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ABSTRACT

The growing global requirement for food and the need for sustainable farming in an era of a changing climate
and scarce resources have inspired substantial crop yield prediction research. Deep learning (DL) and machine
learning (ML) models effectively deal with such challenges. This research paper comprehensively analyses recent
advancements in crop yield prediction from January 2016 to March 2024. In addition, it analyses the effectiveness
of various input parameters considered in crop yield prediction models. We conducted an in-depth search and
gathered studies that employed crop modeling and AI-based methods to predict crop yield. The total number of
articles reviewed for crop yield prediction using ML, meta-modeling (Crop models coupled with ML/DL), and
DL-based prediction models and input parameter selection is 125. We conduct the research by setting up five
objectives for this research and discussing them after analyzing the selected research papers. Each study is assessed
based on the crop type, input parameters employed for prediction, the modeling techniques adopted, and the
evaluation metrics used for estimating model performance. We also discuss the ethical and social impacts of AI on
agriculture. However, various approaches presented in the scientific literature have delivered impressive predictions,
they are complicated due to intricate, multifactorial influences on crop growth and the need for accurate data-driven
models. Therefore, thorough research is required to deal with challenges in predicting agricultural output.
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RH Relative Humidity
ET Evapotranspiration
WS Wind Speed
Sr Solar Radiation
VP Vapor Pressure
EDD Extreme Degree Days
GDD Growing Degree Days
VPD Vapor Pressure Deficit
SOC Soil Organic Carbon
BD Bulk Density
N Nitrogen
P Phosphorus
K Potassium
CC Clay Content
CEC Cation Exchange Capacity
SM Soil Moisture
SR Surface Reflectance
NDVI Normalized Difference Vegetation Index
EVI Enhanced Vegetation Index
NDWI Normalized Difference Wetness Index
TCI Temperature Condition Index
VTCI Vegetation Temperature Condition Index
GCI Green Chlorophyl Index
VCI Vegetation Condition Index
RI Ripening Index
WDVI Weighted Difference Vegetation Index
SAVI Soil Adjusted Vegetation Index
PVI Perpendicular Vegetation Index
GVI Green Vegetation Index
LAI Leaf Area Index
TV Tree Volume
EC Electrical Conductivity
AWC Available Water Capacity
NIRv Near-Infrared Reflectance of Vegetation
SIF Solar Induced Chlorophyll Fluorescence
SMDI Soil Moisture Deficit Index
PDSI Palmer Drought Severity Index
SPI Standard Precipitation Index
DNN Deep Neural Network
BPNN Back Propagation Neural Networks
GRNN Generalized Regressive Neural Network
RBFNN Radial Basis Function Neural Networks
GNN Graph Neural Network
WOFOST World Food Studies
CERES Crop Environment Resource Synthesis
ARIMA Autoregressive Integrated Moving Average
APAR Absorbed Photosynthetically Active Radiation
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3D-CNN 3-Dimensional Convolutional Neural Network
LCCC Lin’s Concordance Correlation Coefficient
APSIM Agricultural Production Systems Simulator
MSE Mean Square Error
RMSE Root Mean Square Error
NRMSE Normalized Root Mean Square Error
MAE Mean Absolute Error
RMAE Root Mean Absolute Error
MSLE Mean Squared Logarithmic Error
MedAE Median Absolute Error
RMedSE Root Median Square Error
R Correlation Coefficient
MBE Mean Biased Error
MAPE Mean Absolute Percentage Error
MFE Mean Forecasting Error
RRMSE Relative Root Mean Square Error
RPD Residual Prediction Deviation
LR Linear Regression
MLR Multiple Linear Regression
SLR Stepwise Linear Regression
ELNET Elastic Network
UAV Unmanned Arial Vehicle
PCA Principal Component Analysis
KNN K-Nearest Neighbour
ELM Extreme Learning Machine
RF Random Forest
SVM Support Vector Machines
SVR Support Vector Regression
DT Decision Tree
BST Boosting Tree
BGT Bagging Tree
SDG Stochastic Descending Gradient
GPR Gaussian Process Regression
GBM Gradient Boosting Machine
XGBOOST Extreme Gradient Boosting
ADABOOST Adaptive Boosting
NN Neural Network
MLP Multiple-Layer Perceptron
ANN Artificial Neural Network
GRU Gated Recurrent Network
RBF Radial Basis Function
SNN Spiking Neural Network
XY-FS XY-Fused Networks
SKN Supervised Kohonen Networks
SOM Self-Organizing Maps
RNN Recurrent Neural Network
BMA Bayesian Model Averaging
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DFNN Deep Feedforward Neural Network
CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Network
LSTM Long Short-Term Memory
RPIQ Ratio of Prediction Performance to Inter-Quartile Range
LASSO Least Absolute Shrinkage and Selection Operator
CAFFE Convolutional Structure for Rapid Feature Embedding
DQN Deep Q Network

1 Introduction

With the world population increasing and farmland becoming scarcer, the agriculture industry has
to increase production and maintain an adequate food supply. According to the Food and Agriculture
Organization (FAO), agribusiness contributes to about 3.9% of the world’s GDP as it is the source of
income for more than 40% of the population across the globe. AI for agriculture has transformational
benefits across a variety of uses. Precision agriculture employs AI to improve the utilization of
resources, increasing crop yields while reducing inputs such as fertilizer and irrigation water. AI
offers early disease identification and crop monitoring, leading to reduced crop losses. Weather
forecasting helps farmers make accurate choices to plant and harvest times. Automation improves
supply-chain operations and lowers labor expenses, resulting in better productivity and earnings in
agriculture. The unpredictability of weather, a changing climate, and limited resources pose critical
challenges to agricultural output and reliability. Weather change impacts plant growth during different
phases, resulting in considerable in-season yield variation. The regional variation in soil characteristics,
irrigation regime, pest control, fertilizer usage, rotating crops, and cropland preparation routines add
to the challenge of accurately evaluating crop production. On-field operations in cropping systems
seem too expensive owing to their complexities. The reality is that they are associated with sensitive
plant/edible product interactions [1]. Advanced software tools for crop yield prediction can transform
farming methods. These applications use Artificial Intelligence (AI), machine learning, and data
analytics to analyze enormous agricultural data, including weather trends, soil conditions, crop
conditions, and past yield statistics. Farmers and government may utilize such data to make accurate
choices about crop choice, planting strategies, utilization of resources, and handling risks. Accurate
crop yield prediction has significant economic implications. The studies show that improved crop yield
predictions might result in high-cost savings and enhanced food production worldwide. This research
provides insights into the enormous significance of data-driven techniques that affect the agricultural
sector through an in-depth analysis of current developments and future directions.

1.1 Crop Yield Prediction Modeling Techniques

The effect of environmental factors on crop production changes depending on the stage of
crop development. Mechanistic models such as crop growth models are mathematical depictions of
plant growth and development processes that integrate existing knowledge of plant growth with crop
physiology, soil science, meteorology, and management practices to produce reliable predictions [2].
Fig. 1 shows the different crop yield prediction models used in the literature.

The Agricultural Production Systems Simulator (APSIM) [3], decision support system for agri-
culture technology transfer (DSSAT) [4], World Food Studies Simulation Model (WOFOST) [5],
Crop Environment Resource Synthesis (CERES) [6], and AquaCrop are some highly utilized crop
simulation models in the literature. A study [6] examined two methods for integrating seasonal climate
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predictions with crop models to enhance crop production predictability. A study [7] assessed the ability
of crop model predictor variables to replicate crop yields variations and showed that they performed
better than weather variables to explain yield variability. Weather data from the Australian seasonal
climate model is utilized as input to a crop growth simulation model to predict yield [8]. A study [9]
forecasted corn and soybean yields and plant phenology on soil nitrogen and water dynamics using
the APSIM crop model. However, the requirement of extensive input data makes the crop models
expensive for complex calibrations. Additional algorithms for analyzing data have become influential
as computational processing power has increased to work on larger datasets [10]. As shown in Fig. 2,
another type of yield prediction technique are data-driven techniques based on historical yield data
such as statistical models, ML, and DL techniques.

Figure 1: Types of crop yield prediction models

Figure 2: Data-driven crop yield prediction workflow
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These techniques consider a set of most effective input parameters as independent variables
contributing to the yield variation as the dependent variable. However, statistical methods can
model unidentified management strategies, heat, excessive rainfall, periods of drought, pest problems,
diseases, and unusual weather. These weather fluctuations necessitate the systems to be loaded with
a large volume of information to develop dependable models. The researchers have integrated crop
models with ML to add flexibility to the heavy crop simulation models. These meta-models are ML
models trained on simulation models to make them run much faster than before. A slightly less
accurate meta-model is better than more accurate but computationally slow simulation models. A
study [11] explored the potential of LASSO, Ridge Regression, RF, XGBoost, and their ensembles for
APSIM for predicting simulated yields of maize and loss of nitrogen with data available at the time
of planting. XGBoost was best-performing in yield prediction with an RRMSE of 13.5%, RF was the
best-performing in N-loss prediction with an RRMSE of 54%, and the prediction accuracy increased
with the inclusion of ML-ensembles. A meta-model is effective for local impact assessment without
comprehensive input datasets [12]. There has been little research in this field that has integrated crop
models with linear regression. The primary approach is integrating yield trends into crop models using
regression analysis [13–16].

1.2 Contribution of Present Study

This review study focuses on various modeling techniques for yield prediction tasks, including
crop growth modeling, ML-based yield prediction, DL-based yield prediction, and meta-modeling.
The research studies are analyzed based on the crop, input parameters fed into the prediction model,
the modeling techniques, and evaluation metrics for assessing the model performance. The focus is on
the recent research on crop yield prediction published from January 2016 to March 2024. This study
includes a critical analysis of the importance of various input parameters used to carry out crop yield
prediction. This study includes research for analyzing the usage and importance of input parameters
from 2007 till the present. The summary of yield prediction techniques is also presented in a handy
tabular manner so that the researchers can quickly read it before starting their research. This research
also discusses the benefits and challenges of using AI for agriculture based on the research conducted
on 125 research papers. No existing review paper based on crop yield prediction methodologies covered
the comprehensive discussion on meta-modeling techniques used for crop yield prediction tasks. This
review paper will be informative for scholars who pursue research in predicting agricultural yields.

1.3 Organization of Paper

The remaining part of the paper is as follows. Section 2 elaborates on the research. This section
addresses the methodology employed in the literature selection process. Section 3 discusses the
effectiveness of multiple input factors impacting yield. Section 4 presents the reported work on
machine learning, meta-modeling, and deep learning perspectives in crop yield prediction. Section 5
provides a comprehensive overview of all the investigations. Section 6 covers the paper’s conclusion,
and Section 7 presents the future research directions.

2 Research Methodology

This section describes the procedure used for reviewing the crop yield prediction studies. Articles
considered in the present literature study are from the most recent innovations done in research under-
taken in modern agriculture. This survey article includes four main steps: Set Research Objectives,
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search databases for records based on associated keywords, select related research articles for detailed
analysis, and finally attain and report on the research objectives, as shown in Fig. 3.

Figure 3: Research methodology

The identified papers are analyzed one by one, considering the following research objectives:

RO1: What input parameters were utilized for yield prediction?

RO2: Which crop was considered to develop the yield prediction model?

RO3: Which modeling techniques were used to predict yield?

RO4: What evaluation metrics were considered to report the accuracy of prediction?

RO5: Which challenges do researchers face in building artificial intelligence-driven prediction
models?

Several databases like Scopus, ScienceDirect, Web of Science, Springer, IEEE Explorer, Google
Scholar, and Wiley are searched for related work to answer predefined research objectives. Different
combinations of keywords used to search for relevant research publications in databases are “Crop
yield prediction”, “coupling machine learning with crop modeling,” “machine learning in crop yield
prediction”, “deep learning in crop yield prediction”, “impact of input parameters on crop yield”.
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We retrieved 200 research papers from the literature. Before studying the research papers in detail, we
performed two-phase scanning on the retrieved research papers. During the initial scanning phase, we
removed the duplicate papers. In the second phase, we defined some filtration rules for choosing final
research papers for our study. Fig. 4 presents the year-wise categorical distribution of research papers
based on crop yield prediction considered in this review.
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Figure 4: Year-wise categorical distribution of research papers based on crop yield prediction models

The following filtration criteia were applied to select the research papers for review:

Filtration criteria 1: The research article was not related to agriculture.

Filtration criteria 2: The article’s publication year is before 2016.

Filtration criteria 3: The article presented a systematic review of any agricultural research.

Filtration criteria 4: The article was not based on the crop yield prediction.

Filtration criteria 5: The article did not use crop growth modeling, meta-modeling, ML, or DL
techniques for yield prediction.

Filtration criteria 6: The article text was partially available due to restricted access.

Publication year-based filtration is not applied to select the research papers for input parameters
analysis. After filtering, the total number of articles studied thoroughly in this review is 125. The above
graph does not include the research on input parameter analysis. The articles that performed prediction
based on deep learning are the highest, 42 in total. The articles based on machine learning are 36.
The number of articles that used meta-modeling is 24. A total of 23 articles cover the analysis of the
effectiveness of input parameters in crop yield prediction. Additionally, they are incorporated and
placed according to the research objectives stated in the present research.

3 Efficacy of Yield-Affecting Parameters

To predict crop yields, a variety of available meteorological data, soil data, satellite-based
observations, and management practices have been used. This section covers the input parameters
presented in Fig. 5 used in crop yield prediction and their effectiveness in predicting crop yields.

Weather data such as rainfall (R), air temperature (T), land surface temperature (LST), relative
humidity (RH), evapotranspiration (ET), wind speed (WS), and solar radiation (Sr), and vapor
pressure (VP) impact the crop yield in a nontrivial manner. A study [17] found that rainfall,
temperature, and Sr were the more influential in yield prediction. Study [18] also assessed the impact
of meteorological parameters on the corn yield and presented that R, VP, T, and Sr were the most
influential parameters with a relevance factor between 0.021 and 0.033. A study [19] reported that
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the correlation between LST and yield is higher than air temperature. Biotic stresses like weeds, pests,
and diseases and abiotic stresses like soil salinity, heavy metal content, heat, water, and drought also
impacted the yields. To quantify the impact of temperature on yield, heat stress such as extreme
degree days (EDD), growing degree days (GDD), and vapor pressure deficit (VPD) have been used
during the crop growing season [20,21]. Stable soil properties such as soil depth or granularity, bulk
density (BD), clay content, soil organic carbon content (SOC), and dynamic soil properties such as
pH, content of nutrients such as nitrogen (N), phosphorus (P), potassium (K), soil moisture (SM) and
temperature are considered by the researchers. Remotely sensed surface reflection (SR) has also been
an efficient predictor variable. Satellite observations record the yield evolution variability with season
advancements, contributing to the peak growing months.
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Figure 5: Agricultural yield-affecting parameters

For estimating crop growth and differentiating the crop area, optical bands determine vegetation
indices (VIs) such as enhanced VI (EVI), normalized difference VI (NDVI), normalized difference
wetness index (NDWI), temperature condition index (TCI), green chlorophyll Index (GCI) and
vegetation condition index (VCI) [22–24]. Study [22] used VCI derived from NDVI products to forecast
sugarcane production at the county level using Stepwise linear regression. Although these linear
models have been very good at simulating seasonality trends, outliers are hard to predict for ARIMA
since they are outside the general pattern as caught by the model. Some studies also utilized the Leaf
Area Index (LAI) [25,26]. Study [27] predicted future crop yield of wheat, corn, and cotton and yield
deficit under soil salinity implications using VIs and ground data. Under different soil salinity, they
reported that salt between (8–10) caused 28% losses for wheat, 55% yield loss for corn, and 15% for
cotton. Another indicator of plant cover, near-infrared reflectance of vegetation (NIRv), represents
the fraction of pixel radiance related to plants in the pixel from the perspective of reality. In some
cases, NIRv estimates were less accurate than those calculated by the NIRv or VIs at the growth phase.
Soil-adjusted vegetation index (SAVI), weighted difference vegetation index (WDVI), perpendicular
vegetation index (PVI), green vegetation index (GVI), and solar-induced chlorophyll fluorescence
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(SIF) have been used as fair predictors of vegetation phenomena [28,29]. SIF was directly related to
crop yield than VIs [30]. However, EVI performed better than SIF in some cases where the temporal
and spatial resolution of the remotely sensed images was low [31].

Satellite-derived soil moisture data provide crucial insights into environmental stress and addi-
tional hydrological data such as drought stress and groundwater depth during the growing period.
In a study [32], ML models and six ensembles foresee corn yield in three corn-growing states in the
US. They showed more accurate predictions for all ML models with APSIM hydrological data. It
improved the accuracy of all models in RMSE by 27% [32–36]. Soil moisture deficit index (SMDI),
palmer drought severity index (PDSI), and Standard precipitation index (SPI) have been used to assess
the impact of drought [37,38]. A study [39] investigated that integrating EVI and LST with VPD and
rainfall notably improved the model performance. Management inputs like planting density, planting
date, irrigation, and fertilizer composition also provide valuable insights for yield prediction [40,41].
A few studies focused on describing yield as a direct function of genotype, environment, and their
ability to interact in selecting the most appropriate cultivars for target regions. A study [42] proposed
a stacked LSTM with attention to foreseeing genotype reactions in different settings using per-week
climatic variables. To forecast corn yield across the US, a study [43] developed a DNN method using
a dataset that included six weather parameters and eight soil characteristics.

3.1 Handling Unbalanced Datasets and Image Pre-Processing

In crop yield prediction, dealing with unbalanced data sets and incorporating image pre-
processing are essential for building accurate and robust models. Resolving the data imbalance is
crucial since farming data often indicate imbalances in crop yield categories, with some yield levels
overrepresented. The oversampling, under-sampling, and cost-sensitive learning techniques guarantee
that all yield categories are fairly represented, minimizing the potential risk of biased forecasts by
models. Additionally, image pre-processing is critical in maximizing the utility of visual information
such as satellite imaging or field images, which provide significant information about crop conditions
and external variables influencing yield. Some image pre-processing techniques include image resizing
and cropping, normalization, color space transformations, morphological operations, noise reduction,
edge detection, texture analysis, histogram equalization, and segmentation to ensure consistency
across images, enhance image clarity and to focus on relevant image parts only that indicate crop
wellness, crop growth periods, and atmospheric conditions.

4 Crop Yield Prediction

This section covers the research papers related to crop yield prediction using machine learning,
meta modeling, and deep learning.

4.1 Machine Learning for Crop Yield Prediction

This section covers the application of several ML methods by various researchers to predict
yields for diverse crops. Researchers have taken the task of yield prediction as a time series analysis
problem [44]. Certain time functions investigate the aggregate impact of weather on agricultural
productivity. Some frequently used parameterized linear time series models for yield prediction are
Autoregressive Integrated Moving Average (ARIMA) for stationary time series and seasonal ARIMA
for time series with seasonality component [45]. A study [46] used regression analysis and time-series
modeling techniques for bajra yield prediction using rainfall, temperature, and past yield. Among all
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the implemented models, ARIMAX was best performing with a Root Mean Absolute Error (RMAE)
of 2.82%, Root Mean Square Error (RMSE) of 3.86%, and Mean Absolute Error (MAE) of 50.67%.

Study [47] evaluated the yield variation predictions by utilizing a cross-ensemble empirical method
to temperature and rainfall results extracted from a cross-ensemble. The Mosaic method gave reliable
predictions over 25%–38% of the cultivated area. ML models like support vector machines (SVM)
and random forest (RF) are more resistant to overfitting when dealing with nonlinear data. SVM
aims to find the optimal hyperplane for classification or regression by optimizing the space between
observations and the decision boundary while minimizing classification error. Mathematically, it
involves finding the vector of weights (w) and bias (b) that define the hyperplane using y = w ∗ x + b.
Here, y is the predicted class label, x is the input feature vector, and w and b are learned parameters.
LASSO regression has been used in yield prediction by selecting relevant features and mitigating
overfitting, thus improving the accuracy of crop yield forecasts. The LASSO objective function is
F = RSS + λ ∗ � |βi| λ. Here, RSS represents the Residual Sum of Squares, which measures the
error between predicted and actual values. βi represents the regression coefficients for each feature. λ

regulates the degree of regularization. Higher λ values lead to more feature selection and sparsity in
coefficients.

Study [48] performed the evaluation prediction models such as elastic NET, LASSO, SLR, and
PCA-LR based on numerical weather data. Based on the overall average ranking of the models,
ELNET was the best-performing. In a study [49], three RF models based on timestamps like Pre-
sowing, in-season, and end-season used proximally sensed on-farm data. Study [50] used satellite-based
images along with ML models such as LR, RF, NN, SVM, GPR, and Cubist for corn yield prediction
at a spatial scale. NN was most accurate for SOM, SVM was most accurate for K, GBM was most
accurate for pH, and RF gave the best accuracy. To predict maize and potato yield, reference [51] used
RF, SVR, and polynomial regression using rainfall and temperature as predictor variables. Study [52]
complemented satellite data (EVI and SIF) by providing weather data (VPD, R, T) to give valuable
insights across the whole crop growing season of wheat and evaluated LASSO, SVM, RF, and NN.
RF, NN, and SVM performed better than LASSO regression model.

Study [53] developed three ensemble models using a blocked sequential procedure, weather data,
soil data, and management data. Compared with LR, LASSO, XGBoost, LightGBM, RF, stacked
regression, and stacked versions performed the best with an RMSE of 9.5%. With the least biased
predictions, Stacked LASSO topped with an MBE of 53 kg/ha. Study [54] predicted the wheat yields
at the county level based upon multiple source datasets and SVM, Gaussian process regression
(GPR), RF, KNN, NN, decision tree (DT), boosting tree (BST), and bagging tree (BGT). They used
temperature, rainfall, drought index, soil moisture, soil PH, NDVI, and EVI as predictor variables.
SVM, GPR, and RF were best-performing with R2 > 0.75 and yield percentage error <10%. The study
[55] assessed DT, RF, stacked sparse autoencoder, and SVM techniques for predicting rice, corn, and
soybean yield using Sr, humidity, WS, temperature, rainfall, and vegetation indices from MODIS. SVM
was the most effective way for crop yield prediction. ML-based yield prediction system [56] integrated
climatic, weather, agricultural yield, and chemical data for making predictions using KNN, MLR, and
a DT. The decision tree outperformed other models.

Study [57] utilized 2020 Syngenta Crop Challenge data and ML methods such as DT, gradient
boosting machine, RF, adaptive boosting, XGBoost, and neural networks to estimate the corn yield.
With an RMSE of 0.0524, the prediction made by XGBoost was more accurate than those made by
other models. A study [58] used RF and SVM classifiers using VIs, Sr, humidity, SOC, and WS to
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predict wheat yield in China. Employing VIs increased model precision. Predicting yield with near-
infrared reflectance of terrestrial vegetation (NIRv) was more accurate than with NDVI and EVI.
The RF model using NIRv performed better than the SVM model. Study [59] combined principal
component analysis (PCA) and ML with high-order spatial independent component breakdown to
improve rice yield prediction accuracy. They integrated shared VCI/TCI geographic diversity into
their corresponding subdomains. PCA-ML performed better than LR, SVM, and DT. Study [60] used
Cross-validation feature selection algorithms with LR, RT, SVM, NN, Bayesian regression, and KNN
to forecast alfalfa yield. The methodology based on correlation was the best performing. Study [61]
developed AdaNaive, and AdaSVM ensembles for predicting yields of crops. The results indicated
excellent accuracy. In a comparative analysis of RF and MLRs for maize, wheat, and potato yield
prediction [62], RF models outperformed all other models. A study [63] used RF to predict crop
yields in the kharif and rabi seasons. R-Tool analyzed the data, and the study [64] utilized a spiking
neural network (SNN) on NDVI image time series. The study used a 9-feature model to predict crop
yield. A study [65] used the RF method and the R package to forecast cotton yield. The predictor
variables acquired from multi-sensor satellites such as NDVI, VCI, SPI, GDD, and LST improved the
calibration and validation of the RF algorithm. Artificial Neural Network (ANN) offers a prevailing
tool for crop yield prediction using historical agricultural data and complex patterns to provide
accurate forecasts. ANN is represented mathematically using Eqs. (1) and (2).

Zj
(i) =

∑ (
Wij

(i) ∗ ai−1

) + bj
(i) (1)

aj
(i) = f

(
Zj

(i)
)

(2)

Study [66] applied SVM to analyze weather changes, the K-means method for classifying plants
and soil, and used ANN to estimate crop production. Study [67] compared the performance of RF,
DT, and ANN to predict the crop yields of staple crops in Morocco. ANN outperformed other
models with improved MSE and R2 values. Study [68] attempted a sugarcane yield prediction task
using on-field observation and weather data using ELM to find the sugarcane yield estimates. They
used data from the closest operational weather station and field data such as irrigation schedule and
soil conductivity. ELM was the best-performing method compared to ANN and genetic models. A
study [69] proposed a hybrid MLR-ANN approach for rice crop yield prediction. They used MLR
slope and coefficient setting the ANN’s input layer weights and biases for estimating accurate yield.
The MLR-ANN outperformed conventional models. A study [70] used modular ANNs to predict
monsoon rainfall. It used SVR to predict key kharif agricultural yields based on the rainfall data. The
MANNs-SVR technique surpassed RF, LR, and KNN.

A study [71] evaluated wheat yield variation using real-time multilayered soil information
and satellite imagery. They compared the performance of XY-fused Networks (XY-Fs), counter-
propagation ANN, and Supervised Kohonen Networks (SKNs). SKN is an ANN that combines
the self-organizing properties of Kohonen Self-Organizing Maps (SOMs) with supervised learning.
Building the SOM network involves deciding which neuron is a winner and then adjusting the weights
in the layers. A neuron with the smallest Euclidean gap between its weight and independent variables
is declared the winner. The weights of the prevailing neuron modify according to w (t, i, j, k) =
w (t − 1, i, j, k) + η (t) · h (i, j, t) · (o (k) − w (t; –1, i, j, k)). Here w (t, i, j, k) corresponds to the new
weight calculated in iteration t, w (t − 1, i, j, k) is the current weight from the preceding iteration, o (k)

is variable k of the object. The coordinates (i, j) give the neuron position, η (t) denotes the learning rate
function, and h (i, j, t) denotes the neighborhood function to show how the weight adjustment varies
depending on the distance from the winner neuron. SKN had the highest accuracy level of 81.65%.
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A study [72] proposed an ANN method for fruit yield prediction using images. Two different
BPNN models were built for the beginning and the ripening phase. R2, Mean Absolute Percentage
Error (MAPE), Mean Forecasting Error (MFE), and RMSE were applied to analyze the results. In
the study [73], ANN models forecasted maize yield in South Africa’s grain-producing regions using
rainfall, temperature, ET, SM, and NDVI. The proposed models gave accuracy-adjusted R2 values
of 0.75, 0.67, 0.86, and 0.82 for four provinces, respectively. Study [74] developed an ANN ensemble
to estimate sugarcane crop yield using NDVI time series data. Neural network wrappers with serial
reverse feature removal removed unnecessary features. Then, a stacked ensemble with ANN predicted
sugarcane production. Stacking improved the results, reducing the RRMSE by 8% and the R2 up
to 0.43. Study [75] compared the effectiveness of ANN, modified ANN, and MLR for wheat yield
prediction using precipitation, biomass, soil moisture loss, transpiration, Soil Water, and fertilizer data.
C-ANN improved yield prediction, with higher R2 values and lower % errors.

The impact of fuzzy logic on wheat yield prediction was examined [76]. This study offered a
method for estimating wheat crop yields using actual yields and interval-based data division. Study
[77] applied Cubist, SVM, DNN, RR, RF, and ensemble learning and used data from multiple sensors
for wheat yield prediction. In every ML approach, multi-sensor information-based prediction out-
performed individual-sensor data-based predictions. Ensemble learning outperformed all individuals
with R2 of 0.692, RMSE of 0.916 t ha−1, Residual Prediction Deviation (RPD) of 1.771, and the ratio
of prediction performance to inter-quartile range (RPIQ) of 2.602. A study [78] investigated a method
for estimating coffee yield using Tree volume (TV), Ripening Index (RI), and NDVI and fed into LR,
SVR, RF, DT, and Stochastic Descending Gradient (SDG). LR and SDG performed well, with a 56%
and 55% correlation. Study [79] used a multiple-layer perceptron (MLP) with optimization methods to
estimate MLP parameters. A hybrid gamma test selected the best input. The model reduced the MAE
significantly. Table 1 shows the summary of ML techniques considered in this study.

Table 1: Summary of ML techniques considered in this study

Article Crop Input data Algorithm Compared models Result

[2] Potato Field data, SM, EC,
NDVI

LR, SVR ELNET,
K-NN

All methods SVR with
RMSE: 4.62–6.60
t/ha

[22] Sugarcane NDVI SLR No model
compared

Predicted∼actual
yield is <10%

[46] Bajra T, R ARIMAX ARIMA, LR RMAE: 2.8 kg/ha
RMSE: 3.8 kg/ha
MAE: 50.6 kg/ha

[47] Maize, rice, wheat,
soybean

T, R Ensemble No model
compared

Mosaic accuracy:
(25%–38%)

[48] Coconut T, R, RH, WS, Sr ELNET, LASSO,
ANN, SLR,
PCA-LR, PCA-ANN

All methods Performance
rank:
PCA-ANN <

PCA-SLR < SLR
< ANN <

LASSO <

ELNET
[49] Wheat, barley,

canola
EVI, R, EC,
on-farm data

RF models All methods RMSE:
0.36–0.42 t/ha
LCCC: 0.89–0.92

(Continued)
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Table 1 (continued)

Article Crop Input data Algorithm Compared models Result

[50] Corn SOM, PH, CEC,
NDVI

LR, RF, NN, SVM,
GPR, Cubist

All methods RF best with
R2 = 0.5
RMSE = 0.9

[51] Irish potatoes, maize R, T RF, SVR, polynomial
regression

All models RF outperformed
For potato:
RMSE: 510.8
kg/ha
R2: 0.875
For maize:
RMSE: 129.9
kg/ha
R2: 0.817

[52] Wheat EVI, SIF, R, T, VPD LASSO, SVM, RF,
NN

All methods ML models better
with R2 ∼ 0.75

[53] Corn Weather, soil,
planting data

Three ensembles LR, LASSO,
XGBoost,
LightGBM, RF

RMSE: 9.5%
MBE: 53 kg/ha

[54] Wheat T, R, SM, PH, EVI
NDVI,

SVM, GPR, RF KNN, NN, DT,
BST, BGT, RF,
GPR, SVM

R2 > 0.75
PE < 10%

[55] Rice, corn, soybean VIs, Sr, RH, WS, T,
R

SVM DT, RF, ANN,
LSTM,
autoencoder

RRMSE: 0.56 t/ha

[56] Rice, yam, corn,
cassava, cotton,
banana

T, R, pesticide usage,
NO2

DT KNN, LR R2 = 0.95

[57] corn Genotype XGBoost DT, RF, NN
AdaBoost,
XGBoost

RMSE: 0.0524
t/ha

[58] Wheat VIs, Sr, RH, SOC,
WS

RF SVM R2: 0.74
RMSE: 758 kg/ha

[59] Rice VCI, TCI PCA-ML LR, SVM, DT Average accuracy:
8.5%–45%

[60] Alfalfa T, SM, R, day length RF, KNN LR, RT, SVM,
NN, Bayesian
regression

MAE < 200
lbs./acre
R2: 0.95

[61] Rice, gram cotton,
sugarcane,
groundnut

T, CC, ET, VP,
WDF, R

AdaNaive, AdaSVM Naïve Bias, SVM AdaSVM
performed the
best accuracy:
89.42% to 93.72%

[62] Maize, wheat,
potato

R, T, day length, FA,
ET

RF MLR RMSE: 6% to
14%

[63] Rice R, T RF No model
compared

RF performed
good in
visualization

(Continued)
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Table 1 (continued)

Article Crop Input data Algorithm Compared models Result

[64] Wheat NDVI, planting area NN Different feature
size

r = 0.81
Accuracy: 95.64%
Average error:
0.236 t/ha

[65] Cotton NDVI, VCI, SPI,
GDD, LST

RF All methods RMSE:
62.77 kg/ha
MAPE: 0.32 t/ha

[66] Kharif, rabi,
summer crops

T, R, RH, PH ANN, SVM,
K-Means

No model
compared

ANN performed
good in
visualization

[67] Wheat, apple, olive,
date, almond

R, T, SM ANN, RF, DT, All models MSE: 0.10 t/ha
R2: 0.90

[68] Sugarcane Management data,
soil data, T, R, RH,
Sr

ANN, ELM, GP ANN, ELM, GP ELM best
performing
r: 0.47
R2: 0.89
RMSE: 0.8 t/ha

[69] Rice R, T, Sr, planting
area, FP, IR

MLR-ANN MLR, ANN,
KNN, SVR, RF

MLR-ANN with
RMSE: 0.051 t/ha
MAE: 0.041 t/ha
r: 0.99

[70] Maize, bajra, rice,
ragi

R SVR, MANN RF, LR, KNN SVR best
performing
RMSE: 1696−1t
–1709−1t

[71] Wheat NDVI, soil data CP-ANNs, XY-Fs,
SKNs

CP-ANNs, XY-Fs,
SKNs

SKN performed
the best with
accuracy: 81.65%

[72] Apple Fruit images ANN, BPNN No model
compared

R2: 0.83
MAPE: 8.9%
MFE: 0.03 kg/tree
RMSE: 2.3 kg/tree

[73] Maize NDVI, R, T, ET, SM ANN Different weights
feature analysis

Adjusted R2: 0.75,
0.67, 0.86, 0.82 for
four different
provinces

[74] Sugarcane NDVI ANN ensembles Different stack size RRMSE: 8%
R2: 0.43

[75] Wheat R, SM, ET, SM, FP C-ANN ANN, MLR The R2 of
C-ANN: 97%
Average
prediction error:
0.5275%

[76] Wheat Yield data Fuzzy logic No model
compared

Low MSE and
MFE

(Continued)
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Table 1 (continued)

Article Crop Input data Algorithm Compared models Result

[77] Wheat UAV multi-sensor
data

Cubist, SVM, DNN,
RR, RF, and their
ensembles

All models Ensemble learning
outperformed
R2 = 0.692
RMSE = 0.916
t/ha
RPD = 1.771
RPIQ = 2.602

[78] Coffee TV, NDVI, RI LR, SDG SVR, RF, DT R2 for TV: 71%,
R2 for NDVI:
55%, R2 for RI:
63%,

[79] Wheat T, WS, RH, ET, R MLP-HBA,
MLP-SCA, MLP-SA,
MLP

All models MAE reduced by
MLP: 61%

ML has found widespread application in environmental predictive modeling for its ability to deal
with linear or nonlinear relationships, unusual data, and superior performance. A solitary ML model,
on the other hand, can be underperformed by a group of modeling techniques (ML ensembles),
which could decrease variance, prediction bias, or both and identify the implicit data distribution
effectively [53].

4.2 Meta Modeling Based Crop Yield Prediction (Coupling ML and Crop Modeling)

The researchers speculated that combining prediction techniques, particularly crop modeling and
ML models, would improve agricultural prediction. Certain studies employed crop model simulation
outcomes as input to a multiple-regression model, creating an integrated simulated crops-regression
framework to forecast crop yields [80–83]. Recent research has developed hybrid simulation crop
modeling-ML models for crop yield prediction. Study [84] used simulations that included biomass
from the APSIM, precipitation, temperature, and Sr to an RF model to predict yearly variations in
local sugarcane yield. The combined model could forecast yields quite well. Study [85] developed a
system that combined APSIM model results with drought, frost, and heat stress to forecast wheat
production using the RF model. The hybrid model exceeded the hybrid of APSIM and MLR and
the APSIM model alone in terms of R2 and RMSE. They extended the work by combining APSIM,
simulated biomass, NDVI, and SPEI. Study [86] developed a hybrid model for wheat yield prediction
at the plot level using RF and MLR. The RF-based model predicted the yields with LCCC of 0.53, r
of 0.62, RMSE of 1.01 t ha−1, MAPE of 27.1%, and ROC score of 0.90.

In a study [87], the WOFOST crop model integrated with ridge regression, SVM, and gradient
Boosting to forecast crop yields at subnational scales. They found that including crop simulation
data in ML models improved prediction outcomes significantly. In hybrids, the prediction accuracy
increased by 8%–9%. A stacked ensemble performed the best with the incorporation of APSIM inputs.
They extended the concept and developed ML models and their ensembles, considering contexts
including and without including crop model factors using soil, weather conditions, management
practices, and past yield information [88]. The results showed that combining crop modeling with
ML improved the accuracy.
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Study [89] aimed to give a comparative evaluation of the approaches for tea crop yield forecasting
using the UN’s AquaCrop simulation framework and ML methods (SVR, AdaBoost, Automatic
Relevance Determination, DT, MLP, MLR, Random Sample Consensus, LR, XGBoost, and SVM).
They obtained the lowest MAE, MSE, and RMSE values using 10-fold cross-validation and XGBoost.
Study [90] used a dynamic CERES-Maize to simulate the long-term maize yield and evapotranspira-
tion with management practices and climatic conditions. Six ML models used the results from three
growing seasons in experiments and the CERES model outputs. The XGBoost model performed better
than other regression techniques in estimating evapotranspiration and yield based on R2 > 0.82 and
RRMSE < 9%. A study [91] combined ANN, KNN, RF, and SVR with multiple crop process models
of the DSSAT platforms. The findings showed that ANN and RF performed accurate wheat yield
prediction. ML methods lowered uncertainty to 7.2% and the yield variation to 8.1%.

In a study [92], the predictive input data from GCM’s prediction propelled the APSIM model.
The LAI of the rice crop was estimated using air temperature, water vapor, aerosol, and NDVI data
in ML and DNN modeling. RF was more efficient than DNN in LAI estimation. In a study [93],
total biomass simulated by the APSIM and weather indicators estimated wheat production using the
regression models. RF approach outperformed gradient boosting and MLR. RF predicted wheat yield
accurately with r of 0.86, MAE of 498 kg ha−1, and RMSE of 683 kg ha−1. Study [94] examined ANN,
multivariate adaptive regression splines, and RF for reproducing the APSIM chickpeas crop growth
model. All the ML models performed well with R2 > 0.95 at estimating outcomes for each region of
the training data set. A study [95] conducted regional simulations using ML and the physiological
model APSIM. To emulate APSIM predictions, they trained multivariate regression splines, RF, and
boosting trees to forecast SOC variability and crop yield.

In a study [96], a hybrid strategy for predicting corn yield examined yield prediction capabilities at
various stages of growth using the WOFOST model and GRU. The findings indicated that the primary
features of the maize growth stage were its growth condition and water-related characteristics. The best
model achieved an RMSE of 102.65–554.84 kg/ha. In a study [97], APSIM for maize monitors the
daily process of biomass accumulation throughout the maize growth period and uses the amount of
biomass produced daily to estimate the final grain yield. The findings indicate that the proposed model
accomplished prediction with an RRMSE of 7.16%. Study [98] used simulated sunflower and wheat
data from DSSAT to examine the impact of data volume, splitting strategies, and prediction technique
choice on the accuracy of predictions. ANN and RF analyzed agricultural yields as a function of soil,
management, and weather conditions. RF performed better, exhibiting an RMSE of 35%–38%. Study
[99] proposed a hybrid framework for winter wheat yield forecasting by assimilating LAI and SM into
a crop model and then combining it with ML models. The proposed model achieved an ACC of 0.97
and MAPE of 1.74%. To improve oil seed rape and wheat yields, a study [100] proposed a meta-model
using RF and light use efficiency (LUE). They developed four RF models individually with NDVI,
weather parameters, NDVI with weather parameters, and LUE with weather parameters. The final
LUE coupled with the RF model reduced the RMSE by 8% and R2 by 14.3%.

4.3 Deep Learning-Based Crop Yield Prediction

This section covers deep learning models to predict yields for diverse crops. A similar idea from
ANN goes into Deep Neural Networks (DNN) algorithms. DL provides multiple levels of abstraction
by adding more hidden layers to the model and transforming the data with many operations. With
significant developments in the classification of images using Convolutional Neural Networks (CNN),
deep DL has gained importance in crop management, crop type categorization, and crop yield
assessment applications. CNN, as defined in the study [101], specializes in handling gridded datasets
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and investigated the ability of RGB images captured by unmanned aerial vehicles (UAV) along with
weather data to explain the yields of Wheat, barley, and oats using CNN-LSTM, Conv-LSTM, 3D-
CNN. 3D-CNN was the best performing for a full-length series. Study [102] proposed a CNN and used
satellite-derived features relating to topography, fertilization, and precipitation as input data. 3D-CNN
involves the 3D convolution operation, which computes an output feature map O by convolving an
input volume X with a 3D kernel K at each spatial location (x, y, z) using Eq. (3).

O (x, y, z) =
∑

i

∑

j

∑

k

X (x + i, y + j, z + k) · K (i, j, k) (3)

CNN [103] for image classification and Recurrent Neural Networks (RNNs) have been effectively
used for their capability to learn long-term dependencies [104]. Some extensions of RNN, such as Long
Short-Term Memory (LSTM) [105] and Gated Recurrent Unit (GRU) have also recently demonstrated
state-of-the-art outcomes in many applications requiring time series data analysis. LSTM structures
exist in a variety of forms, including CNN-LSTM, encoder-decoder LSTM, bidirectional LSTM, and
stacked LSTM. A CNN-LSTM model combines CNN and LSTM networks to analyze sequential
data with spatial features. The key mathematical operation involves passing CNN feature maps Ci

into LSTM cells and the calculation of the LSTM cell states and hidden states at each time step. The
mathematical calculations of the CNN-LSTM model are done using Eqs. (4) to (7).

It = Ci (4)

Ft = σ
(
Wf ∗ It + Uf ∗ Ht−1 + bf

)
(5)

Ct = Ft ∗ Ct−1 + It ∗ tanh (Uc ∗ Ht−1 + Wc ∗ It + bc) (6)

Ht = Ot ∗ tanh (Ct) (7)

Here Ct represents the LSTM cell state and Ht represents the hidden state, and Ft represents the
forget gate state at time step t.

Study [106] used CNN and LSTM with Gaussian procedure to foresee the crop yield using 3D
histograms produced from images acquired from remotely sensed SR, land cover, and LST. Study [107]
extended the work by testing the ability of a trained model in one area to be transferred to another
region. They initialized the LSTM model with NN parameters trained on the Argentina dataset and
replaced the last dense layer with the untrained dense layer before training the model again on Brazil
data. Study [108] presented a CNN-LSTM model to predict soybean yield using weather data. The
data was converted into vectors based on the histogram for training. Study [109] preserved the spatial
properties of images by using the entire image rather than averaged pixels or the histograms of pixel
values. Their model combined ConvLSTM layers with the 3D-CNN to extract spatiotemporal features.
The model was trained using MODIS LST, SR, and land cover data. The model outperformed DT,
the histogram-based CNN + GP, and the histogram-based CNN-LSTM, ConvLSTM and 3D-CNN.

Subsequently, the study [110] integrated the outputs of 3D-CNN and ConvLSTM to provide
a probability-based forecast of soybean crops using Bayesian Model Averaging (BMA), SR, Land
cover, and LST as predictors. The estimates of soybean crops using BMA were more precise than
those obtained by the 3D-CNN and ConvLSTM. For wheat yield estimation, a study [111] developed
a CNN-LSTM-12. The method operated on raw satellite imagery such as SR and thermal product
land cover data. CNN-LSTM-12 outperformed DT, ridge regression (RR), SLR, and LSTM+GP.
To formally articulate the temporal connection between many temporal imageries, a study [112]
proposed Spectral-Spatial-Temporal neural networks, which combined 3D-CNN and LSTM to
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predict corn and wheat yields. Multiple-spectral images obtained spectral-spatial features. Then, a
spectral-spatial feature learning component concatenated with the temporal dependency is acquired
to take the temporal connection from the continuous imagery. The approach offered greater accuracy
in predicting yield.

The authors in [113] used LSTM to predict soybean yield using satellite-driven VIs, LST, and
rainfall. The LSTM models outperformed the other linear methods for soybean yield forecasts. A
study [114] proposed a CNN to predict wheat and barley yields using RGB images and remotely sensed
NDVI. To add temporal and spatial knowledge into the model and then further increase prediction
power, study [115] developed a unique graph-based RNN called GNN-RNN for predicting the corn
and soybean crop yields using rainfall, temperature, VPD, mean dewpoint temperature, SM, soil
temperature, available water capacity (AWC), BD, electrical conductivity (EC), pH, SOM, raw sand,
silt, and clay % as input parameters fed to the model. GNN-RNN outperformed LSTM, GRU, and
1-D CNN. A study [116] proposed a smoothening function to predict wheat yield using food
production data and MATLAB for simulation.

A study [117] proposed a CNN-RNN to prove its generalizability in Corn and soybean yield
prediction. CNN-RNN was best performing for Soybean yield prediction among RF, LASSO, and
DFNN. Study [118] proposed new activation functions named Dharasigm, SHBsig, and DharaSig for
achieving improved accuracy in wheat yield prediction. New activation functions performed better
than conventional sigmoid. The study [119] built a CNN-LSTM to prepare the static and dynamic
components of the wheat yield prediction model using soil and weather data, respectively, and tested
on different datasets for accuracy evaluation. The proposed model outperformed RF, SVM, and
LASSO. A study [104] built an LSTM to predict corn yield using temperature, WS, soil root space,
GDD, rainfall, and PDSI. The study [120] employed the deep learning method LSTM to analyze
production and tomato yield growth variability in monitored greenhouse settings. LSTM gave more
accurate results as compared to SVR and RF.

Study [121] built a reinforcement learning-based model using temperature, rainfall, evapotranspi-
ration, humidity, ground frost frequency (GFF), diurnal temperature range (DTR), and wind speed,
soil density, PH and the amount of N, P, K, transmissivity (Tr), permeability (Pr), EC, ground truth
data. The proposed model outperformed Deep LSTM, Gradient Boost, ANN, RF, Bernoulli Deep
Belief Network (DBN), Interval Deep Generative Artificial Neural Networks (IDANN), Bayesian
Artificial Neural Networks (BAN), and Rough Auto Encoders (RAE). Study [122] proposed a
CNN model that forecasts winter wheat production using a 1-D convolution process and WS, Sr,
temperature, RH, and rainfall, soil data as predictors for wheat yield. A novel CNN model [123]
shared the weight values of the core network feature extractor. The proposed method outperformed
RF, DFNN, 3D-CNN, RT LASSO, and Ridge regression.

Study [124] built the Bayesian Neural Net model (BNN) for corn yield prediction using EVI,
NDWI, GCI, and weather data such as daily temperature, VPD, daily rainfall, evapotranspiration,
water stress, and soil properties like soil moisture (SM), organic matter (SOM), and cation exchange
capacity (CEC). Study [125] merged satellite VIs, weather indices, and soil features to create LASSO
regression, RF, and LSTM to forecast rice yield at regional levels. The findings indicated that LSTM
outperformed RF and LASSO. Study [126] created an LSTM model to estimate the wheat grain yield
in China by combining weather information with LAI and the vegetation temperature condition index
(VTCI). The proposed model outperformed the BPNN and SVM models. An RNN-LSTM [127]
estimated wheat crop yield using rainfall, temperature, humidity, ET, WS and direction, and Sr as
predictors. The model outperformed ANN, MLR, and RF. Study [128] proposed a data-augmentation
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technique for wheat yield prediction on two independent Algerian provinces’ smaller data sets. They
conducted trials using elementary data sets, data sets of added features, and augmented datasets,
employing SVR, RF, ELM, ANN, and DNN to check the effectiveness of data-augmentation methods.

Study [129] proposed an LSTM-RF model for estimating wheat yield utilizing multi-spectral
VIs and canopy water stress indices (CWSI) from many growth phases as predictors. A study
[130] developed bidirectional LSTM and bi-directional GRU models using temperature, RH, Sr,
WS, rainfall, irrigation schedule, and soil water content to predict end-of-season tomato yields.
The Bidirectional LSTM outperformed GRU, LSTM, and Bidirectional GRU. Another study [131]
developed an LSTM-based model to develop a target-based rice yield prediction model. They used
multi-spectral VIs collected with the help of drones in Taiwan. The proposed model outperformed
traditional LSTM with a significant improvement. Study [132] developed an ensemble of LSTM,
bidirectional LSTM, and GRU and utilized red fox optimization for tuning the hyperparameters
during model training. The ensemble model outperformed all three standalone models.

A study [133] proposed an attention-based CNN model with bidirectional LSTM to predict brinjal
yield. They used shuffling shepherd optimization for tuning hyperparameters during model training.
For prediction, they used daily brinjal prices in Odisha compiled for 6 years with an assumption
that prices of a commodity directly depend on its available quantity. The proposed model with
optimization outperformed the CNN and bidirectional LSTM. A hybrid yield prediction model based
on LSTM and DBN [134] used statistical, correlation, entry, and data extraction for feature extraction.
They employed an enhanced feature fusion process by including the results of three statistical
feature selection methods. In a study [135], SVR, generalized regressive neural network (GRNNs),
Radial Basis Function Neural networks (RBFNNs), and backpropagation Neural networks (BPNNs)
estimated the rice crop yield using rainfall, temperature, P, N, K, fertilizer, pH value.

The formula for RBF used in neural networks is RBF (x) = e− ||x−c||2
2σ2 . Here RBF(x) represents

the value of the radial basis function for the input x, c is the center of RBF, σ controls the width of
the function. The GRNN involves a weighted sum RBF outputs for regression prediction calculated
as Output = ∑n

i=0 Wi · RBFi (Input). Output represents the predicted output, Wi is the weight of ith

RBF, RBFi (Input) is the output of the ith RBF for a given input. The results indicated the GRNN
algorithm’s superior efficiency over SVR, BPNN, and RBFNN. Study [136] explored Convolutional
Structure for Rapid Feature Embedding (Caffe) using NDVI, APAR (Absorbed Photosynthetically
Active Radiation), canopy surface temperature, and water stress. The correlation’s value was 0.810,
and the RMSE was 6.298 with two InnerProductLayer models. Study [137] provided a dimensionality-
reducing method, a self-organizing Map with Latent Dirichlet Allocation, to predict the best time and
crop to be grown. An appropriate season for a suitable crop was determined using a DL method. A
study [138] used deep LSTM to predict corn production. A large quantity of data, combining corn
production and per-hour data on the weather, demands a DL model.

To explore the fruit-carrying potential of bitter gourd plants based on the color and shape of
the leaves, a study [139] used the CNN model. A study [140] suggested a yield prediction technique
that evaluates crop yield optically at different growth phases. A deep CNN(DCNN) created object
detection systems using InceptionV3 as an image feature extraction tool. UAV-based multi-spectral
images were collected during four development phases of wheat [141]. CNN models were compared
to LR based on EVI as a predictor variable. The CNN model developed for the heading phase had the
least RMSE of 0.94 t ha−1. Study [142] analyzed XGBoost, CNN hybrids with DNN, XGBoost, RNN,
and LSTM using public soybean data with climate and soil conditions. CNN-DNN outperformed with
an MAE of 0.199, RMSE of 0.266, and MSE of 0.071. Table 2 shows the summary of DL techniques
considered in this study.
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Table 2: Summary of DL techniques considered in this study

Article Crop Input data Model Compared models Result

[101] Wheat, barley, oats UAV RGB images,
T

CNN-LSTM,
conv-LSTM,

CNN-LSTM,
conv-LSTM

3D-CNN best
performing

3D-CNN MAE: 218.9 kg/ha
MAPE: 5.51%
MAE: 292.8 kg/ha
MAPE: 7.17%

[102] Wheat R, N, slope,
elevation,
topographic
position index

CNN Bayesian MLR,
RF, AdaBoost,
stacked
autoencoder, and
two CNNs

Best performing with
low RMSE and
RMedSE

[104] Corn T, WS, GDD, R,
PDSI

LSTM RF, SVR, LASSO, MAE: 0.83 t/ha

RNN AdaBoost MAPE: 0.48 t/ha
[106] Soybean SR, T, LC LSTM-GP, CNN, LSTM CNN-GP best with

CNN-GP RMSE: 5.55 t/ha
[107] Soybean SR, T, LC LSTM, transfer Location-wise RMSE: 0.38 t/ha

Learning analysis R2: 0.66
[108] Soybean SR, LST, weather

data
CNN-LSTM CNN, LSTM RMSE: 3.29%

[109] Soybean SR, LC, LST (3D-CNN-
Conv-LSTM)

CNN + GP,
CNN-LSTM,

RMSE: 4.79 t/ha

3D-CNN,
Conv-LSTM

[110] Soybean SR, LC, LST BMA 3D-CNN, RMSE: 0.38
Conv-LSTM R2: 0.80

[111] Wheat SR, LC CNN-LSTM-12 DT, RR, SLR,
LSTM-GP,
CNN-LSTM-9

RMSE: 48–161 kg/ha

[112] Corn, wheat Land cover, SR 3D-CNN- LSTM CNN, LSTM MAPE reduced by:
12.2%, RMSE reduced
by: 20.2%

[113] Soybean Weather data,
remote sensing
data

LSTM Multivariate OLS MAE: 0.24 t/ha

[114] Wheat and barley NDVI, RGB
images

CNN No model MAE: 484.3 kg/ha

compared MAPE: 8.8%
[115] Corn and soybean R, T, VPD, SM,

soil T, AWC, BD,
EC, pH, SOM,
sand, silt, clay %

GNN-RNN LSTM, GRU,
CNN

RMSE: 0.48–0.56
R2: 0.67–0.75
Corr: 0.82–0.87

(Continued)
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Table 2 (continued)
Article Crop Input data Model Compared models Result

[116] Wheat Food production LSTM ARIMA, RNN RMSE: 7.29 kg/ha
data MAE: 7.29 kg/ha

r: 0.81
[117] Corn, soybean Weather, soil,

management data
CNN-RNN RF, DFNN,

LASSO
RMSE: 4.5–16.48
kg/ha
r: 0.84–0.85

[118] Wheat Weather data MLP Different
activation
functions

New activations
performed better

[119] Wheat SR, NDVI, soil
data

CNN-LSTM RF, SVM, LASSO RMSE: 721 kg/ha
R2: 0.77%
NRMSE,
MAPE < 0.2 t/ha

[120] Tomato Weather data, stem LSTM RF, SVR MSE: 0.04 t/ha
diameter variation MAE: 0.03 t/ha

MSE: 0.002 t/ha
[121] Rice T, R, ET, RH,

GFF, DTR, WS,
RNN, deep
Q-network

Deep LSTM, GB,
ANN, RF, DBN,

Deep Q-network best
with

PH N, P, K, Tr, Pr, BAN, RAE, MAE: 0.13 t/ha,
EC, ground data IDANN MSE: 0.03 t/ha

RMSE: 0.17 t/ha
R2: 0.87
MedAE: 0.11 t/ha,
MSLE: 0.002 t/ha
MAPE: 17%
Accuracy: 93.7%

[122] Wheat WS, Sr, T, RH, R,
Soil BD, wilting

CNN RF, KNN,
LASSO, RT, SVR,

RMSE reduced:
7%–4%

point, SM DNN XGBoost MAE reduced:
3%–15%
r increased by:
4%–50%

[123] Corn and soybean T, SR, LC Transfer learning RF, DFNN,
3D-CNN, RT
LASSO, RR

Corn MAE: 8.74%
Soybean MAE: 8.70%

[124] Corn EVI, GCI, NDWI,
LST, T, R, VPD,
ET, SM, SOM

BNN RR, RF, SVR,
MLP, LSTM

R2 = 0.77

[125] Rice SIF and EVI LSTM LASSO, RF R2: 0.77–0.87
RMSE: 298.11–
724 kg/ha

[126] Wheat VTCI, LAI LSTM BPNN, SVM RMSE: 357.7 kg/ha
R2: 0.83

[127] Wheat R, T, RH, ET, WS, RNN-LSTM ANN, RF, MLR RMSE: 147.12 kg/ha
SR MAE: 60.50 kg/ha

(Continued)
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Table 2 (continued)
Article Crop Input data Model Compared models Result

[128] Wheat T, R, WS, SR RF, DNN SVR, ANN, ELM Province1: DNN with
RMSE: 0.05 q/ha
Province2: RF with
RMSE: 0.04 q/ha
R2: 0.96

[129] Wheat VIs including LSTM-RF LSTM R2: 0.78
NDVI, CWVI RMSE: 684.1 kg/ha

[130] Tomato, Potato T, RH, SR, WS, R,
IR, SM

bidirectional
LSTM,

LSTM, GRU, RF,
CNN, MLP,

bidirectional LSTM
with

bidirectional R2: 0.97 to 0.99
GRU MSE: 0.017 to 0.039

q/ha
[131] Rice Multi-spectral VIs Target-based

LSTM
LSTM RMSE: Improved by

6.1% and R2:
Improved by 13.0%

[133] Brinjal Brinjal prices over
a period of more
than 6 years

Attention-based
CNN with
bidirectional
LSTM

Attention-based
CNN, bidirectional
LSTM

Accuracy: 97.60%
Precision: 96.60%
Recall: 95.60%
Specificity: 96.60%
F1-score: 97.60%

[135] Rice R, T, N, P, K, pH GRNN SVR, BPNN, R2: 0.9863
RBFNN RMSE: 0.22 t/ha

MAE: 0.12 t/ha
MSE: 0.05 t/ha
MAPE: 1.34 t/ha
CV: 0.02
NSME: 0.0136 t/ha

[136] Corn T, R, RH, Sr, snow DNN SVR, Autoencoder RMSE: 18.5 kg/ha
water, EVI R2: 0.773

[137] 12 staple crops Soil type, R, T, RH Self-organizing Performance Specificity: 82.113%
Map, DNN comparison Sensitivity: 83.19%

between different Precision: 0.8319
train test split
ratios

Recall: 0.9

[138] Corn R, T, WS GDD,
PDSI, soil root
space

Deep LSTM RNN LSTM performed
better than RNN

[139] Bitter gourd On-farm image
data

CNN No model
compared

Acceptable accuracy

[140] Apple Apple image data DCNN (Inception
V3)

No model
compared

Accuracy: 90%

[141] Wheat EVI CNN LR RMSE: 0.94 t/ha
[142] Soybean R, Sr, snow water,

VP, T, BD, clay %,
XGBoost, CNN
hybrids

All models CNN-DNN
outperformed with

SM, EC, SOM,
pH, sand %

MAE: 0.199 q/ha

RMSE: 0.266 q/ha
MSE: 0.071 q/ha
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5 Discussion

This section presents the discussion related to all five research objectives set up to be answered in
this study and key challenges of using AI in agriculture.

5.1 RO1 Discussion

As shown in Fig. 6, rainfall and temperature are the most used weather parameters, followed by
solar radiation, relative humidity, and wind speed. Soil moisture, bulk density, electrical conductivity,
and soil PH are the most used parameters for soil properties, usually accompanied by soil nutrients
(N, P, K). GDD, VPD, and SMDI are the most widely utilized stress indices. Remotely sensed crop
growth indicators, such as NDVI and EVI, are the most accurate for yield prediction. Only a few
studies considered topography factors such as slope and terrain for crop yield prediction tasks because
the areas chosen for research studies were mostly flat. The planting date has been used as a predictor
in the studies as a management parameter. Genotype is used less frequently due to less available data.

5.2 RO2 Discussion

However, the choice of crop consideration largely depends upon the geographical position of the
study area and data availability. Mainly, the researchers considered the staple crops grown in the study
area. The crops considered for yield prediction studies are corn, maize, rice, soybean, wheat, cotton,
sugarcane, potato, barley, rapeseed, bajra, coconut, canola, cassava, alfalfa, ragi, oats, and tomato.
Most research studies focused on wheat, rice, maize, corn, sugarcane, and soybean.

5.3 RO3 Discussion

In crop yield prediction research, RF, SVM, Gradient Boosting algorithms, and ANN have been
the go-to choices. As shown in Fig. 7, LSTM and RNN models are popular in crop yield prediction
research.

Furthermore, integrating CNN hybrids with LSTM has gained significant popularity among
researchers, proving its capability to successfully manage the complex dynamics of spatial and
temporal data, leading to improved prediction accuracy. However, the frequency of application does
not mean that the frequently used models are superior in their prediction ability.
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Figure 6: Frequency of usage of input parameters in yield prediction
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Figure 7: Frequently used DL models for crop yield prediction

5.4 RO4 Discussion

To assess predictive performance, most of the studies used RMSE as the evaluation metric to
measure the model quality. Other evaluation parameters are MAE, R2, and MSE. RMSE is the most
used, followed by R2 and MAE, as shown in Fig. 8. Some evaluation parameters like Relative Absolute
Error (RAE), Adjusted R2, LCCC, Mean Squared Logarithmic Error (MSLE), Median Absolute
Error (MedAE), MFE, Coefficient of variance (CV), Median Absolute Error (MedAE), Percent Error
(PE), and Fractional Bias (FB) are also used to assess model predictive performance in certain studies.
Most of these parameters were adjustments on earlier stated parameters. Researchers also used 5-fold
and 10-fold validations as an evaluation approach to test their models.

Figure 8: Frequency of accuracy evaluation metrics
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5.5 RO5 Discussion

Researchers building ML and DL-based crop yield prediction models encounter several significant
challenges. Agricultural data can be sparse, heterogeneous, and subject to measurement errors. So,
acquiring reliable training data for ML and DL models is challenging. Crop growth also depends on
dynamic factors, like climatic conditions, soil conditions, and farming practices. These require complex
models to capture the spatiotemporal variability accurately. It is a critical ethical challenge to ensure
that ML and DL models do not introduce or maintain biases, especially in resource allocation or policy
decisions. Training DL models often requires substantial computational resources, which can be a
limitation for researchers or farmers in resource-constrained regions. Acquiring reliable ground-truth
data for model validation can be challenging, which is essential for assessing the model’s predictive
accuracy. Crop yield prediction also involves expertise from various fields, such as agriculture, remote
sensing, and data science, necessitating effective interdisciplinary collaboration. These challenges are
reported based on the articles’ stated statements. However, other challenges may exist based on the
crop or region of study.

5.6 Discussion Related to the Benefits and Challenges of Using AI in Agriculture

AI for agriculture has transformational benefits across a variety of uses. Precision agriculture
employs AI to improve the utilization of resources, increasing crop yields while reducing inputs
such as fertilizer and irrigation water. AI offers early disease identification and crop monitoring,
leading to reduced crop losses. Weather forecasting helps farmers make accurate choices to plant and
harvest times. Automation improves supply-chain operations and lowers labor expenses, resulting in
better productivity and earnings in agriculture. Although crop evaluation and forecasting may benefit
substantially from machine learning, still some challenges have been identified in recent studies [143–
146]. The key issues include the following.

5.6.1 Data Quality and Volume

ML model reliability and precision are affected by the quality of the training data. Acquiring
high-quality data in agriculture can be difficult due to variations in the weather, soil, topography, and
other factors affecting the environment. As a result, obtaining and cleaning data may be a challenge.
Study [147] discussed the problems associated with DL-based fruit identification and classification.
They determined that the lack of a high-quality fruit dataset was the primary cause of errors and
low classification speed. ML models also require a large amount of data for making classifications
and predictions. Obtaining and managing such data is complex, especially in the case of small-size
farms. Study [148] identified data volume, velocity, diversity, and validity as the primary challenging
circumstances of big data.

5.6.2 Interpretability and Accessibility

It can be complex to analyze the results of ML and DL models. As a result, farmers may find it
challenging to understand the factors contributing to producing a specific crop prediction. In instances
when resources are constrained, acquiring access to the software and hardware components necessary
for constructing and running ML models can be difficult.

5.6.3 Data Privacy and Human Considerations

These issues revolve around the difficulties in data gathering, storing, and utilizing confidential
data related to agriculture. It can be challenging to balance privacy and security while making it
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possible to access data for ML development. Ethical concerns are related to guaranteeing equal
access to these innovations, offering assistance, and overcoming a technological gap to avoid further
deprivation of specific farming populations. Also, the farmers and other stakeholders may require
more time to adapt to new techniques and technological devices, such as AI-based systems. To be
widely used, technologies must become available, convenient, and capable of offering real-life benefits.

Overcoming these problems needs collaboration among statisticians, farmers, and all other
stakeholders to guarantee that ML methods are efficient, ethical, and affordable. Despite our thorough
examination of agricultural yield prediction methodologies, certain drawbacks of this study still exist.
This review may not include all relevant material, leaving out newer techniques or geographic-specific
approaches.

6 Conclusion

This literature review explores many research paths for developing crop yield prediction models.
The study offers a critical and mathematical analysis of weather, soil, and management-related input
parameters and the current cutting-edge methods for predicting crop yields—a detailed analysis of the
ML, DL, and meta-models used in the timely prediction of crop yield using weather, soil, management
information and satellite imagery. Most scientific studies used DL techniques, especially CNN and
LSTM, and their hybrid models for crop yield prediction. The researchers have also integrated crop
models with ML to add flexibility to the heavy crop simulation models. Most of the current studies
have utilized remotely sensed data. Models with extra features do not necessarily provide the best
yield prediction. The emphasis must be on studying the optimal deduction of input features. The
researchers differ in their crop consideration, region of study, crop type, number of input parameters,
data sources, and prediction methodologies. The variations shown by the same modeling technique
in various studies are due to diversified input parameters fed into the prediction model and different
crop considerations by the studies. This study will lay the foundation for scientific investigations on
crop yield prediction challenges.

7 Future Directions in Crop Yield Prediction Research

Despite the significant strides made in crop yield prediction research using AI-based models,
several research gaps persist, necessitating further exploration and innovation. One of the notable
gaps lies in integrating various data sources, like remote sensing, climate data, and soil information,
to enhance the accuracy and robustness of prediction models. A large amount of input data must
be dealt with properly to build a practically deployable and cost-effective crop yield prediction model.
Some feature ranking approaches, such as statistical correlation-based and tree-based feature ranking,
may optimize feature extraction from the input images. Principal component analysis may also help
to extract the most relevant input features to prevent overfitting and the generation of enormous
parameters. Particular feature sets may be cross-validated to ensure accurate model performance.

Hyperspectral imagery is still not widely utilized for accurate crop yield prediction. It captures
images in several hundred small spectrum bands, presenting comprehensive spectrum information.
Integrating this data with the data provided by IOT devices set up in the fields can provide crucial
information about crop physicochemical properties such as the amount of nutrients, stress due to water,
and disease appearance significantly affecting crop yield. Successful integration of the models into the
farming systems needs more standardized approaches in handling varied crop types and agroecological
conditions, as existing models often exhibit limitations in adaptability. Future directions should also
focus on developing dynamic models that adapt to rapidly changing environmental conditions and
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incorporate real-time data streams. In the future, a performance comparison of all ML and DL
prediction models would determine the best technique and modeling techniques for predicting crop
yield using a fully integrated data set. Utilizing transfer learning and Multimodal learning can manage
data scarcity and the presence of multiple modalities in the dataset. Addressing these challenges is
essential to developing accurate and practical ML and DL-based crop yield prediction models to
enhance food security and improve agricultural resource management.
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