, Jun. 2008. doi: 10.1002/9781118619193.

[50] T. Mandhi and H. Mezni, “A prediction-based VM consolidation approach in IaaS cloud data centers,” J.
Syst. Softw., vol. 146, no. 12, pp. 263–285, Dec. 2018. doi: 10.1016/j.jss.2018.09.083.

https://doi.org/10.1007/s12652-020-02645-0
https://doi.org/10.1016/j.jcss.2013.02.004
https://doi.org/10.1016/j.suscom.2018.02.001
https://doi.org/10.1002/cpe.6830
https://doi.org/10.1002/cpe.1867
https://doi.org/10.1007/s10586-011-0194-3
https://doi.org/10.1016/j.jhydrol.2012.11.017
https://doi.org/10.1002/9781118619193
https://doi.org/10.1016/j.jss.2018.09.083

	A Prediction-Based Multi-Objective VM Consolidation Approach for Cloud Data Centers
	1 Introduction
	2 Related Works
	3 Problem Formulation
	4 Prediction-Based Multi-Objective VM Consolidation
	5 Evaluation
	6 Conclusion and Future Work
	References

