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ABSTRACT

This article presents an innovative approach to automatic rule discovery for data transformation tasks leveraging
XGBoost, a machine learning algorithm renowned for its efficiency and performance. The framework proposed
herein utilizes the fusion of diversified feature formats, specifically, metadata, textual, and pattern features. The goal
is to enhance the system’s ability to discern and generalize transformation rules from source to destination formats
in varied contexts. Firstly, the article delves into the methodology for extracting these distinct features from raw
data and the pre-processing steps undertaken to prepare the data for the model. Subsequent sections expound on
the mechanism of feature optimization using Recursive Feature Elimination (RFE) with linear regression, aiming
to retain the most contributive features and eliminate redundant or less significant ones. The core of the research
revolves around the deployment of the XGBoost model for training, using the prepared and optimized feature sets.
The article presents a detailed overview of the mathematical model and algorithmic steps behind this procedure.
Finally, the process of rule discovery (prediction phase) by the trained XGBoost model is explained, underscoring
its role in real-time, automated data transformations. By employing machine learning and particularly, the XGBoost
model in the context of Business Rule Engine (BRE) data transformation, the article underscores a paradigm shift
towards more scalable, efficient, and less human-dependent data transformation systems. This research opens doors
for further exploration into automated rule discovery systems and their applications in various sectors.
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1 Introduction

Data transformation, a critical step in the data management lifecycle, is traditionally performed
using predefined rules and manual interventions [1]. This conventional method becomes increasingly
burdensome and inefficient with the escalating size and complexity of data. Recognizing this challenge,
this article introduces an automatic rule discovery framework for data transformation tasks, powered
by a well-renowned machine learning algorithm, XGBoost. The proposed model uniquely leverages
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a fusion of diversified feature formats, encompassing metadata, textual, and pattern features, thus
enriching the transformation process’s versatility and adaptability [2]. By using these diverse types of
features, the framework can accommodate and learn from a wide range of data structures and formats,
thereby enhancing its ability to discover transformation rules in varied contexts. In this article, we will
explore our proposed solution, beginning with the extraction of these features from raw data and the
pre-processing steps undertaken to prepare the data for the model. We will delve into the mechanism
of feature optimization using Recursive Feature Elimination (RFE) [3] with linear regression, and
demonstrate how it helps eliminate less significant features, optimizing the input for our XGBoost
model. Subsequently, we present a detailed analysis of the XGBoost [4] model training process, the
mathematical and algorithmic intricacies involved, and how it learns to discover transformation rules
from the prepared feature sets. Finally, we elucidate the process of rule discovery (prediction phase)
by the trained XGBoost model, its working, and its potential to revolutionize real-time, automated
data transformations. Our research aims to demonstrate the value of machine learning, particularly
the XGBoost model, in the context of Business Rule Engine (BRE) [5] data transformations, marking
a significant stride towards scalable, efficient, and autonomous data transformation systems.

1.1 Problem Statement

Business workflows often need to change the format of different kinds of data based on certain
business rules. These rules map the format of the source data to the format of the target data. At the
moment, finding and using these transformation rules is a manual process that is prone to mistakes,
takes a long time, and cannot be scaled up. Given the amount, variety, and speed of data that needs
to be processed, this lack is especially important. The goal of this project is to make a system that can
automatically find transformation rules. Machine learning techniques will be used in the system, and a
big focus will be on designing and implementing an XGBoost-based framework. This framework will
use examples of source-to-target pairs to figure out the rules that govern the transformation process.

The system that is being planned will be able to handle a wide range of data types and changes. It
will adapt to changes in the source or target data formats and provide accurate, reliable transformation
rules that meet business needs. Another important feature is that it is easy to understand. It should not
only change data correctly, but also explain the rules it used to change the data. Several things will be
used to judge the success of a project. These include how well the system can find transformation rules,
how many different kinds of transformations it can handle, and how easy it is to use and understand.

Date transformation is one type of this kind of data transformation. In different parts of the world,
dates are shown in different ways. In some places, dates are written as MM/DD/YYYY, while in others,
they are written as DD/MM/YYYY. For business reasons, you may need to use a standard format like
YYYY-MM-DD. At the moment, setting up the rules for such a transformation means understanding
the source format and making rules to change each source format into the desired destination format.
For example, a date in the source format MM/DD/YYYY would be changed to YYYY-MM-DD.
A machine learning model like XGBoost can be used in an Automatic Rule Discovery for BRE data
transformation scenario. This model would learn these rules automatically by looking at examples of
source data and target data. The model would learn from a set of example data in which the source
format of the date was used as input and the desired format of the date was used as output.

2 Related Work

This review gives a thorough look at eleven articles on data transformation, machine learning,
rule extraction, and other relevant topics. The articles cover different parts of data transformation,
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from semantic interoperability and knowledge retrieval in humanitarian crisis response to rule-based
spreadsheet data extraction. The main goals, models, experimental results, and implications of each
article are summed up to give a quick look at the research done in these areas. The checklist table is
a quick way to look up the most important parts of each article. This review gives useful information
about the progress and effects of data transformation and related techniques in different fields.

In order to accomplish semantic interoperability and effective data conversion in diverse systems,
Belcao et al. [6] offer the Chimaera framework. In order to integrate data sources, the framework
uses a semantic any-to-one centralized mapping strategy and offers ready-to-use components. The
study emphasises the potential of Chimaera in tackling the difficulties of data format conversion,
even if no experimental findings are given. A “machine learning-based business rule engine for data
transformation (ML-BREDT)” is presented by Neelima et al. [7]. They use a combination of strategies
to categorize and divide registered title data. The study achieves a high detection rate for abnormalities
by evaluating the model using sample data and several ML techniques. The suggested technique has
the potential to enable effective data transformation in commercial contexts. An “efficient data storage
system for RFID applications” is proposed by Kochar et al. [8]. In order to enhance data integrity and
storage optimization, they provide unique strategies for data cleaning, transformation, and loading.
The suggested system and its advantages for handling sizable amounts of temporal and spatial RFID
data are thoroughly described in the study.

According to Daimler et al. [9], a categorical query language (CQL)-based data transformation
infrastructure with formal verification may be built. The significance of data quality is discussed, and
a mathematical strategy to guarantee data integrity during transformation is suggested. The study
demonstrates the possibility of their strategy in releasing AI’s full potential via trustworthiness in data
transformation. For transforming random spreadsheet tables into relational form, Shigarov et al. [10]
present a rule-based method. Their domain-specific language and table object model make tabular
data analysis and interpretation possible. The suggested model is thoroughly described in the article,
along with examples of how it has been used in government statistics and finance.

Chandru et al.’s [11] unique transformation approach is suggested for processing complicated
medical data effectively. Using a template-based structure, their strategy entails transforming unstruc-
tured medical data into organized data. In the publication, the authors highlight how their method
might enhance analytic skills and optimize storage in healthcare settings. An integrated big data
analytics-enabled healthcare transformation model is created by Wang et al. [12]. Their concept
identifies path-to-value chains for healthcare organizations based on the Practice-Based View (PBV).
The article gives a thorough description of the concept, discusses how it is used in healthcare,
and offers useful managerial advice. The research indicates the model’s potential for transforming
organizational procedures and producing advantages. A smart data transformation procedure is
suggested by Dinh et al. [13] for managing and providing smart customer data. Their procedure
includes steps for processing data, information, and knowledge. The suggested approach is well
explained in the paper, along with how it would affect businesses in terms of actionable insights and
increased business value.

Sajid et al. [14] investigate the application of machine learning techniques to suggest predicted data
transformations. The article examines the design features of a prototype application that enhances data
preparation by making suggestions that are appropriate for the needs of the user. Through a usability
assessment, the study confirms the prototype and shows how valuable it is for streamlining data
preparation. Mohammed [15] creates a paradigm for data transformation and information retrieval in
humanitarian crisis response settings. The Humanitarian Computing Environment (HCE) that is being
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suggested makes use of classes, vectors, and data transformation methods. The research emphasises
the potential of the HCE model in assisting decision-making during humanitarian situations, even if
no experimental outcomes are reported.

TabbyXL is a rule-based method for spreadsheet data extraction and transformation presented
by Shigarov et al. in their publication [16]. The study proposes a domain-specific language for table
analysis and interpretation as well as a table object model. The model’s success in transforming arbi-
trary spreadsheet tables into relational form is demonstrated by the model’s performance evaluation,
which shows strong F-scores for various retrieved items.

This checklist table (see Table 1) provides a summary of whether each article addresses data
transformation or data conversion, whether machine learning or deep learning techniques are used,
whether optimal feature selection is performed, and whether rule extraction or rule discovery is
addressed.

Table 1: The table of checklist related to contemporary contributions

Author with
reference number

Data transformation
or conversion

Machine learning
or deep learning

Optimal feature
selection

Rule extraction
or discovery

Belcao et al. [6] Yes No No No
Neelima et al. [7] Yes Yes No Yes
Kochar et al. [8] Yes No No No
Daimler et al. [9] Yes No No No
Shigarov et al. [10] Yes No No Yes
Chandra et al. [11] Yes No No No
Wang et al. [12] Yes Yes No No
Dinh et al. [13] Yes No No No
Sajid et al. [14] Yes Yes No No
Mohammed [15] Yes No No No
Shigarov et al. [16] Yes No No No

3 Methods and Materials

The “Automatic Rule Discovery for Data Transformation Using Fusion of Diversified Feature
Formats” (FDFF) is a new way to change data that is introduced by the proposed model. The model’s
goal is to improve the speed and accuracy of data transformation processes in environments with
complex and different types of data. The FDFF model uses the power of machine learning, specifically
XGBoost, along with different feature formats to work with many different kinds of data. It starts
by making a repository for feature formats that stores the characteristics and rules for transforming
different data formats. This repository is a knowledge base that helps the model transform data in a
smart way. The model uses XGBoost’s gradient boosting framework to learn rules and pick the best
features. This makes data transformations that are accurate and quick. The FDFF model makes sure
that all data transformation needs are met by including different types of feature formats, such as
numerical, categorical, and textual data.
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Fig. 1 shows the whole framework, which is made up of several parts that work together to
automate the data transformation process. The framework is made to handle different kinds of data
and find the right rules for putting the data into a format that is wanted. Here is a detailed explanation
of each part:

Figure 1: Block diagram of the proposed FDFF

Data Input: The framework starts with the data input, which can come from different databases,
files, or other systems for storing data. The input data may have errors, inconsistencies, or different
formats that need to be fixed during the process of transformation.

Feature Extraction: The Feature Extraction component takes the input data and pulls out the
important features or attributes. In this step, you find and choose the data elements that are necessary
for the transformation process. To pull out meaningful features, you can use techniques like statistical
analysis, dimensionality reduction, or domain knowledge.

Feature Optimization: The Feature Optimization part is all about optimizing the chosen features
to make the transformation process more efficient and effective. Recursive Feature Elimination (RFE)
is a technique that can be used to iteratively choose the most informative features while getting rid of
the less important ones.

Rule Discovery (or Rule Extraction): The Rule Discovery (or Rule Extraction) part is very
important for figuring out the patterns, relationships, and transformations that are needed to change
the data effectively. This part looks at the dataset and pulls out the rules that define the desired
changes to the data. The rules can be figured out with the help of statistical analysis, machine
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learning algorithms, or expert knowledge. They tell exactly how to change, validate, or format the
data attributes.

Rule Fusion: This part brings together the different rules that come from different sources or
methods. By combining the rules, the framework aims to make the data transformation process more
accurate and thorough. This step makes sure that the rules cover a wide range of transformation needs
and take into account how complicated the data is.

Rule Application: The Rule Application part takes the rules that were found and applies them to
the data that was given. In this step, the rules’ transformation instructions are carried out so that the
input data can be changed into the desired output format. The rules tell you how to change, validate,
or format the data attributes to make sure they match the schema or standards you want.

Output Generation: The framework’s last step is to make the output that has been changed. The
rules say what the format, quality, and consistency of the output data should be. The changed data can
be saved in databases, files, or other storage systems so that it can be analysed, processed, or combined
with data from other systems.

3.1 The Features

Metadata Features: Imagine dealing with source data comprised of numeric and alphanumeric
strings. The nature of these strings, whether numeric or alphanumeric, stands as crucial metadata
influencing the application of transformations. An example could be a rule directing numeric strings
to be squared, while alphanumeric strings are converted to uppercase. Thus, the data type becomes a
key feature in determining the relevant transformation rule.

Textual Features: In scenarios where the transformation of unstructured text data into structured
data is necessary, textual features are crucial. Suppose the task involves extracting the names of
people from a text. Features such as the position of a word in a sentence, part-of-speech tagging (e.g.,
identifying whether a word is a noun, verb, adjective, etc.), or n-grams (combinations of adjacent
words) could be pivotal in identifying and extracting the desired names.

Pattern Features: Transformation tasks involving date formats serve as good examples for
understanding pattern features. If source data in the ‘MM/DD/YYYY’ format needs to be converted
into ‘YYYY-MM-DD’ format, pattern features can facilitate capturing these formats. A feature
indicating whether a slash (‘/’) follows two or four characters could effectively distinguish between
the two date formats.

3.2 Feature Extraction

This investigation delves into the process of converting raw input data into a structured form
suitable for machine learning models, emphasizing the extraction of three central features: metadata,
textual, and pattern. The conversion of these extracted features into comprehensive feature vectors
paves the way for an XGBoost-based model to discern and decode pertinent transformation rules.

The feature extraction process unfolds as follows: Start with a raw dataset D = {d1, d2, . . . , dn},
where each di is a pair of source and target data. Extract metadata features from each data pair di

using the function FM:D−>M , where M = {m1, m2, . . . , mn} is the metadata feature set.

Next, extract textual features from each data pair di using the function FT : D −>T , with T =
{t1, t2, . . . , tn} being the textual feature set. Following this, extract pattern features from each data pair
di using the function Fp : D−>P, where p = {p1, p2, . . . , pn} denotes the pattern feature set.
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The final step is to construct a feature vector for each data pair by combining all the extracted
features. This can be mathematically represented as a function F : D−>X where X = {x1, x2, . . . , xn}
and each xi = {mi, ti, pi}.

3.3 Optimal Feature Selection

Regarding optimal feature selection, Recursive Feature Elimination (RFE) is utilized. This
method involves fitting a model to the data and sequentially eliminating the least important feature
until only a pre-specified number of features remain.

Consider a dataset X of size (n, m), where n represents the number of samples, and m represents
the number of features. Each data point in X is represented as a vector xi, where i ranges from 1 to n.
The corresponding output or target variable is represented by a vector Y of size n.

The first step is to fit a model on the complete dataset and compute the importance of each feature.
For linear regression models, the importance of a feature is estimated by the absolute value of its
corresponding coefficient. This can be mathematically represented as

∣∣bj

∣∣ for the jth feature, where bj is
the coefficient of the jth feature in the linear regression model.

The process continues by identifying the feature with the smallest importance
(∣∣bj

∣∣) and eliminat-
ing it from the dataset. The model is then refitted with the remaining features and the process repeated
until only the desired number of features is left.

This procedure can be mathematically depicted as follows: F ′ (X) = argmin{X ′} {cos t (F (X ′), Y)}
where

• X ′ is the subset of features of X ,
• F is the machine learning model (in this case, linear regression),
• cos t (F (X ′), Y) is the cost function which measures the error of the model F trained with

features X ′ and targets Y . The objective of RFE is to find the subset X ′ which minimizes
this cost.

The algorithmic steps for the mathematical procedure F ′ (X) = argmin{X ′} {cos t (F (X ′), Y)} in
Recursive Feature Elimination (RFE) can be described as follows:

1. Initialization: Start with the full set of m features in X .
2. Model Fitting and Cost Computation: Fit the model F using all features in X and compute
the cost: cos t (F (X), Y).

This is the error between the model F ′ predictions and the actual target values Y , when the model
is trained using all features in X .

3. Feature Importance Calculation: Determine the importance of each feature. In the case of
a linear regression model, the importance can be represented by the absolute value of the
corresponding coefficient, |bi|.
4. Feature Elimination: Identify the feature xj with the smallest importance (where importance
is measured as |bi|) and remove it from the feature set X .
5. Iteration: Repeat steps 2, 3, and 4 until only a desired number k of features are left.

In mathematical terms, the iterative part of the process can be expressed as:

For each i in range (m to k):

1. Fit the model F using all current features in X : F (X).
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2. Calculate the cost: cos t (F (X), Y).
3. Remove the feature xj that minimizes

∣∣bj

∣∣ : X = X − {
xj

}
.

4. Output: The output of the procedure is the subset of features X ′ that minimizes the cost
function, i.e., the set of features that, when used to train the model F , produces the smallest
prediction error.

This process successfully delineates the procedure of Recursive Feature Elimination using linear
regression. This technique strategically uses the model to pinpoint the most influential features,
thereby paving the way for efficient and effective modeling.

3.4 Automatic Rule Extraction

3.4.1 Fitness Function

The fitness function in the context of rule discovery serves as a measure of the “goodness” or
efficacy of the discovered rules. In a machine learning model, the fitness function typically is the
objective function that the model optimizes during the training process. For a rule discovery problem,
this function needs to capture not only the accuracy of the model’s predictions but also the complexity
and interpretability of the discovered rules.

Considering an XGBoost-based rule discovery system, the fitness function is a combination of
a differentiable convex loss function and a regularization term. It can be mathematically defined as
follows: L (y, yhat) = sumi

[
l
(
yi, yhati

)] + sumj

[
�

(
fj

)]
.

Here:

• L is the total loss function.
• y is the vector of actual target values.
• yhat is the vector of predicted values.
• l is a differentiable convex loss function that quantifies the disparity between the actual and

predicted target values.
• � is a regularization term which penalizes the complexity of the model (i.e., the number of

leaves and the magnitude of the scores in the tree), indirectly controlling the complexity of the
discovered rules.

• fj represents the jth tree structure and the leaf weights of the tree.

The loss function l encourages the model to make accurate predictions, while the regularization
term � promotes model simplicity and interpretability. When these two components are balanced
effectively, the fitness function helps the XGBoost model discover transformation rules that are both
accurate and easily interpretable, which is crucial for business rule engine tasks.

3.4.2 Training Process

The training phase of XGBoost for rule discovery is focused on building an ensemble of decision
trees that can accurately predict the target values from the given features as shown in Figs. 2 and 3.
The objective is to minimize the loss function, which measures the difference between the actual and
predicted target values, while also controlling the complexity of the model.
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Figure 2: Level-wise tree growth

Figure 3: Discovery process

The steps for training XGBoost for rule discovery are as follows:

1. Initialization: The model is initialized by predicting the same output for every instance. The
initial prediction can be set as the mean of the target variable, for regression problems.

2. Tree Construction: A decision tree is constructed by recursively splitting the features to
minimize the loss function. The process continues until a specified maximum depth is reached
or no further splits can reduce the loss. At each split, the feature and threshold that result in
the largest reduction in the loss are selected. The optimal split at each node is determined by
the following formula (Eq. (1)):

Gain = 1
2

[
G2

L

HL + λ
+ G2

R

HR + λ
− (GL + GR)

2

HL + HR + λ

]
− γ (1)
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where,

• GL and GR are the sums of the gradient statistic for the left and right halves of the data. In the
case of squared error loss, these are just the count of the instances times the average residual on
the left and right.

• HL and HR are the sums of the hessian statistic for the left and right halves of the data. In the
case of squared error loss, these are just the counts of instances on the left and right.

• λ is the regularization term to avoid overfitting.
• γ is the minimum loss reduction required to make a further partition on a leaf node of the tree.

3. Tree Pruning: The tree is pruned to avoid overfitting. The pruning process relies on a complexity
parameter in the regularization term of the loss function.

4. Weight Update: The leaf weights of the tree are updated to minimize the loss function. The
optimal weight wj of a leaf node j can be calculated using the following (Eq. (2)):

wj = −
∑

i∈j gi∑
i∈j hi + λ

(2)

where η is the learning rate, gi is the gradient of the loss function with respect to the prediction, and hi

is the hessian (second derivative) of the loss function with respect to the prediction for each instance i.

5. Iteration: Steps 2 through 4 are repeated to build new trees. Each new tree corrects the residuals
of the previous trees.

6. Output: The final prediction is a weighted sum of the predictions of all the trees. In the context
of rule discovery, the decision paths leading to these predictions can be viewed as a collection
of “IF-THEN” rules.

These steps, when followed, train an XGBoost model to automatically discover transformation
rules from the given source-target pairs of data. The rules are embedded within the ensemble of
decision trees that the model constructs during training. The discovered rules are easily interpretable,
as they are essentially the decision paths within the decision trees.

The algorithmic steps of the training phase of XGBoost for rule discovery can be outlined as
follows:

1. Initialization:
• Initialize the model with a constant prediction value, which can be the mean of the target

variable.
• Compute the initial prediction value for each instance as: yhati (0) = ymean

where yhati (0) represents the initial prediction for the ith instance, and ymean is the mean of
the target variable.

2. For each boosting round (iteration):
• Compute the gradients and Hessians of the loss function for each instance based on the

current predictions.
• The gradient of the loss function for the ith instance is given by: gi = ∂l

(
yi, yhati (m − l)

)
/

∂yhati (m − l)
• The Hessian of the loss function for the ith instance is given by: hi = ∂2l

(
yi, yhati (m − l)

)
/

∂yhat
i2

(m − l)
• Where m represents the current iteration.
• Fit a new decision tree using the gradients and Hessians as the targets.
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• Compute the leaf weights (scores) by minimizing the following objective for each leaf node:
Obj = sumi

[
l (gi, hi) + �

(
fj

)] + λ ∗ ∣∣fj

∣∣
• Where fj represents the leaf weight of the jth leaf node in the tree, �

(
fj

)
is the regularization

term penalizing the complexity of the tree, and λ is the regularization parameter controlling
the strength of the regularization.

• Update the model predictions for each instance based on the new tree: yhati (m) =
yhati (m − l) + η ∗ fm (xi)

where yhati (m) represents the prediction for the ith instance at the mth iteration, fm (xi) is the
prediction from the new tree for the ith instance, and η is the learning rate controlling the
step size of the update.

3. Output:

• The final model predictions are the sum of the predictions from all the trees: yhati (final) =
summ

(
yhati (m)

)
where yhati (final) represents the final prediction for the ith instance.

By following these algorithmic steps and updating the model iteratively, XGBoost learns to
discover transformation rules that capture patterns and relationships in the data. The ensemble
of decision trees, along with the associated leaf weights, form the basis for interpreting the rules
discovered by the model.

3.4.3 Rule Discovery Process

The rule discovery phase involves interpreting the trained XGBoost model to discover the
transformation rules. The algorithmic steps of the Rule Discovery (Extraction) Phase of XGBoost
can be described as follows:

1. For each decision tree in the model:
• Traverse the tree from the root to the leaf nodes.
• Extract the decision rules along the path from the root to each leaf node.

2. For each leaf node in the tree:
• Retrieve the leaf weight (score) associated with the node.
• The score represents the contribution of the corresponding rule to the final prediction.

3. Extracting a rule from a decision path:
• For each split along the decision path, extract the feature and the threshold used for the

split.

The extracted rules can be represented as “IF-THEN” statements, where the conditions in the
“IF” part represent the feature and threshold from the splits, and the “THEN” part represents the
predicted outcome associated with the leaf node.

The algorithmic steps can be summarized as follows:

1. For each decision tree in the model:
a. For each leaf node in the tree:

i. Extract rule: Record the feature and threshold associated with each split along the decision
path from the root to the leaf node.

ii. Calculate rule importance: The weight (score) of the leaf node that corresponds to a rule
shows how much it contributed to the final prediction.



706 CMC, 2024, vol.80, no.1

Mathematically, the rule extraction phase can be represented as:

For each decision tree in the model:

For each leaf node in the tree: - ExtractedRule = IF (feature <= threshold) THEN score
RuleImportance = score.

Here, the ExtractedRule represents an individual rule discovered from the decision tree, with the
condition being the feature and threshold, and the prediction being the score associated with the leaf
node. The RuleImportance denotes the importance or contribution of the rule, which is equal to the score
of the leaf node. The XGBoost model can automatically find transformation rules from the given data
by going through each decision tree in the model and getting rules from the leaf nodes. In rule-based
systems, these rules can be used to do more analysis or make decisions based on what the model has
learned about patterns and relationships.

4 Experimental Study

The objective of this experimental study is to evaluate the performance of the proposed FDFF
(Fusion of Diversified Feature Formats) model and compare it with other contemporary models and
ablated versions of FDFF using a subset of the Zillow Transaction and Assessment Dataset (ZTRAX)
[17]. The ZTRAX dataset is a comprehensive collection of real estate data, containing approximately
374 million records, including details such as the built year of existing buildings going back over 100
years.

4.1 The Data

For the experimental study, a subset of 160,000 records from the ZTRAX dataset is selected. The
data is prepared using the ArcGIS Insights Workflow [18], which generates formatted data in Excel
format. This formatted data serves as the ground truth for cross-validating the resultant formatted
records obtained from the FDFF model, its ablated versions, and the ML-BREDT [7] model when
applied to the source records. The dataset consists of 100,000 positive records and 60,000 negative
records. Positive records represent the records that require format and pattern corrections based on
one or more rules, while negative records are those that do not require any corrections.

4.2 Experimental Setup

The experiments are conducted using a four-fold cross-validation approach. In each fold, 120,000
records (75,000 positive records and 45,000 negative records) are used to discover the rules by the
FDFF model, its ablated versions, and the ML-BREDT model. The remaining 40,000 records (25,000
positive records and 15,000 negative records) are used for testing and validation. The models are
trained on the 120,000 records to discover the transformation rules. These rules are then applied to the
remaining 40,000 records to generate the resultant formatted records. The validity of each resultant
record is verified by comparing it with the corresponding record in the resultant Excel sheet generated
by the ArcGIS Insights Workflow.

4.3 Evaluation Metrics

The performance of the FDFF model, its ablated versions, and the ML-BREDT model is
evaluated using the following metrics:

• True Positive (TP): The number of positive records correctly identified by the model as requiring
modifications.
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• False Positive (FP): The number of negative records incorrectly identified by the model as
requiring modifications.

• True Negative (TN): The number of negative records correctly identified by the model as not
requiring modifications.

• False Negative (FN): The number of positive records incorrectly identified by the model as
not requiring modifications. Based on these metrics, the following performance measures are
calculated:

• Accuracy: (TP + TN)/(TP + TN + FP + FN)
• Precision: TP/(TP + FP)
• Recall (Sensitivity): TP/(TP + FN)
• Specificity: TN/(TN + FP)
• F1-score: 2 ∗ (Precision ∗ Recall)/(Precision + Recall) Additionally, the execution time and

memory usage of each model during the rule discovery and application process are recorded to
assess their computational efficiency.

4.4 Ablation Experiments

Ablation experiments are conducted to assess the impact and necessity of different components
in the FDFF model. The following ablated versions of FDFF are evaluated:

• FDFF without RFE: The Recursive Feature Elimination (RFE) component is removed from
the FDFF model, and the model is trained using all the extracted features.

• FDFF with Chi-square: The RFE component is replaced with the Chi-square feature selection
method.

• FDFF with LightGBM: The XGBoost algorithm is replaced with LightGBM, another gradient
boosting framework. These ablated versions are compared with the complete FDFF model to
understand the contribution of each component to the overall performance.

4.5 Results and Analysis

The experimental results are presented, including the performance metrics (accuracy, precision,
recall, specificity, F1-score, and Matthews correlation coefficient) of the FDFF model, its ablated
versions, FDFF with LightGBM, FDFF without RFE, FDFF with Chi-square, and the ML-BREDT
model for each fold of the cross-validation. The average and standard deviation of these metrics across
all folds are also reported.

Fig. 4 shows the precision scores of the models in a 4-fold cross-validation scenario. The FDFF
model achieves the highest average precision of 0.9797, outperforming all other models. FDFF with
LightGBM follows with an average precision of 0.9613, while FDFF without RFE and FDFF with
Chi-square have lower precision scores of 0.9342 and 0.94135, respectively. The ML-BREDT model
has the lowest average precision of 0.950325.

Fig. 5 presents the specificity scores of the models. The FDFF model exhibits the highest average
specificity of 0.9668, indicating its superior ability to correctly identify negative instances. FDFF
with LightGBM and FDFF with Chi-square have lower specificity scores of 0.936359 and 0.905301,
respectively. FDFF without RFE shows a significant drop in specificity with an average score of
0.895006, while the ML-BREDT model has an average specificity of 0.919775.
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Figure 4: Precision scores of FDFF, FDFF with LightGBM, FDFF without RFE, FDFF with Chi-
square, and ML-BREDT models in 4-fold cross-validation

Figure 5: Specificity scores of FDFF, FDFF with LightGBM, FDFF without RFE, FDFF with Chi-
square, and ML-BREDT models in 4-fold cross-validation

The sensitivity scores of the models are displayed in Fig. 6. The FDFF model achieves the highest
average sensitivity of 0.9601, demonstrating its effectiveness in correctly identifying positive instances.
FDFF with LightGBM follows closely with an average sensitivity of 0.946738. FDFF without RFE
and FDFF with Chi-square have lower sensitivity scores of 0.892325 and 0.91098, respectively. The
ML-BREDT model has an average sensitivity of 0.92.

Fig. 7 shows the accuracy scores of the models. The FDFF model exhibits the highest average
accuracy of 0.96265, outperforming all other models. FDFF with LightGBM has an average accuracy
of 0.94285, while FDFF without RFE and FDFF with Chi-square have lower accuracy scores of
0.893325 and 0.90885, respectively. The ML-BREDT model has an average accuracy of 0.919925.
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Figure 6: Sensitivity scores of FDFF, FDFF with LightGBM, FDFF without RFE, FDFF with Chi-
square, and ML-BREDT models in 4-fold cross-validation

Figure 7: F-Measure scores of FDFF, FDFF with LightGBM, FDFF without RFE, FDFF with Chi-
square, and ML-BREDT models in 4-fold cross-validation

The F-measure scores of the models are presented in Fig. 8. The FDFF model achieves the highest
average F-measure of 0.9825, indicating its superior balance between precision and recall. FDFF with
LightGBM follows with an average F-measure of 0.94865. FDFF without RFE and FDFF with Chi-
square have lower F-measure scores of 0.91415 and 0.922975, respectively. The ML-BREDT model
has an average F-measure of 0.934775.

Fig. 9 displays the Matthews correlation coefficient (MCC) scores of the models. The FDFF
model exhibits the highest average MCC of 0.921125, demonstrating its strong overall classification
performance. FDFF with LightGBM has an average MCC of 0.87895, while FDFF without RFE
and FDFF with Chi-square have lower MCC scores of 0.777275 and 0.80865, respectively. The ML-
BREDT model has an average MCC of 0.83175.
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Figure 8: Accuracy of FDFF, FDFF with LightGBM, FDFF without RFE, FDFF with Chi-square,
and ML-BREDT models in 4-fold cross-validation

Figure 9: MCC statistics of FDFF, FDFF with LightGBM, FDFF without RFE, FDFF with Chi-
square, and ML-BREDT models in 4-fold cross-validation

The results of the ablation experiments provide valuable insights into the importance of different
components in the FDFF model. The removal of RFE (FDFF without RFE) leads to a significant
drop in performance across all metrics, highlighting the crucial role of feature selection in the FDFF
model. The replacement of RFE with Chi-square (FDFF with Chi-square) also results in a decrease in
performance, suggesting that RFE is a more effective feature selection method for the FDFF model.
The use of LightGBM instead of XGBoost (FDFF with LightGBM) shows comparable performance
to the complete FDFF model, indicating the potential of LightGBM as an alternative boosting
algorithm.

Overall, the experimental results demonstrate the superior performance of the FDFF model com-
pared to its ablated versions and the ML-BREDT model. The FDFF model consistently achieves the
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highest scores across all evaluation metrics, showcasing its effectiveness in discovering transformation
rules and accurately identifying records that require modifications. The ablation experiments further
validate the importance of the RFE component and the choice of XGBoost as the boosting algorithm
in the FDFF model.

5 Discussion

The experimental results provide strong evidence of the FDFF model’s superior performance in
data transformation tasks compared to its ablated versions and the ML-BREDT model. The FDFF
model’s ability to effectively discover transformation rules and accurately identify records requiring
modifications can be attributed to its fusion of diversified feature formats and the use of RFE for
feature selection. The ablation experiments reveal the significance of the RFE component in the FDFF
model. The removal of RFE leads to a substantial decrease in performance, indicating that feature
selection plays a crucial role in the model’s effectiveness. The comparison with alternative feature
selection methods, such as Chi-square, further highlights the suitability of RFE for the FDFF model.
The use of LightGBM as an alternative boosting algorithm shows promising results, with performance
comparable to the complete FDFF model. This suggests that LightGBM could be considered as a
potential alternative to XGBoost in certain scenarios, depending on the specific requirements and
characteristics of the dataset. The FDFF model’s superior performance has significant implications
for automated data preprocessing and data quality assurance. The model’s ability to accurately identify
records requiring modifications and apply the necessary transformations can greatly reduce manual
efforts and improve data consistency. The discovered transformation rules can be integrated into
data pipelines to automate the data transformation process, ensuring data quality and saving time
and resources. However, it is important to acknowledge the limitations and challenges encountered
during the experimental study. The performance of the FDFF model may vary depending on the
characteristics and complexity of the dataset. Further research is needed to evaluate the model’s
performance on diverse datasets from different domains to assess its generalizability. Future work
can focus on enhancing the FDFF model’s performance by exploring additional feature formats,
investigating alternative feature selection methods, and optimizing the model’s hyperparameters. The
integration of the FDFF model into real-world data preprocessing workflows and its application to
various domains can provide valuable insights into its practical utility and potential improvements.

The experimental study demonstrates the superior performance of the FDFF model in discovering
transformation rules and accurately identifying records requiring modifications compared to its
ablated versions and the ML-BREDT model. The fusion of diversified feature formats and the use
of RFE for feature selection contribute significantly to the model’s effectiveness. The FDFF model’s
potential for automated data preprocessing and data quality assurance highlights its significance in
the context of data transformation and rule discovery. Further research and real-world applications
can help refine the model and extend its applicability to diverse domains.

6 Conclusion

The proposed “Automatic Rule Discovery for Data Transformation Using Fusion of Diversified
Feature Formats” framework, in conclusion, demonstrates a thorough method for automating the
process of data transformation by fusing various feature formats. The FDFF combines feature
extraction, optimization, and rule discovery in an effort to increase the accuracy and speed of data
transformation tasks. Selecting the best features for improved rule extraction is made simpler when
machine learning techniques like Recursive Feature Elimination (RFE) are combined. To ensure that
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the data is accurate and of high quality, the FDFF provides a systematic and automated way to
modify it based on the rules discovered and refine it based on these rules. The experiments’ findings
demonstrate that the suggested model performs well for precise and quick data transformation.
Overall, this research contributes to the improvement of automated data transformation techniques
and has potential applications in many fields where data integration and transformation are critical
for decision-making and data analysis.
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