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ABSTRACT

Subject identification via the subject’s gait is challenging due to variations in the subject’s carrying and dressing
conditions in real-life scenes. This paper proposes a novel targeted 3-dimensional (3D) gait model (3DGait)
represented by a set of interpretable 3DGait descriptors based on a 3D parametric body model. The 3DGait
descriptors are utilised as invariant gait features in the 3DGait recognition method to address object carrying and
dressing. The 3DGait recognition method involves 2-dimensional (2D) to 3DGait data learning based on 3D virtual
samples, a semantic gait parameter estimation Long Short Time Memory (LSTM) network (3D-SGPE-LSTM), a
feature fusion deep model based on a multi-set canonical correlation analysis, and SoftMax recognition network.
First, a sensory experiment based on 3D body shape and pose deformation with 3D virtual dressing is used to fit
3DGait onto the given 2D gait images. 3D interpretable semantic parameters control the 3D morphing and dressing
involved. Similarity degree measurement determines the semantic descriptors of 2D gait images of subjects with
various shapes, poses and styles. Second, using the 2D gait images as input and the subjects’ corresponding 3D
semantic descriptors as output, an end-to-end 3D-SGPE-LSTM is constructed and trained. Third, body shape,
pose and external gait factors (3D-eFactors) are estimated using the 3D-SGPE-LSTM model to create a set of
interpretable gait descriptors to represent the 3DGait Model, i.e., 3D intrinsic semantic shape descriptor (3D-
Shape); 3D skeleton-based gait pose descriptor (3D-Pose) and 3D dressing with other 3D-eFators. Finally, the
3D-Shape and 3D-Pose descriptors are coupled to a unified pattern space by learning prior knowledge from the
3D-eFators. Practical research on CASIA B, CMU MoBo, TUM GAID and GPJATK databases shows that 3DGait
is robust against object carrying and dressing variations, especially under multi-cross variations.
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1 Introduction

Gait as a means for remote biometric recognition and subject identification has shown practical
potential deployments in many domains, e.g., access monitoring and intelligent security [1]. Several
critical advantages of gait recognition for subject identification and authentication include dispensing
with the subject’s cooperation, being a long distance away, and being non-contact [2]. However,
the challenges in natural scenes include changes in carrying conditions, wearing, hairstyles, viewing
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angles, stride velocity and complex tracking environments [3,4]. Gait recognition is still not sufficiently
accurate for real-world applications, e.g., due to challenges posed by outdoor environments [5]. Most
advanced gait recognition approaches achieve good results or provide specific solutions when applied
to publicly available gait datasets. However, changes in silhouettes of human gait can cause a dramatic
reduction in recognition rate, e.g., in cross-view gait recognition [6].

Most gait recognition algorithms extract or use gait features from mask-generated gait silhouettes
(i.e., binary gait silhouettes) to realise two-dimensional (2D) vision-based or joint-based gait recog-
nition [7]. 2D masked-generated gait silhouettes help reduce the interferences due to the colour of
clothes and style of shoes, etc. However, many details of the subject’s body and motion information
are lost, e.g., the contour of the hand or leg due to occlusion or overlap with the body trunk. Also,
the left and right symmetric gait postures and the head and neck are hardly distinguishable. Gait is
unique if the body structure and movements of the whole-body parts (which include the upper head,
neck and hairstyle) are considered. Many gait recognition approaches either focus on Global Feature
Representation (GFR) using an appearance-based method or extract Local Features Representation
(LFR) from local gait parts. LFR focuses less on upper body features, and relations among local parts
are neglected. In GFR, more attention should be paid to local details of human postures, which can
help mitigate the adverse effects of object-carrying conditions [8].

Gait recognition researches are primarily classified into two approaches: appearance-based and
model-based. However, few methods are related to 3-dimensional (3D), i.e., 3D volumetric gait [9]
and pose-based gait recognition (PoseGait) [10]. Most 3D models are based on 3D voxel, 3D body
mesh, 3D poses or 3D joints. The voxel-based 3D model is unstructured with a high-density cluttered
point cloud, which is not easy to deal with. Pose-based or joint-based models are poor in extracting
body surface features, which help discriminate similar inter-class distances of movement of joints. In
current 3D body mesh models, the clothing meshes are not considered or combined with body meshes.
If the 3D body model and 3D clothing model cannot be separated, the model’s advantages in dealing
with clothing or carrying variations are significantly reduced. Thus, the model cannot distinguish the
intrinsic body shape underneath the clothes. It is also not so feasible to realise other 3D processes
which can be helpful against different variations, i.e., virtual dressing or virtual instance creation.

In this paper, we define a 3DGait model, 3DGait model, to address the problems mentioned above
and provide a more targeted 3DGait model. We also propose a novel 3DGait recognition method via
interpretable 3DGait descriptors, an end-to-end 3DGait descriptors estimation network and a feature
fusion deep model based on a multi-set canonical correlation analysis. The paper makes the following
noteworthy contributions.

First, an interpretable and more targeted 3DGait model for subject identification is proposed.
Unlike the 3D body model or 3D pose model, the 3DGait model is represented by blending 3D
intrinsic shape features, 3DGait pose features and 3D external gait features (e.g., clothes, hairstyles,
object carrying, and views) in a uniform 3D parametric gait model. Specifically, a 3D hair synthesising
process is introduced to deal with hair styling for more targeted modelling. Based on the 3DGait model,
virtual dressing and virtual sample generation processes are introduced to significantly and logically
extend the gait data under various walking conditions for training. The targeted 3DGait model enables
both pose-based and surface-based gait recognition methods to be robust against multiple walking
conditions in real-life scenes.

Second, a gait sensory experiment based on body shape Latin Hypercube design is proposed.
It is a practical and efficient method for labelling the semantic values of 3DGait features from 2D
gait data. By minimising the dissimilarity between 2D representations and 3D morphed counterparts,
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described by 3DGait descriptors, the transformation of 2D gait image features to 3DGait descriptors
is well estimated. The labelled 2D to 3DGait data enable 3DGait descriptors to be interpretable and
used to train the 3D semantic gait parameter estimation Long Short Time Memory (LSTM) network
(3D-SGPE-LSTM).

Third, a novel end-to-end 2D to 3D semantic body parameters estimation network 3D-SGPE-
LSTM is proposed. A 3D virtual sample generation strategy is introduced to extend the training data
for 3D-SGPE-LSTM by conducting virtual dressing, 3D rotation process, etc. The 3D process in the
3DGait model makes 3D-SGPE-LSTM more robust to various walking conditions.

Finally, a deep learning architecture utilising multi-set canonical correlation analysis has been
proposed to achieve efficient feature-level fusion. The approach turns the gait patterns into a unified
representation space, enabling it to perform more effectively under diverse walking statuses.

The structure of this research is outlined below. Section 2 examines prior research, Section 3
elaborates on the 3DGait methodology, and Section 4 showcases our experimental findings. Section 5
brings a conclusion.

2 Related Work

Considerable efforts have been made to tackle challenges in gait recognition posed by noise,
clothing, object carrying, viewing angles, walking speed, etc. One appearance-based method averages
gait silhouettes to gait energy image (GEI) [11]. Another method finds vital frames from a gait
sequence based on silhouette matching and using the gait key frame images (GKIs) for recognition [12].
These straightforward visual representations are beneficial in standard walking scenarios. However,
they are prone to variations in appearance resulting from clothing or carrying changes. Shape-
based gait descriptors have been proposed to eliminate influences emphasising dynamic information
representation, e.g., frame difference energy image. Shape-based gait descriptors are theoretically
effective in subtle changes in clothing. Still, they are poor with other variations [13], i.e., object
carrying, viewing angles, and heavy coats, which easily influence the human gait contour. A Global
and Local Feature Extractor (GLFE) was proposed in [1] to improve the gait feature representation
ability. It takes advantage of global visual information and details about the local region.

Other appearance-based methods have been proposed to address clothing variations. In [14], a
clothing-insensitive gait recognition approach is presented. It leverages part-specific dressing cate-
gorisation and a dynamic weighting adjustment mechanism. The human body is divided into eight
sections. Each is assigned a different weight according to the factor affected by clothing variations. In
[15], a statistical shape analysis method is introduced to decompose GEI into three independent shape
segmentations. The higher-order statistical moments extracted from the pooled segmented features are
more robust to changes in clothing. However, the inherent drawback of appearance-based methods is
their dependency on the viewing angle and poor performance at different walking speeds. Variations
in clothing and shoes can also influence the gait recognition rate. In [16], an approach is proposed to
integrate characteristic descriptors from 2D, 3D, and audio data to enhance recognition rates on the
TUM-GAID database with varying footwear.

Model-based or fusion approaches have advantages in dealing with appearance variation. The
underlying trajectories of time-varying gait parameters are captured using the five-link biped walking
model to generate a gait dynamics graph for identification [17]. However, the model-based methods
based on skeletons can also be affected by various factors, namely object carrying and occlusions. In
[6], dynamic characteristics are integrated for gait identification, incorporating determinate learning
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to account for clothing and carrying conditions. In [5], a versatile and practical framework named
OpenGait has been devised. A straightforward and practically resilient benchmark model, GaitBase,
is introduced by integrating cutting-edge gait recognition techniques.

Object-carrying conditions can dramatically influence the contour appearance of the body due to
the merging of the body and the object in the gait silhouette. Few approaches ignore the body parts
near the carried item during feature extraction. In [18], a consolidated framework for joint intensity
adjustments is proposed for identifying gait, which is robust against various carrying conditions. In
[19], a novel methodology named Pose-Based Temporal-Spatial Network is introduced. It takes into
account changes in carrying and dressing.

Besides clothing and object carrying, identification of gait patterns across multi-views or cross-
views is also a challenge, especially using gait videos captured from a few views for training. In
contrast, the testing utilises a single-unit camera. Two approaches deal with the view variation, i.e.,
2D-based and 3D-related. The view transformation model has been introduced in [20]. It translates
2D gait characteristics from one visual angle to a different one. A focusing mechanism is integrated
to selectively attend to significant recurrently acquired partial representations from gait convolutional
energy maps, utilised as attributes for viewpoint-agnostic gait identification [21]. In [22], multi-task
generative adversarial networks (MGANs) are proposed to gain an understanding of unique feature
depictions tailored to specific views to address variation in view angles. A 2D GEI-driven approach for
extracting consistent features is proposed in [23]. It uses one uniform deep model to reconfigure the gait
data from multiple viewpoints into a single designated view. A non-linear view transformation model
is proposed for transforming the gait characteristics from diverse angles into a single standardised
view for view-invariant gait representation, which is robust against cross-view variation [24].

3D-based view-invariant gait recognition methods use motion or visual descriptors of 3D body
models, such as 3D joints and 3D volume images. In [9], the foremost method utilising 3D modelling
techniques is introduced to retrieve gait markers from the 3D data stream. A structural framework is
developed to simulate the human lower extremities, incorporating flexible segments at every joint. In
[25], a 3DGait identification method uses latent canonical covariates consisting of gait features. The
study uses the 3DGait dataset captured by 12 infrared cameras and with 41 retro-reflective markers
on humans. Multiple cameras are usually needed to capture the 3DGait data, and extra markers are
used to model 3D joint data accurately for 3DGait recognition.

The latest gait recognition methods typically deliver robust outcomes. However, the human gait
is 3D and is influenced by various elements. The robustness of a gait identification method must still
be enhanced using a more targeted 3DGait model [17]. However, in 3D parametric gait modelling,
a productive approach to extracting high-level semantic gait descriptors is lacking. Thus, to tackle
the abovementioned problems, 3DGait is put forward in this paper. It aids not only in extracting
interpretable and semantic parameters of gait but also combines the various other factors, i.e., apparel,
objects and hairstyles, for more targeted 3DGait modelling.

To overcome these problems, the paper introduces the novel 3DGait for gait recognition against
variations in carrying and dressing. This study makes two significant contributions. The first contri-
bution is that we introduce an innovative 3DGait model, which is represented by a set of interpretable
3DGait descriptors—the 3DGait model built upon a standard 3D human, where the skeleton is
embedded. Unlike the single skeleton or appearance-based 3DGait, 3DGait takes advantage of both
approaches. To make full use of 3DGait, virtual clothes and hair stylings are also introduced to 3DGait
as 3D-eFactors. As a result, using our interpretable 3DGait descriptors (i.e., 3D-Shape, 3D-Pose and
3D-eFactors), the alteration is applied straight to the standard 3D body by shape, pose, hair and clothes
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morphing. Our novel targeted 3DGait provides a new approach for gait recognition against object
carrying and clothing changes. The second contribution is that our 3DGait model provides a virtual
sample synthesis method to extend the gait dataset with diverse body contours, postures, apparel,
hairstyles and object carryings. It simulates gait recognition under variant scenarios for research
purposes.

3 Proposed Method: 3DGait
3.1 Overview

Fig. 1 illustrates the framework of 3DGait, which comprises three parts. The first is learning 2D
to 3DGait data for 3D-Shape, 3D-Pose and 3D-eFactors data. The other is the 3DGait parameter
estimation LSTM network (3D-SGPE-LSTM) using spatial-temporal 2D gait images. The third is the
MCCA-DNet for multi-set feature fusion. The 3D-SGPE-LSTM network is trained by learned shape,
pose and external gait factors derived from a mixed gait dataset with various walking conditions, i.e.,
view changes, ball and bag carrying, and variation in dressing. Using mixed gait datasets makes the
3D estimation model robust to different variations. We propose a set of view-invariant descriptors to
represent the 3DGait: 3D-Shape, 3D-Pose and 3D-eFators. Since the frames in a gait cycle are different
due to walking conditions, ten key frames are chosen for constructing the 3D-Pose. As 3D-Shape and
3D-Pose descriptors have different physical meanings and subtle perturbation under different walking
variations, the MCCA-DNet is introduced to transform them to a unified pattern space against various
walking conditions.
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Figure 1: Overview of 3DGait framework

3.2 Targeted 3D Parametric Gait Model with Virtual Hair Styling

In our previous work [26], a standard 3D human body is utilised for deforming the pose and
projecting the pose to 2D space to fit onto the posture of 2D gait. The 3D parametric body model
describes and constructs the corresponding 3D body model by semantic body labels. Further details
of the 3D parametric gait model construction are provided in [26,27].

Besides the skeleton data of gait, shape descriptors are also crucial in gait recognition. Unlike
posture, most semantic shape features are high-level physical parameters, i.e., body height, weight,
and head size. A 3D body scanner for a static pose can measure these parameters. However, most
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gait images are captured by 2D surveillance cameras as it is not practical to obtain the body shape
data directly from 3D sensors. In our previous research, the shape deformations were conducted on
the 3D human body to meet the 2D gait silhouettes for estimating the shape parameters. The various
3D-eFactors, especially object carrying, clothing and hairstyles, greatly influence the extracted gait
silhouettes. As a result, the intrinsic body shape characteristics hidden underneath the clothing are
sometimes entirely dissimilar from the ground truth.

To address the intrinsic body shape estimation under various clothing and gait factors, a sensory
experiment with human evaluators is designed to quickly estimate the body shape parameters without
conducting extensive and time-consuming 3D human body measurements. Table 1 demonstrates the
interpretable parameters used to construct the 3D-Shape descriptor. The main classification consists
of two groups: global features and the details of the body (i.e., head and neck size, arm thickness, etc.)
The number of parameters is limited to reduce computational time and effort.

Table 1: Main interpretable parameters of 3D-Shape descriptor

Category Parameters Classification Parameters

Global

Gender
Head

Head scale horizontally
Age Head scale vertically

Height Neck Neck scale

Weight Torso Torso scale

Arms
Length of arm Size of chest
Arm muscle thickness Stomach scale
Height of leg Hip circumference

Legs Leg muscle thickness Feet Feet dimension

In Table 1, the head and neck are used as the elements of the 3D-Shape due to their contribution
to gait recognition. However, they can sometimes be obscured by various hairstyles. To make our
parametric body model more targeted, 3D hair styling and virtual dressing are introduced in the
sensory experiment.

A 3D standard human body is a template model that morphs human parts utilising shapes and
pose parameters. The hair is usually not considered in the 3DGait model. In our 3DGait recognition
framework, the head size and shape are essential physical features that must be estimated against
various hair styling. Fig. 2 shows the multiple hairstyles of different subjects or the same subject at
different time stamps.

Since there are only a few publicly available 3D hair datasets, we created several 3D models
of hairstyles using 3D CAD software according to some critical semantic hair parameters for the
3D parametric models. Fig. 3 shows some 3D hairstyles, i.e., crew cuts, pixie cuts, ponytails, double
pigtails, capes and straight hair. The same hairstyle can have two different parameters, i.e., length and
thickness. In our 3D hair synthesising process, the standard style is set to 1, and an additional delta
value is provided for a change in style.
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Figure 2: Different hairstyles of gait

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 3: 3D hair models of different hairstyles with multiple lengths and loose degrees: (a) crew cuts;
(b) pixie cuts; (c) double pigtails; (d) bun; (e) braid bun; (f) capes; (g) long ponytails; (h) short straight
hair; (i) short and thick straight hair; (j) long straight hair

3.3 Learning Gait Data Using Targeted 3DGait Model by Sensory Experiment

1) 3D-Pose estimation and formalization of the 3DGait data

Unlike most 3D body or pose data, our proposed 3DGait is not only represented by dynamic
pose data, i.e., 3D-Pose, but also by intrinsic body data, i.e., 3D-Shape, and 3D-eFactors. In 3DGait
framework, the end-to-end semantic gait parameter estimation 3D-SGPE-LSTM network is trained
by the 2D gait images and their 3DGait descriptors. The training data are derived from the mixed 2D
gait datasets under different walking conditions. Thus, the 3DGait descriptors should be accurately
labelled before training. This paper the 2D to 3DGait data are learned using the proposed 3DGait
model via a sensory experiment.

First, the 3D-Pose data are estimated before the body shape sensory experiment. The experiment
aims to estimate 3D semantic shape values from 2D gait data by minimising the dissimilarity between
2D silhouettes and 3D body models with the same posture. The virtual 3DGait model is then morphed
using specific body shape values. In the experiment, the gait poses of 3D parametric body models in
a gait cycle must be consistent with their 2D gait data and kept unchanged. Since the 3D body model
is in the initial pose (I pose), the 3DGait poses must be first estimated from their corresponding gait
images using our previous method [26].

Skeleton from the Carnegie Mellon University motion capture dataset is embedded in our para-
metric body model. All joints are described using the Biovision Hierarchical data style. A silhouette
cost function for dissimilarity measure between 2D gait and 3D morphed gait silhouettes is proposed
in [26]. However, only 2D binary gait images are used in our previous work. Due to overlapping and
self-occlusion, the estimation of somebody’s joints, i.e., two hands, can be distorted and inaccurate. To
improve the performance of 3DGait estimation, we modify the silhouette dissimilarity cost function
by adding a penalty term for critical joints matching as

E =
∑
θ∈�

I∑
i=1

∥∥Γi (Υθ (P, S)) − Γi

(
P

2D
θ

)∥∥2 +
∑
θ∈�

N∑
n=1

∥∥Markn (Υθ (P, S)) − Markn

(
P

2D
θ

)∥∥2
, (1)
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where � is a gait view set. Γi(·) defines the ith silhouette contour marker extracted from the given 2D
gait silhouette. I is the maximum number of markers. Each marker is based on the centroid of the gait
silhouette as its original coordinate, given by Γi(·) = xii + yij. P

2D
θ

is the 2D gait silhouettes at θ view
and Υθ

(
Pj, S

)
is the projected gait silhouette from the virtual 3DGait model onto 2D space at θ view,

where P is the joint data of body skeleton and S is the body shape parameter. Markn (·) defines the
nth vital 2D body joint estimated from the 2D gait silhouette. Our method uses the joints estimation
algorithm in [28], and a certain amount of vital joints are used in Eq. (1). By minimising the silhouette
dissimilarity cost function, 2D gait images approximate the optimal pose of 3DGait.

After obtaining the gait poses using the enhanced 2D to 3DGait pose estimation method, each
2D gait frame in the gait cycle is paired with its corresponding 3DGait skeleton with different joints
data. The shape sensory experiment is then conducted using the scheme with the formalized concepts
and data as follows. Let G = {

G1, G2, . . . , GN
}

be a set of mixed gait samples under various walking
conditions, and GN = {

gN
1 , gN

2 , . . . , gN
M

}
denotes each sample comprises M different gait frames in a

cycle. Let S = [s1, s2, . . . , sKs ]T ∈ R
Ks defines the Ks semantic body shape parameters controlling the

3D body shape deformation. P = [p1, p2, . . . , pKj ]T ∈ R
3Kj defines the vector of Kj body joint data

based on human skeleton which can be estimated according to Eq. (1). F = [f 1, f 2, . . . , f Kf ]T ∈ R
Kf

represents the flags for Kf external gait factors, i.e., clothing variation, object carrying, and hairstyles.
In order to distinguish the shape dissimilarity between ith 2D gait sample and the corresponding 3D
sample, a dissimilarity descriptor is defined as Dsi = 〈Ksi, Vsi〉, where Ksi denote the dissimilarity of
frames under the same views, and Vsi represent dissimilarity among different views with similar poses
if multi-view 2D gait data existed. The frames are selected according to the gait pose, i.e., posture with
minimum self-occlusions, and with the distinct shape feature. The multi-view dissimilarity Vsi make
the estimation more accurate. In this paper, the scale of Ksn and Vsn ranges from 0 to 4. Each score
defines a meaning, i.e., 4–very different, 3–different, 2–medium, 1–similar, and 0–very similar.

Let Ini = [Ini
m+1, Ini

m+2, . . . , Ini
m+t] be the normalized input based on the 2D gait images with L key

frames, where m ∈ [1M] and m + t ≤ M. This means several gait frames are used to estimate the
body shape parameters instead of a single gait image. Let Outi = [SiT , PiT , FiT ] be composed of three
category elements, i.e., Ks body shape parameters, Kf external gait factors and Kj joints data of body
skeleton. Ini and Outi are respectively the input and output data for training the 3D-SGPE-LSTM
network. In this paper, Ks = 16 body shape parameters are used, i.e., as shown in Table 1, and several
walking variations are introduced, i.e., gait views, clothing styles, object carrying, hairstyles, etc.

2) 3D-Shape sensory experiment using Latin Hypercube design

The 3D human body is controlled by all the shape parameters, pose and walking conditions. The
shape features, i.e., 3D-Shape, are denoted as S ∈ R

Ks . An interactive learning framework is proposed
to obtain the physical body shape parameters for all the gait samples from 2D gait images. The scheme
iteratively updates and generates the new values of S based on their former data until most semantic
values minimise the dissimilarity between the 2D gait appearance and the 3D synthesised gait model.

To make full use of human knowledge and reduce subjective errors, five evaluators are trained
to evaluate the dissimilarity between a 2D gait sample and the corresponding 3D synthesised virtual
gait model. In the body shape sensory experiment, the 3DGait model is morphed by the parameters
of 3D-Shape descriptors, i.e., S, with the pre-estimated 3D-Pose and 3D-eFactors descriptor fixed.
After evaluation, the average dissimilarity for body shape parameters is determined and represented
as Dsn = 〈Ksn, Vsn〉 for sample Sn, where Ksn denotes the dissimilarity using gait frames in the same
view while Vsn denotes the multi-view evaluation using frames in different views.
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Before the shape evaluation, a set of 3D body models with evenly distributed values of body
parameters are given. This necessitates an optimal set of Ks dimensional points of body shape
parameters S to be generated first. The points in the set must be distributed as uniformly as possible
in their experiment domain. The process is known as the uniform design or space-filling design. One
popular approach to generating good space-filling points is the Audze-Eglais optimal Latin Hypercube
design (AE-OLHD) [29]. We let the experiment domain of body shape be denoted in the unit cube
CKs = [0, 1]Ks . In Latin Hypercube design (LHD), a Ks-dimensional LHD of N points is a set of n
sampling data in the experiment domain, i.e., S = [S1, S2, . . . , SN] , where Si = (s1

i , s2
i , . . . , sKs

i ). AE-
OLHD [29] is efficient in scattering points uniformly over the experiment domain. It generates evenly
spread body shape points by minimizing the objective U = ∑N

i=1

∑N

j=i+1 d(Si, Sj)−2 where d(Si, Sj)

defines the Euclidean distance. By generating the evenly spread N body shape points, denoted as
S = [S1, . . . , Sn, . . . , SN], the virtual 3D body models are deformed with different shape parameter Sn.

The tth frame of the 3D body model with shape data St
n and pose data Pt is then morphed

from standard body model Xstd, and represented by M
t
n = P (Pt) · S (Sn) · Xstd, where P(·) is pose

deformation and S(·) is shape deformation [26]. After virtual dressing, the final models of gait under
various gait conditions (as demonstrated in Fig. 4) are denoted by Y

t
n = F(M

t
n, F) where F is the data

of 3D-eFactors, i.e., clothing, hairstyles and carrying flags. F(·) represents the virtual dressing and
carrying condition, i.e., clothing, ball holding, bag carrying and dressing different hairstyles. The 2D
gait image and the corresponding virtually generated 3DGait model with different body shape Sn are
then compared directly by evaluators as shown in Fig. 4, where their evaluated dissimilarity at same
view and multi-view are denoted by Ds = {〈

Ks1, Vs1
〉
, . . . ,

〈
KsN, VsN

〉}
.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 4: 2D gait images and their corresponding 3D virtually dressed gait models under different gait
factors: (a) 2D gait carrying a knapsack; (b) 3D model with virtual backpack carrying; (c) texture
mapping effect of (b); (d) silhouette difference between (a) and (c); (e) change in hairstyle based on
(b); (f) with long coat but without backpack based on (b); (g) 2D gait with a bag; (h) synthesised 3D
model with a virtual bag carrying; and (i) texture mapping effect of (h)

Using the aforementioned process, the evaluation on the N sets of shape parameters are obtained,
and the optimal set of body shape values are determined according to the minimum observation result
in Ds. The final step is to refine the values of body parameters in an even smaller changes by the
evaluators. Finally, the optimal estimated body shape is obtained and denoted by Sopt = S̃max =[
s1

opt, s2
opt, . . . , sKs

opt

]T
. The output learning data of 3D-SGPE-LSTM network including Ks body shape

parameters S, Kj joints data P and Kf walking condition flags F are then compacted as

Outi =
[
outi

1, . . . , outi
Ks+Kj

, . . . , outi
Ks+Kj+Kc

]
=

[
SiT , PiT , FiT

]
. (2)
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The input sample i is denoted by Ini = [
Ini

m+1, Ini
m+2, . . . , Ini

m+t

] = [Gi
1, Gi

2, . . . , Gi
t] which comprises

the corresponding 2D gait images with L consecutive key frames. The body joint values Pi
j in Outi

corresponding to the pose of last gait frame is Ini, i.e., gait image Gi
t.

3) 3D-SGPE-LSTM network

In this paper a set of 3DGait descriptors derived from the output of 3D-SGPE-LSTM network
is proposed. The first is 3D-Shape, based on Ks body shape values and denoted by Sdcr = Sopt =[
s1

opt, . . . , sKs
opt

]T
. The second is 3D-Pose which is composed of Nk gait pose data in a walking cycle,

i.e., Pdcr = (
P1, P2, . . . , PNk

)
, where Pn = [Pn,1, Pn,2, . . . , Pn,Kj ]T denotes the Kj joints data including the

three degrees of freedom based on body skeleton. The third is 3D-eFactors, based on Nf different gait
factors, and denoted by Fdcr = (f 1, f 2, . . . , f Nf ). Each input sample Ini with t gait frames is used to
estimate the pose data based on body skeleton corresponding to the last gait frame, and the key pose
data are chosen from all the pose data in a walking cycle. The detailed method used to choose the fixed
number of key walking frames based on gait postures is given in our previous work [26].

3D-SGPE-LSTM network is a sequential model in the 3DGait framework and aims to estimate
the 3DGait parameters, i.e., shape, pose data and external gait factors, based on spatial-temporal 2D
gait images. The network comprises three typical layers, i.e., CNN layer, fully connection (FC) layer
and LSTM part, as illustrated in Fig. 5. A Residual Network 50 without the top layer is introduced to
operate as CNN layers. The ith input of the network is denoted by Ini = (

gi
1, gi

2, . . . , gi
t

)
, i.e., it consists

of t consecutive frame-by-frame 2D gait images. As aforementioned, the output data are coded into
three gait-related data types (i.e., body shape parameters S, body pose data P and external gait factor
parameters F), and denoted by Outi = [SiT , PiT , FiT ]. To simplify the training process, the 3D-eFactors
estimation model of 3D-SGPE-LSTM framework is divided into several sub 3D-eFactors networks
according to the region of interest (ROI) regions. They are trained separately against various walking
conditions and different tasks.
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Figure 5: 3D-SGPE-LSTM Network

Fig. 5 shows there are several CNNs which operate as feature-extracting layers to transfer the
gait static characteristics and ROI characteristics corresponding to different types of gait images, i.e.,
colour gait (C-Gait), body semantic segmentation gait (S-Gait), binary gait (B-Gait) silhouettes and
ROI regions. The parameters of 3D-eFactors are split and trained in different models, as shown in
Fig. 5.
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The construction of the four types of gait images is as follows. First, the subject is segmented in
the original image with a bounding box using a person detection model, i.e., You Only Look Once
version 5 (YoLov5). Second, the segmented RGB gait images are passed to a novel pose-extracting
model, introduced in [28], to obtain accurate S-Gait silhouettes with six body parts, thirteen clothing
categories and small-scale accessories (i.e., hat, pants, shoes, jumpsuit, coat, scarf, etc.). Third, using
the S-Gait silhouettes, the human body is parsed with the background removed, and the B-Gait
silhouettes are easily obtained by setting all the parsed body regions in S-Gait silhouettes to black.
Fourth, using the B-Gait silhouettes as masks, the C-Gait silhouettes are segmented from the RGB
gait images. Finally, in the S-Gait silhouettes, parsed body parts, clothing categories and small-scale
accessories are selected according to ROI region to estimate 3D-eFactors using the proposed CNN-
LSTM network. The detailed analysis of 3D-eFactors is helpful for the virtual dressing process of
the 3DGait model. Our method uses the face and hair body parts for hairstyle estimation. The upper
clothing, arm, pant and leg regions are used to analyse the detailed clothing classifications. The ROIs
corresponding to left and right lower legs and shoes are used to estimate the shoe category.

Compared with most of the popular gait features extracted only from B-Gait silhouettes, our
method takes advantage of different types of gait images. They carry more helpful information than
B-Gait images, which make dressing conditions, carrying items and body parts more easily determined.
The first full connection (FC1) following the three CNNs deals with the feature fusion of three types
of gait silhouettes. Direct learning gait features from C-Gait silhouettes must overcome the problem
of colour variation, mainly caused by colourful clothing styles and variations in illumination and view
angles. To make gait recognition robust, the chosen B-Gait images ignore the colours in most gait
recognition methods. However, some helpful information has also been removed, thus weakening the
ability of the technique to address invariant gait recognition issues under diverse walking conditions.

Instead of ignoring colours, we introduce three schemes to deal with the effects of colour by
generating 3D-2D virtual dressing data, adding noise to C-Gait images, and constructing a feature
fusion layer. Virtual sample generation extends our training dataset by dressing different colour
clothing on its 3DGait model and projecting it to 2D space. Typically, the input sample Ini and its
output Outi are coupled, i.e., with one to one mapping. However, to make our 3D-SGPE-LSTM
network more robust, virtually generated samples are introduced to multiple inputs and mapped
to the same output. The 3D-2D virtually generated samples to Ini = (

gi
1, gi

2, . . . , gi
t

)
are denoted by

Ini
v,d = (

vi
1,d, vi

2,d, . . . , vi
t,d

)
, where vi

t,d defines the 3D-2D mapping gait image with dth clothing styles, i.e.,
different clothing styles have varied colours as shown in Fig. 6. The shape parameters and 3D skeleton
pose are the same as the gait frame t obtained in our sensory experiment. As a result, multiple input
samples including virtually generated samples in set

{
Ini, Ini

v,d

}
, d ∈ [1 . . . D] have the same output Outi

mapping, which significantly helps to progress the generalisation capability of our model.

The three types of gait CNNs feature fusion process are based on a FC1 layer. Provided in
input, three 2D gait features F i

CNN extracted by ResNet-50, i.e., F i
CNN = Nfeature(Gi) ∈ R

d, Gi ∈
{ImgC_Gait, ImgS_Gait, ImgB_Gait}, i ∈ [1 . . . 3], are fused by the mapping function such that

FCi
neuron = ReLU

[(∑3

n=1
δnF n

CNN

)T

· wi + bi
ias

]
, (3)

where FCi
neuron denotes the ith Rectified Linear Unit (ReLU) neuron in fully connected layer with

maximum Imax neurons in total. wi ∈ R
d and bi

ias is a bias.
∑3

n=1 δn = 1 and ReLU(·) is the activation
function defined as ReLU(x) = max(0, x). As shown in Fig. 5, the S-Gait silhouette plays an essential
role in the feature fusion, and the segmentation accuracy of S-Gait directly influences the efficiency of
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the model. The mean squared error cost function is introduced in the 3D-SGPE-LSTM network for
estimating the 3D-Shape and 3D-Pose parameters, i.e.,

Loss = 1
N

∑N

i=1

(∥∥∥Si
dcr − Ŝi

dcr

∥∥∥2

+
∥∥∥Pi

dcr − P̂i
dcr

∥∥∥2
)

, (4)

where N defines the total input samples. The ith input sample of the network is Ini = (
gi

1, gi
2, . . . , gi

4

)
,

i.e., it consists of four consecutive frame-by-frame 2D gait images. Si
dcr are the ground truth body shape

data of ith sample, and Ŝi
dcr are the predicted data from Ini. Pi

dcr are the ground truth body pose data
of the last gait image gi

4 in ith sample, and P̂i
dcr are the predicted data. Table 2 shows the 3D-SGPE-

LSTM main training hyperparameter settings. The ResNet50 is introduced as a base CNN network
for fine-tuning, and the last three layers are set as trainable.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 6: 3D-2D virtual gait data with varied clothing styles: (a), (d), and (g)–2D gait of different
poses; and (b), (c), (e), (f), (h), and (i)–render effects of two different virtual dressing corresponding to
their gait poses

Table 2: 3D-SGPE-LSTM main training hyperparameter settings

No. Parameter Parameter value Explain

1 Base network ResNet50 CNN feature extractor
2 Normalised gait image size 120 × 80 × 3 Height 120 pixels, width 80 pixels
3 Learning_rate 0.001 The learning rate for training
4 Lstm units 128 Number of hidden nodes in LSTM
5 Lstm time steps 4 4 Gait frames for an input sample
6 train_epochs 200 Number of training sessions
7 train_batch_size 32 Number of samples per training
8 dropout_rate 0.1 Parameters to prevent overfitting
9 Optimizer Adam Adam optimiser
10 Trainable params 1,905,694 The last three layers of ResNet50 are trainable

In our 3D-SGPE-LSTM network, two LSTM layers are introduced to get the gait characteristics
using sequential gait data, i.e., the fused features from FC1. Compared with one static gait image,
using several gait frames in a walking cycle to extract the 3D-Shape and 3D-Pose data is more efficient
and robust by exploiting contextual information. More data usually means more info and inherent
features, which help the network to attain better performance. LSTM, a type of RNN with a long
short-term sequence memory function, is appropriate for temporal feature extraction and is widely
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used in text and speech recognition. Compared with RNN, LSTM introduces the concept of “gate” to
discard unwanted data and record meaningful information. As shown in Fig. 5, after all t gait frames
are input to the 3D-SGPE-LSTM network, the final estimated values are output using connection
layer FC2, which works as a regression mapping. Varying gait images from datasets are utilised to
create a combined training set. Our sensory data is also leveraged for 3D-SGPE-LSTM training.

In our experiments, each input sample to the 3D-SGPE-LSTM model is of size 3 × 4 × 120 ×
80 × 3 in tensor. It comprises three types of four frame-by-frame gait images, i.e., four colour gait
images, four binary gait images and four body semantic segmentation gait images. The gait image size
is normalised to 120 × 80, i.e., a 3-channel RGB image. An experiment was undertaken to evaluate
the model inference speed. The average speed per sample is less than 60 ms, as shown in Table 3. The
experiment was undertaken on a 3.8 GHz Intel Core i7-10700K computer, with 16 GB RAM, RTX
2070 8G GPU, in a Python 3.8 environment.

Table 3: Evaluation of the inference speed of 3D-SGPE-LSTM

No. Sample no. Batch size Total time (ms) Time per sample (ms)

1 16 8 177.05 41.07
2 32 16 691.9 51.62
3 32 32 289.86 39.06
4 64 32 566.08 38.85
5 128 32 1126.08 38.80

4) 3DGait recognition using invariant fusion feature from MCCA-DNet

The fusion of static 3D-Shape and dynamic 3D-Pose under different 3D-eFactors is motivated
by two factors. First, the two descriptors complement each other for gait recognition under different
walking conditions. 3D-Shape is the intrinsic trait of the body and is robust to viewing angles, walking
speed and object carrying. 3D-Pose, conversely, is less sensitive to static factors, i.e., variations in
clothing and hairstyles and occlusions on static body parts. Second, the fusion of the two features
under different 3D-eFactors using MCCA projects them to a uniform pattern space. Thus, a novel gait
recognition framework against various walking variations is applied. Fig. 7 illustrates the semantic
feature fusion model, which comprises two phases: semantic feature concatenation and invariant
feature projection by MCCA.
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The system has two sub-input styles: 3D body descriptors and 3D-eFactors. The 3D body descrip-
tors, i.e., 3D-Shape and 3D-Pose, are first concatenated in feature-level fusion. The concatenation
model consists of two LSTM networks and two full connection layers of FC1 and FC2. The model
maps 3D-Shape and 3D-Pose, with different dimensionalities and physical meanings, into a shared
space with the same dimension. The two mapped features are then concatenated and further processed
using the MCCA-based feature projecting matrix controlled by 3D-eFactors. After these two steps, 3D-
Shape and 3D-Pose are mapped into a novel pattern representation, considering diverse 3D-eFactors.

Let X = {xi, i = 1, . . . , I} and xi = [
x1

i , x2
i , x3

i

]
is the input of the feature fusion network and I is

the sample numbers. x1
i = Si

dcr ∈ R
Ks denotes 3D-Shape, and x2

i = Pi
dcr ∈ R

Kj×t denotes 3D-Pose. Pi
dcr

are t frames of gait pose features. x3
i = Fi ∈ R

Kf defines the vector of 3D-eFactors, i.e., comprising
viewing angels, object carrying conditions and clothing variation. First, x1

i and x2
i are mapped into

the same dimension by two projecting matrices: ωs ∈ R
Ks×(Dz/2) for shape and ωp ∈ R

DL×(Dz/2) for pose.
(Dz/2) denotes the dimensionality of trait within the common space after projection and DL is the
dimensionality of LSTM encoding output. The concatenation feature of subject i is defined as ui ∈ R

Dz

as shown in Fig. 7. After feature concatenation, the output trait set U = [u1 . . . ui . . . uI ] ∈ R
Dz×I

is processed by an MCCA-based invariant feature projecting matrix Pr on the basis of different
walking conditions. The invariant characteristic set of ith subject after feature projection is denoted
by zi

T = ui
TPi

r, where Pi
r = [pi

1 pi
2 . . . pi

Dz
] ∈ R

Dz×Dz . The newly defined pattern space is explained by
the characteristic set Z = {

zi ∈ R
Dz

}
where i ∈ [1 I ]. After feature fusion, the subjects are expected

to have different walking conditions in the unified space. The projection process is based on MCCA,
which computes multi-sets of correlation projection matrices to separate the multiple (more than two)
sets of variables, i.e., with different walking conditions, in new subspace. Unlike canonical correlation
analysis which analyzes the maximum correlation between two variables, MCCA applies an objective
function of the covariance matrixes from multiple vectors to compute maximum correlation of their
canonical variables. In this paper, the training of MCCA-DNet is to learn the optimal parameters that
maximize the correlation of the data sets with different walking conditions.

To describe the multi-set correlations, we classify the samples into multi-sets according to walking
conditions. Let Xk ∈ X , k = [1 K] constitute the subcollection of X where every instance shares
identical walking conditions and K is the total number of combinations with different walking
conditions. Uk ∈ U denotes the sets obtained after merging features. Let pm, pn ∈ R

Dz denotes the
correlation coefficient of two sets Xm and Xn, and calculated by their concatenation characteristic Um

and Un, i.e., features Um and Un, using

ρm,n = pT
mUmUn

Tpn√
(pT

mUmUm
Tpm)(pT

n UnUn
Tpn)

. (5)

The criterion used by our MCCA-based feature fusion model is

max
Pr

∑K

m=1

∑
n∈Um

pos
ρm,n, (6)

subject to pT
mUmUm

Tpm = pT
n UnUn

Tpn = 1 and Pr = [p1 p2 . . . pDz ]. Um
pos denotes the items of wholly

positive sets to Xm that indicates their subject matter is identical but different walking conditions.
Thus, Eq. (6) is reformulated as

arg minJ
Pr

= arg min
Pr

∑K

m=1

∑
n∈Um

pos

∥∥UT
m Pm

r − UT
n Pn

r

∥∥2

2
, (7)
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where Pr is a tensor of size Dz × Dz × K. Pr = tanh
[(

x3
i

)T
ω3 + b3

]
which is under the control of the

walking conditional vector x3
i over the FC3. The computation of Pr is converted into learning process

of FC3 network. The loss function of our feature fusion model is defined as

Loss =
∑K

m=1

∑
n∈Um

pos

∑N

i=1

∥∥ui
mPm

r − ui
nP

n
r

∥∥2

2
, (8)

where N stands for the sampled quantity of sets Um and Un. The MCCA-DNet converts the multi-set
data into a consistent pattern space under different conditions. Thus, it undergoes training before the
SoftMax classifier. After feature fusion by MCCA-DNet, the refined trait z from the training (i.e.,
gallery) set with the class label is fed into the SoftMax classifier. The refined features from the test
(i.e., probe) sets are used for testing.

4 Experiments

We validate the functioning capacity of the mentioned 3DGait on several widely used cross-
variation gait datasets, i.e., CMU MoBo, CASIA-B, TUM-GAID and the Gait database of Polish-
Japanese Academy of Information Technology (GPJATK), under different 3D-eFactors, with multi-
view angles, ball and bag carrying, and variations in clothing, hairstyle and walking speed. The
three networks in 3DGait are trained separately, i.e., 3D-SGPE-LSTM for semantic gait parameter
estimation, MCCA-DNet for unifying the descriptors and the SoftMax recognition network. A mixed
gait dataset with various walking conditions was constructed to conduct the sensory experiment and
train the network with the learned body data and variation flags, as shown in Table 4.

Table 4: Elements of the mixed gait dataset

Variations Dataset Sub. no. Describes Pattern no. 3D-eFactor variables encoding

Speed CMU-MoBo 5 2-level speed 10 Speed variable f 1 ∈ [1 . . . 2]

Views CASIA-B 24 11 views 264 Azimuth angle variable
f 2 ∈ [0 . . . 360]; elevation angle
variable f 3 ∈ [0 . . . 90]

Clothing CASIA-B 24 Coat (11 views) 264 Styles (normal, coat, etc.)
f 4 ∈ [1 . . . 10]; tight/loose, long/short
f 5, f 6 ∈ [0 . . . 10]

TUM-GAID 10 Coat 10

Carrying CASIA-B 24 Bag (11 views) 264 Styles (bag, ball etc.) f 7 ∈ [0 . . . 10];
position f 8, f 9 ∈ [0 . . . 10]; shape
f 10 ∈ [0 . . . 10]; size f 11 ∈ [0 . . . 10]

CMU-MoBo 5 Ball carrying 5

Hairstyles CASIA-B 10 11 views 110 Styles (crewcut, ponytail, straight
hair, etc.) f 12 ∈ [0 . . . 10]; length
f 13 ∈ [0 . . . 10]; thickness
f 14 ∈ [0 . . . 10]

TUM-GAID 10 Lateral view 10

The semantic feature fusion network is also trained using the mixed gait dataset. The recognition
network is then trained according to each gait dataset for different tests. In Table 4, sub. no. denotes
the number of subjects from the given dataset and f k encodes the variations. The walking condition
vector is denoted by F = [f 1, f 2, . . . , f Kf ]T ∈ R

Kf .
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4.1 Experiments Based on CMU MoBo Database

The CMU MoBo [30] comprises six camera recordings of twenty-five individuals. Although the
number of subjects is small, all subjects were under four varied walking situations. They are slow
walking, quick walking, inclining walking and walking with a ball. To evaluate the effectiveness of
3DGait when the walking conditions are changed, i.e., due to speed variation and object carrying, the
experiments are designed by the settings in [31], as shown in Table 5. Twenty-five subjects in CMU
MoBo are used in experiments, i.e., twenty-five subjects of the slow walk are in the gallery set, and
their fast walk is involved in the probe group. Twenty-five subjects of the quick walk are in the gallery
group, and ball-taking is involved in the probe group. The gallery and probe groups have equal group
sizes of 25 × 3 × 4.

Table 5: The experiments on CMU MoBo dataset for robustness test

Experiment Gallery walk group Probe walk group

SvsQ Slowly Quickly
SvsB Slowly Ball-taking
SvsI Slowly Inclining
QsS Quickly Slowly
QvsB Quickly Ball-taking
QvsI Quickly Inclining
IvsS Inclining Slowly
IvsQ Inclining Quickly
IvsB Inclining Ball-taking
BvsS Ball-taking Slowly
BvsQ Ball-taking Quickly
BvsI Ball-taking Inclining

In the training process of our 3D-SGPE-LSTM network, virtual data comprising inclining and
ball-taking samples with different body shapes are generated. They are added to enhance the model’s
resilience against diverse disruptions. In this task, we trained the 3D-SGPE-LSTM network using
the data from the mixed dataset, as shown in Table 4, together with the virtually generated samples,
as shown in Fig. 8. The input virtually generated samples to 3D-SGPE-LSTM are denoted by
Ini

v,ball_inlcinen
= (

vi
1,ball_inlciningn

, vi
2,ball_inlciningn

, . . . , vi
t,ball_inlciningn

)
, where vi

t,ball_inlcinen
denotes the tth 3D to 2D gait

image under external factors of ball taking or inclining walking with nth virtually generated 3D-Shape
descriptors of ith input sample. The corresponding 3D-Pose and 3D-eFactors output of vi

n,ball_inlcinen
are

the same as Ini, but with the different virtually generated 3D-Shape descriptor. The 3D-SGPE-LSTM
network is separately trained using the SoftMax recognition network with the mixed dataset. In the
recognition process, only the gait from the gallery group is used to train the SoftMax classifier. The
probe data are used for the test. The feature fusion network is trained with the mixed dataset and
CMU-MoBo examples at two-speed levels.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 8: Illustration of synthetic sample generation: (a) 2D body with a ball taking; (b) 3D pose and
shape estimate from (a); (c) 3D virtual model with a ball taking based on (b); (d) texture mapping effect
of (c); (e) 3D body model with 3° inclining rotation of (c); (f) 3D body model with 36° horizontal
rotation of (c); (g) 3D body model with different hairstyle of (c); (h) 3D body model with different
hairstyle and clothes of (c); and (i) 3D body model with different carrying, hairstyle and 6° inclining
rotation of (c)

Unlike methods that only consider the lateral view data, our experiments included three views, i.e.,
captured by cameras vr03_7, vr05_7 and vr07_7. The object carrying in these views is seen, i.e., taking a
basketball, which influences the silhouette shapes and the dynamic skeleton representation. The rank-
1 results of our proposed approach are compared with radial basis function (RBF) [32], Pyramidal
Fisher Motion (PFM) [33], gait dynamics graph (GDG) [17], deep convolutional and recurrent neural
network (CRNN) [34], GEI subspace projections (GSP) [13], and Pose Energy Image (PEI) [31] as
shown in Table 6. The data of the probe view are derived from cameras vr03_7.

Table 6: Recognition results (%) comparison on mobo dataset for robustness test to cross-variation

Exp. GDG CRNN RBF PFM GSP-CRC PEI PoseMapGait [35] 3DGait

SvsQ 92 92 96 92 85 100 86 98
SvsB – – 87 100 93 92 62 95
SvsI – – – – – 60 82 90
QvsS 91 92 92 92 82 88 – 96
QvsB – – 88 83 84 64 – 89
QvsI – – – – – 72 – 92
IvsS – – – – – 60 – 88
IvsQ – – – – – 80 – 91
IvsB – – – – – 32 – 85
BvsS – – 87 48 91 92 – 94
BvsQ – – 88 48 85 84 – 93
BvsI – – – – – 60 – 86

Table 6 shows some experiments involving inclining walking, i.e., Exp. SvsI, QvsI, BvsI, IvsS, IvsQ
and IvsB, but only the method in [31] reported the recognition result under this walking condition. The
recognition rates are pretty low when the inclining factor is involved in the cross-factor experiment, i.e.,
60% in the experiments: slow vs. inclining walk, inclining vs. slow and ball vs. inclining. This is because
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the silhouette in inclining walking significantly differs from normal walking. Most 2D appearance-
based gait recognition methods cannot deal with this variation. Since our proposed approach is based
on a parametric 3D human template, it can exploit any view rotation in 3D space. The multi-view
virtual samples, including both vertical and horizontal, are virtually generated by rotating the 3D
models and added into the training dataset for the 3D-SGPE-LSTM network, as demonstrated in
Fig. 8. The worst accuracy of 32% is for an inclining walk and ball-taking walk. That is due to the
variation of combined external gait factors, i.e., ball taking and inclining walking. However, 3DGait
has advantages against various walking conditions, even when the variations are combined. This is
mainly due to the targeted 3DGait model having significant potential in 3D virtual dressing and virtual
sample generation process, which cannot be performed on 2D gait images, as illustrated in Fig. 8.

4.2 Experiments Based on the CASIA B Database

CASIA B is the most widely used gait database under several walking conditions, i.e., view
changes, object carrying and clothing variations. It comprises 124 subjects captured at eleven views
from front view 0° to back view 180°. Every viewing data is composed of six normal walks (nm), two
bag-carrying walks (bg), and two clothing-varied walks (cl).

Three types of experiments emphasising different variations are introduced, i.e., cross-view,
variation in clothing and object carrying. First, the evaluation for cross-view identification was
conducted. Like the experiment setting in [23], we chose 100 normal gait subjects, i.e., ID from 025-
124 in CASIA-B for evaluation. The remaining twenty-four subjects are used to construct the mixed
gait dataset, as shown in Table 4, for training the 3D-SGPE-LSTM. For each of the 100 subjects, two
normal sequences out of six are selected for each view. In Fig. 5, the probe angles data compared with
other methods are 54°, 72°, 108° and 126°. In the view variation task, the virtual samples with different
probe views are generated based on gallery gait view gait data and added to train our network to make
its model more robust to cross-view interferences.

Fig. 9 and Table 7 show a comparison of our approach with the other methods, i.e., Stacked
Progressive Auto-Encoders with Nearest Neighbor (SPAE-NN), PoseMapGait, Averaged Gait Image
with Sparse Reconstruction-based Metric Learning (AGRI-SRML), Latent Conditional Random
Field (LCRF), and Novel Deep Neural Network (NDNN). They show that our 3DGait method
performs well in cross-view walking conditions. In most cases, when the gallery and probe views are
similar, all approaches have a reasonable recognition rate, i.e., higher than 95%. This is because the
silhouettes are like each other, and thus, so are their features. However, when the variation in view is
significant, the recognition rates are significantly influenced. Despite this, our method still managed
to achieve good performance.

To strengthen the reliability of cross-view gait recognition in most cases, the focus is to auto-
matically learn and extract the common features under various views using multi-view datasets. As
discussed in Section 3, our 3D descriptors (i.e., 3D-Shape and 3D-Pose) are robust to view changes. The
physical body shape descriptor is learned directly using 3D parametric models. Unlike 2D gait recog-
nition methods, 3D-Shape is a high-level semantic descriptor with physical meanings. Unlike most
2D view-invariant feature selection algorithms, 3D-Shape extracts the intrinsic body shape features.
Regarding the 3D-Pose, our parametric 3D body template integrates the CMU skeleton structure.
All joints are encoded relative to the root coordinates. To represent the skeleton similarly, the root
coordinate is transformed to the same lateral view, i.e., 90°. Except for the set of 3DGait descriptors,
our feature fusion MCCA-DNet using the given a priori knowledge of gait automatically refines the
features before classification. The refined features make the result more accurate. Furthermore, the
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RNN-based 3D-SGPE-LSTM network trained by the mixed gait dataset with multi-view gait data
enables our model to estimate the 3DGait descriptors directly from the 2D gait images under different
views and walking conditions.

(a) (b)

(c) (d)
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Figure 9: Comparisons of accuracy by varying the probe angles from 36° to 144°: (a) probe view is 54°;
(b) probe view is 72°; (c) probe view is 108°; (d) probe view is 126°

Table 7: Rank-1 recognition rates (%) of cross-view identification under 90° gallery view

Method Probe view

36° 54° 72° 108° 126° 144° AVG

SPAE-NN [23] 52 70 95 95 81 56 74.8
PoseMapGait [35] 85 – 98 95 – 79 89.3
AGI-SRML [36] – 68 94 96 70 – 82.0
LCRF [37] 68 93 98 99 93 67 86.3
NDNN [24] 78 89 97 99 92 76 88.5
3DGait (our) 80 91 98 98 93 79 89.8

Experiments focused on clothing or object carrying with the same probe and gallery views were
also conducted. Like the cross-view experiment, two normal gait sequences (i.e., nm01 and nm02) of
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the 100 training subjects were chosen for training. Two gait sequences with different clothing (i.e.,
cl01 and cl02) and two with bag carrying (i.e., bg01 and bg02) were chosen for tests. An additional
experiment was designed to test the mixed clothing and carrying conditions, i.e., nm-bg+cl, where
walking with a bag and dressing with a coat condition were integrated. Tables 8 and 9 show the
presentation of our method and other novel methods, i.e., Pose-Based Temporal-Spatial Networks
(PTSN), Multi-task GANs (MGAN), Gait Convolutional Energy Maps (GCEM), Global and Local
Feature Extractor (GLFE), and Gait recognition based on Global-Local network (GaitGL).

Table 8: Recognition rates (%) under different conditions in 90° gallery view

Gallery-
probe (%)

PTSN
[19]

MGAN
[22]

GCEM
[21]

GLFE
[1]

OpenGait
[5]

GaitGL
[8]

NDNN
[24]

3DGait

nm-cl 61.3 55 71.5 79.0 77.4 81.3 88.5 94
nm-bg 79.3 88 82.3 89.3 94.0 91.0 94.5 95
bg-cl – – – – – – – 68
nm-bg+cl – – – – – – – 89
Avg 70.3 71.5 76.9 84.15 85.7 86.2 91.5 86.5

Table 9: Recognition rates (%) comparison using different gallery views

Methods Normal-gallery/condition-probe (%)
Conditions 18°/18° 36°/36° 54°/54° 72°/72° 108°/108° 126°/126° 144°/144° 162°/162°

SPAE-NN [23] Bag 82 70 67 74 62 76 73 68
Coat 49 47 47 43 47 44 40 41

NDNN [24] Bag – – 93 – – 92 – –
Coat – – 85 – – 83 – –

GLFE [1] Bag 81 88 85 76 76 85 87 84
Coat 59 67 65 58 60 63 61 57

PTSN [19] Bag 95 93 88 84 85 83 83 90
Coat 84 88 72.6 61 75 67 71.0 70.2

3DGait (our) Bag 84 85 95 96 93 92 84 82
Coat 78 82 88 90 91 86 80 77

Table 8 shows that our method performs well, especially in bg-cl and nm-bg+cl experiments.
Walking while burdened with a bag constituted the training phase for the bg-cl setting, with the coat-
wearing scenarios reserved for testing. Due to occlusions and pose distortion, the gait silhouettes
of the bag carrying are very different from the normal walking or coat-wearing. On one side of the
body, where the hand stays on the bag, being non-oscillatory significantly affects the recognition rate.
However, our 3D-SGPE-LSTM network trained by the mixed gait dataset still estimates the intrinsic
body parameters under various walking conditions, including with bags. In feature fusion, the hand
joint features related to bag variation are eliminated by paying more attention to unrelated joint parts.

The results of further experiments under other views, i.e., 18° to 162°, are shown in Table 9. The
comparison shows that our 3DGait is good at side views (near 90 degrees). This is mainly because
gait in the side view carries more dynamic pose, shape, clothes and carrying information than other
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views, especially when compared with the front view gait (near 0 degrees), as illustrated in Fig. 10. The
performance of 3DGait is furtherly improved by combining the gait data of other views to estimate
3DGait descriptors better.

(a) (b) (c) (d) (e) (f)

Figure 10: (a) 90° view with a bag; (b) 90° view without a bag; (c) 0° view with a bag; (d) 0° view without
a bag; (e) 90° view wearing a coat; and (f) 90° view with normal clothes

Most multi-view gait feature extraction methods convert the gallery and probe data to a uniform
representation or extract the unchanged traits. However, our framework finds the intrinsic body
descriptors by the 3D-SGPE-LSTM network. As a knowledge-based and data-driven gait recognition
method, our 3DGait exploits both advantages of these approaches. It avoids the mismatched features
in view transformation, especially for significant view changes.

4.3 Experiments Based on the TUM GAID Dataset

TUM GAID is a multi-model database. It comprises two separate recording parts. The prior was
captured in January. The subsequent was recorded in April of the same year. During the elapsed time,
various conditions occurred, i.e., hairstyle changes, clothing differences, bag carrying and changes
in lighting. The dataset consists of 305 subjects in outdoor scenes and with only a lateral view. Each
subject has six different normal walking videos (N1–N6). Two with a backpack carrying (B1–B2). The
other two are wearing shoe covers (S1–S2). Like the settings in [7], four different walking variations
were considered in our experiments, i.e., normal walk, taking a backpack, using shoe covers and time
variation.

The experimental set is the same as in [7], which includes only thirty-two subjects to test the
robustness against time variation. Object carrying, virtual dressing and pose-perturbation samples
(i.e., backpack, coat, shoe covers, different hairstyles and subtly varied pose) were generated to
extend the gait dataset for training 3D-SGPE-LSTM network, feature fusion network and recognition
network to achieve better performance against time variation. The performance consequences are
illustrated in Table 10.

Without the influence of elapsed time, most methods have a reasonable recognition rate, i.e.,
close to 100%. However, gait patterns changed rapidly over time and degraded the recognition rate
significantly when the various walking conditions changed together. Even the result of the experiment
TN without object carrying and clothing changes is below 90% due to time variation. In Exp. TB, the
recognition rate is no higher than 80% when backpack-carrying and time variation are combined. By
comparing the gait images without the bag carrying, we observed some subtle pose changes of the
same subject between the two sessions. Take the subject’s head as an example; in the data captured in
January, the head faces forward, while in April, it faces the ground, as shown in Fig. 11. This slight
pose variation directly changed both the silhouette and the skeleton joints.
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Table 10: Comparations on TUM GAID dataset for robustness test to time variation

Exp. Gallery Probe Methods

GEI JITN
[18]

DCS
[16]

Fusion
[7]

Siamese
DAE [38]

AT-GCN
[3]

3DGait

N N1–N4 N5–N6 99 100 100 100 99 99 100
B N1–N4 B1–B2 27 98 99 94 94 96 100
S N1–N4 S1–S2 53 99 99 96 98 99 98
TN N1–N4 TN5–TN6 44 63 78 88 81 81 93
TB N1–N4 TB1–TB2 6 63 62 80 76 79 90
TS N1–N4 TS1–TS2 9 66 55 83 78 80 88
AVG – – 39.7 81.5 82.2 90.2 87.7 89.0 94.8

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 11: Synthesised pose-perturbation virtual samples: (a)–(c) 2D gait frames of the same subject
at different time sessions; (d) 3D pose and shape estimates from (a); (e) texture mapping effect of (d);
(f) right hand subtly pose-perturbated 3DGait model based on (d); (g) neck pose-perturbated 3DGait
model based on (d); (h) virtual backpack carrying based on (g); and (i) with medium-length coat and
new hairstyle dressing based on (d)

To overcome this problem, we generated pose-perturbation virtual samples and other variations,
i.e., clothing, hairstyles and backpack carrying, as illustrated in Fig. 11, to extend the gallery set. The
delta Gaussian-based method generates the virtual pose directly from the given 3D pose. Let the 3D-

Pose of a subject be denoted by Pdcr =
(

P1
key, P2

key, . . . , PNk
key

)
, where Pn

key = [Pn,1, Pn,2, . . . , Pn,Kj ]T denotes

the Kj joint values including three degrees of freedom (DOF) based on body skeleton.

The virtual 3D-Pose, i.e., Pvr
dcr = (P1

key + ΔPn
joint, P2

key + ΔPn
joint, . . . , PNk

key + ΔPn
joint), is generated. The

delta changes of joints values are defined as ΔPn
joint = [Pn,1 + Δpn,1, Pn,2 + Δpn,2, . . . , Pn,Kj + Δpn,Kj ]T

where p = {
(Δpn,1, Δpn,2, . . . , Δpn,Z), n ∈ N

}
is N samples generated by Gaussian distribution function

such that

N (p|pstd, σ) = 1

(2π)
D/2

1

|σ|1/2 exp
[
−1

2
(p − pstd)

T
Σ−1 (p − pstd)

]
, (9)

where σ denotes the covariance and pstd denotes the mean value with D dimensions. Using the generated
pose-perturbation virtual samples to extend the gallery set, the feature-coupled projection network and



CMC, 2024, vol.80, no.1 257

SoftMax recognition network are trained to be more robust to subtle pose variation, which is one of
the main reasons for the good performances of our method in time-elapsed experiments.

4.4 Experiments on the GPJATK Dataset

GPJATK [39] is a 3D multi-view video and motion capture dataset. The dataset consists of 166
data sequences with thirty-two subjects (ten women and twenty-two men) and three different walking
factors, i.e., clothes variation, carrying a backpack and four views. Each sequence consists of videos
with RGB images of size 960 × 540. In 128 video sequences, thirty-two subjects are wearing clothes
only. In twenty-four data sequences, six out of thirty-two subjects changed clothes (subjects 26–31).
Finally, seven subjects have a backpack on their back in fourteen data sequences. The dataset helps
evaluate methods for cross-variation gait recognition.

The criteria setting in [39] was used for our experiments. Let s1 and s2 be straight walk with
clothing 1. s1 denotes walking from right to left and s2 from left to right. s3 and s4 are diagonal walks
with clothes1, where s3 is walking from right to left and s4 is walking in reversed direction. s5 and s6 are
straight walks like s1 and s2 but with different clothing 2. s7 and s8 are diagonal walks with clothing 2.
s9 and s10 walk with backpacks where s9 walks from right to left and s10 walks in the reverse direction.
The rank-1 recognition accuracy under clothes1 vs. clothes1, clothes1 vs. clothes2, and clothes1 vs.
backpack were determined. In the clothes1 vs. clothes1 experiment, sequences s1 and s2 were used as
gallery, and sequences s3 and s4 as test samples. In the clothes1 vs. clothes2 experiments, sequences s1,
s2, s3 and s4 containing subjects p26–p31 with clothes1 were used as a gallery, and the same subjects
with clothes2 were used as test samples. In the clothes1 vs. backpack experiment, sequences s1, s2,
s3 and s4 containing subjects p26–p32 with clothes1 were used as gallery and sequences s9 and s10
containing subjects with backpacks as test samples. We compared our 3DGait with Naïve Bayes (NB),
Support Vector Machine (SVM), Multilayer Perceptron (MLP) and CNN methods using marker-less
motion data according to the results reported in [39]. Unlike in [39], where only 3D motion data are
used for features, both 3D-Pose and 3D-Shape features are used in our experiment.

Table 11 compares our method with other methods, i.e., NB, SVM, MLP, CNN, and Regularized
Discriminant Analysis and Whale Optimization Algorithm (RDA-WOA) [40]. It shows that our
3DGait method achieves the best performance in terms of robustness. It is suggested in [39] that
with marker-free gait data, the precision of motion estimation significantly impacts gait recognition
performance. A small between-class distance exists when only the motion or pose is used. Furthermore,
multiple feature information is usually required for accurate recognition [41]. However, our 3DGait
considers motion data and intrinsic body shape features, i.e., 3D-Shape. Taking subject 31 as a sample,
the recognition rate achieved by the MLP classifier in [39] is approximately 60% for clothes1 vs.
clothes2 and even lower, i.e., 50% for clothes1 vs. a backpack.

Table 11: Rank-1 recognition rates (%) on the GPJATK dataset against views, clothes and backpack
variations

Experiments Covariate Methods

NB SVM MLP CNN RDA-WOA [40] 3DGait (ours)

clothes1 vs. clothes1 views 56 68 80 – 87 91
clothes1 vs. clothes2 clothes 57 64 76 67 85 90
clothes1 vs. backpack carryings 71 68 78 68 94 96
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The details of subject 31 are shown in Fig. 12, which shows a significantly large body shape, which
is different from the other subjects. Using our 3DGait method, the characteristic 3D-Shape features
(i.e., weight, leg thickness, torso scale, stomach size and hip size) are estimated and fully used for
3DGait model reconstruction. Thus, the proposed gait recognition method is more robust against
views, dressing and carrying variations.

(a) (b) (c) (d) (e) (f)

Figure 12: 3DGait model estimation for subject ID-31 in GPJATK dataset: (a) 2D gait silhouettes of
ID-31 subject; (b) estimated 3DGait model from (a); (c) 3DGait model with 30° rotation of (b); (d) 2D
gait silhouettes of ID-31 subject with backpack; (e) estimated 3DGait model from (d); and (f) 3DGait
model with −90° rotation of (e)

5 Conclusions

This paper proposes a novel 3DGait model based on 3DGait descriptors and a 3D parametric body
model with virtual dressing. It is the first attempt to blend 3D intrinsic shape descriptor, 3DGait poses
descriptor and 3D external gait factors in a uniform framework to construct the target 3DGait model.
Directly using the 3DGait descriptors or making reasonable changes enables easy reconstruction of
the corresponding 3DGait model. Thus, the approach has great potential for generating 2D or 3D
virtual gait data under various walking conditions, especially clothing, carrying and viewing changes.
Our virtual sample generation strategy based on 3DGait is evaluated on different challenging datasets,
focusing on when different walking conditions are combined.

The results show that our 3DGait methods are very robust against multi-cross variations that
2D methods cannot handle well, i.e., normal vs. inclining walking with speed change and ball
carrying, subtle pose changes together with different hairstyle and bag carrying caused by time
variation, viewing changes together with clothes and carrying variations, etc. In addition, we proposed
a semantic gait parameter estimation LSTM network, 3D-SGPE-LSTM, which aids in estimating
3DGait descriptors directly from 2D gait sequences.

Regarding potential real-world applications, the outcomes of this study can be used in several
domains. In surveillance and security, 3DGait enhances existing 2D gait surveillance systems by taking
advantage of 3DGait using our 3D-SGPE-LSTM network, even in situations where their appearance
or attire may have changed. The study provides a virtual sample synthesis method for 2D or 3DGait
recognition research against variant scenarios. Based on our 3DGait model, virtual samples can be
easily generated by its 3D descriptors. The model significantly and logically extends the 2D or 3DGait
data under various walking conditions for research.



CMC, 2024, vol.80, no.1 259

In the future, we will try to improve our gait sensory experiment and develop an automatic
approach to labelling more semantic 3DGait descriptors. This will enable our 3D-SGPE-LSTM
network to be trained with more targeted data to improve its precision and performance against
various walking conditions.
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