
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.047009

REVIEW

Open-Source Software Defined Networking Controllers: State-of-the-Art,
Challenges and Solutions for Future Network Providers

Johari Abdul Rahim1, Rosdiadee Nordin2,* and Oluwatosin Ahmed Amodu3,4

1Technology Strategy and Fundamental Planning (TSFP), Telekom Malaysia, Cyberjaya, Selangor, 60000, Malaysia
2Department of Engineering, School of Engineering and Technology, Sunway University, 5, Jalan Universiti,
Bandar Sunway, Selangor, 47500, Malaysia
3Department of Electrical, Electronics & Systems Engineering, Universiti Kebangsaan Malaysia,
UKM Bangi, Selangor, 43600, Malaysia
4Information and Communication Engineering Department, Elizade University, P.M.B. 002, Ilara-Mokin, 340271, Nigeria

*Corresponding Author: Rosdiadee Nordin. Email: rosdiadeen@sunway.edu.my

Received: 21 October 2023 Accepted: 08 March 2024 Published: 18 July 2024

ABSTRACT
Software Defined Networking (SDN) is programmable by separation of forwarding control through the centraliza-
tion of the controller. The controller plays the role of the ‘brain’ that dictates the intelligent part of SDN technology.
Various versions of SDN controllers exist as a response to the diverse demands and functions expected of them.
There are several SDN controllers available in the open market besides a large number of commercial controllers;
some are developed to meet carrier-grade service levels and one of the recent trends in open-source SDN controllers
is the Open Network Operating System (ONOS). This paper presents a comparative study between open source
SDN controllers, which are known as Network Controller Platform (NOX), Python-based Network Controller
(POX), component-based SDN framework (Ryu), Java-based OpenFlow controller (Floodlight), OpenDayLight
(ODL) and ONOS. The discussion is further extended into ONOS architecture, as well as, the evolution of ONOS
controllers. This article will review use cases based on ONOS controllers in several application deployments.
Moreover, the opportunities and challenges of open source SDN controllers will be discussed, exploring carrier-
grade ONOS for future real-world deployments, ONOS unique features and identifying the suitable choice of SDN
controller for service providers. In addition, we attempt to provide answers to several critical questions relating
to the implications of the open-source nature of SDN controllers regarding vendor lock-in, interoperability, and
standards compliance, Similarly, real-world use cases of organizations using open-source SDN are highlighted
and how the open-source community contributes to the development of SDN controllers. Furthermore, challenges
faced by open-source projects, and considerations when choosing an open-source SDN controller are underscored.
Then the role of Artificial Intelligence (AI) and Machine Learning (ML) in the evolution of open-source SDN
controllers in light of recent research is indicated. In addition, the challenges and limitations associated with
deploying open-source SDN controllers in production networks, how can they be mitigated, and finally how open-
source SDN controllers handle network security and ensure that network configurations and policies are robust
and resilient are presented. Potential opportunities and challenges for future Open SDN deployment are outlined
to conclude the article.

KEYWORDS
ONOS; open source software; SDN; software defined networking

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.047009
https://www.techscience.com/doi/10.32604/cmc.2024.047009
mailto:rosdiadeen@sunway.edu.my


748 CMC, 2024, vol.80, no.1

1 Introduction

The technology industry is experiencing a major revolution by moving towards a process that
switches from closed (or proprietary) to open source-based products and services. An open-source
survey done by BlackDuck in 2016 shows that more than 65% of companies adopt open-source
software and 67% see the value in open source by actively engaging in open-source projects [1,2].
Previous research works like [3–8] have shown that the level of adoption growth of open-source projects
has increased exponentially. The adoption growth is continuously increasing year by year. Without a
doubt, free and open-source-based technology has become the core of most technologies today. Major
software giants use and promote open-source technology including Google, Twitter, Facebook, and
other technology companies [1,2]. Some of the giant technology companies, such as Nippon Telegraph
and Telephone (NTT), Big Switch Networks, Nicira Networks, Red Hat, and Cloudera have gone
public in advocating the industrial focus on open source-based technology [1,2]. These companies
offer products and solutions based on open-source software and most of these companies play a big
part in developing and maintaining the open-source projects.

With the support and involvement of technology partners, new product innovations based on
open-source projects have significantly increased in respective communities. Commonly, in Informa-
tion and Communications Technology (ICT) industries, there is a trend of adopting open-source
solutions in the telecommunication and networking industry. Global Developer Survey 2016 by
GitLab revealed that open-source solution is the most selected tool for developers and companies are
using the solution as the core underlying technology [3]. Currently, open-source solutions are part of
the largest world network solutions. Therefore, Software Defined Networking (SDN) solutions have
become one of the fastest-growing solutions. Many software solutions practically applied in SDN
are offered by open-source controllers through open standards and platform neutrality. For the past
few years, tremendous growth has been observed in SDN-based open-source projects, including Open
Network Operating System (ONOS). In addition to ONOS released to cater for the SDN industry,
there are many other controllers such as the first OpenFlow Network Controller Platform (NOX),
Python-based Network Controller (POX), Floodlight, and OpenDaylight (ODL). ONOS is an open-
source solution designed specifically for the carrier-grade network while offering intelligence into
the software controller through open standard interfaces. Supported by dedicated developers and
technology leaders around the world, the ONOS project offers a distributed architecture of controllers
to accommodate the reliability and scalability of service providers’ networks. By centralizing manage-
ment network resources and a high-level abstraction layer with a standard Application Programming
Interface (API), the platform provides the ability to create network applications and services over open
hardware while provisioning resources through an open interface.

Although SDN is a relatively new concept in network architecture, it is being heralded as a fast
solution to all network infrastructure problems (see Fig. 1). The strengths of SDN are characterized
by the separation of control and data plane in the network, and enabling the network intelligence
into a centralized controller. The separation of software network logic and its infrastructure is
possible with SDN programmable control and management. The concept of network intelligence
of controllers is logically centralized and the abstraction of applications away from the network
infrastructure. The network devices are separated from the applications by the controller between
them. All communications between applications and devices must go through the controller. Similar to
an operating system, the SDN controller functions by facilitating automated network management,
empowering network administrators on network functionality, and presenting a unified view of the
network. In other words, SDN is not only one specific solution, technology, or product but a range
of advances in the next generation of networking. From the solid growth of open source solutions,



CMC, 2024, vol.80, no.1 749

there are quite many SDN controllers available in the open market with the latest innovation that
is reliable and service provider-focused. Open-source evolution enriches the SDN ecosystem and
plays a significant role in the openness of SDN controllers. There is a variety of open-source SDN
controllers, from POX to the latest popular ONOS, an open-source community hosted by the Linux
Foundation. Given the above, this paper provides a thorough review of the open-source solutions for
SDN controllers.

Figure 1: Global software-defined networking market by services, 2014–2024, based on [9]

1.1 Related Surveys

Some reviews have appeared in the literature related to the subject of open SDN controllers. For
in-stance, the authors in [10] briefly reviewed the architectural alternatives for open-flow and open-
source SDN controllers which include Beacon, Nox, Maestro, and Floodlight which support multi-
thread concepts. They briefly summarize the issues at different SDN layers such as storage, processing,
hardware platform, performance evaluation, programming language, network measurement and syn-
chronization, adaptive routing, ease of maintenance, security, etc. Then they briefly discuss different
SDN controllers (and their evolution) such as OpenDayLight, Ryu, Trema, OMNI, McNettle, and
SNAC while providing the application features of these controllers. They discuss the architecture of the
OpenFlow switch testbed and different SDN projects and tools, metrics, and their benefits concerning
the evolution of SDN controllers.

The authors in [11] provide a comprehensive survey where they discussed the difference between
traditional network architecture and SDN-based architecture as well as the best feasible SDN imple-
mentations and favorable SDN controller selection. In addition, criteria for performance assessment
of SDN OpenFlow controllers were discussed. Furthermore, research works on OpenFlow-based
controllers, issues regarding multifarious network conditions, metrics, scalability to network load,
and various topology designs were outlined. The theme of this work was to outline the research gaps
concerning the performance limitations of the controller while providing suggestions for an optimized
solution.

The intelligent control of how incoming packets are forwarded through forwarding devices when
they arrive in the network is carried out by the centralized SDN control plane which also provides
a bird’s-eye view of the entire network via a single central point. Three deployment models can be
considered to implement the control plane. A single-controller network configuration (physically



750 CMC, 2024, vol.80, no.1

centralized), a multi-controller configuration for network management (logically centralized but
physically distributed), and a hybrid co-existence of both traditional centralized and distributed
control. Ahmad et al. [12] studied these different control plane architectures while discussing SDN
controllers that support the discussed architectures. The authors analyze over forty SDN controllers
in terms of diverse performance measures such as how they scale (scalability), how reliable they are
(reliability), how consistent they are (consistency), and how secure they are (security). The mechanisms
for achieving these measures, as well as their merits and demerits, were highlighted. In addition,
the authors identified challenges and future research opportunities for diverse SDN control plane
architectures.

The authors in [13] presented a survey where they compared traditional networking and SDN-
based networking. The paper spans SDN controllers, how they are deployed in the current internet
paradigm, the OpenFlow architecture and configuration, SDN security (including threats and solu-
tions) rules, illegal access, attacks on IoT devices, and hardware trojan attacks. Also, the paper provides
details about different SDN approaches and how they differ or are similar to each other. Then the
authors discussed SDN applications (such as their use in rural environments, mobile device offloading,
upgrading of data centers, network virtualization, etc.) and benefits to provide readers with a wider
range of prospects while providing a summary of how SDN emulation tools and testbeds.

In [14], the authors conducted a review of the early works on network programmability into
the telephone network and its progress over several decades, particularly including rapid advances
in the later part of the 1990s while describing the most noteworthy works. The importance of the
architectural evolution and its influence on modern and next-generation computing was also detailed,
providing a critical perspective on how industry and academia have collectively failed to institute
network programmability long before. The arrival of the OpenFlow standard and the significance
of the architectural transformations are also provided.

1.2 Objectives and Contribution

In contrast to the aforementioned works, this paper presents two main contributions.

Firstly, as a background, a comparative and comprehensive study on open-source SDN controllers
such as NOX, POX, Ryu, Floodlight, ODL, and ONOS. It also reviews the architecture and evolution
of the ONOS controller. The review includes the deployed application and use cases based on the
ONOS controller. The advantages and limitations of open source SDN controllers are discussed,
exploring carrier-grade ONOS for future real-world deployments, ONOS unique features, and the
differences with other SDN controllers while identifying suitable choices of SDN controllers for service
providers. The study will also, identify significant parameters that can contribute to determining
the suitable Open SDN controller for their specific application and services. Also, it will identify the
characteristics and evolution of the carrier-grade ONOS controller that is built specifically for the
service provider environment.

Secondly, the paper discusses recent advances in the performance evaluation, monitoring,
topology, architecture, and security of open SDN controllers. In addition, the implications of the
open-source nature of SDN controllers, vendor lock-in, interoperability, and standards compliance;
real-world use cases and success stories of organizations implementing open-source SDN controllers
in their networks; how the open-source community contributes to the development and improvement
of SDN controllers are discussed as well as the key challenges faced by open-source SDN projects.
Similarly, considerations organizations should take into account when choosing an open-source SDN
controller for their specific networking re- requirements and goals are provided, and how emerging



CMC, 2024, vol.80, no.1 751

technologies like Artificial intelligence (AI) and Machine Learning (ML) impact the evolution and
capabilities of open-source SDN controllers. In addition, the challenges and limitations associated
with deploying open-source SDN controllers in production networks, as well as how they can be
mitigated, and finally, how open-source SDN controllers handle network security while ensuring
network configurations and policies are robust and resilient, are discussed.

Potential opportunities and challenges for future Open SDN deployment have also been high-
lighted. The organization of this paper is based on the structure in Fig. 2.

Figure 2: Organization of the paper



752 CMC, 2024, vol.80, no.1

2 Overview of the SDN Controller

The SDN controller plays a central role in the network as it enables programmable networking by
abstracting the control plane from the physical network devices. SDN controller consists of a series
of modules and plugins that can perform various network tasks and collect network statistics by
abstraction network layers. To market the solution while enhancing the capabilities and features of
the SDN controller, developers build their version of the controller with unique network algorithms
and preferred standards or protocols. The SDN controllers can either be proprietary or open-source
SDN controllers.

• SDN controller vendors: vendors build exclusive software and hardware solutions that are based
on commercial license and profit. Vendors-based SDN controller may be built upon open source
platform but the end product is highly fine-tuned by the vendor. The vendor provides stable
products and maintains high-quality control with tailored support. A few examples of vendor-
based SDN controller products are BluePlanet, Cisco WAE Juniper NorthStar, and Contrail.

• Open source SDN controllers: The open source SDN controllers are developed and maintained
by a distributed community of individual parties, organizations, non-profit foundations, or
developers who work together without being cost-oriented. Some of these projects are inherited
directly from proprietary solutions and others start as distributors of license-free packages.
A few examples of community open-source SDN controller projects are Ryu, Opendaylight,
and ONOS.

SDN controller solutions are grouped into two categories: proprietary and open-source-based.
Open source controllers have shown incredible progress in the SDN domain and present great
functionalities and potentials, including network virtualization and network function virtualization.
Open SDN controllers, however, have their constraints such as:

• No Warranty: The software license is open source which means that there is no warranty
provided. On the other hand, warranty protection is customarily provided for commercial
products.

• Intellectual Property Infringement: Since it is developed without the usual commercial controls,
theoretically, any developer can add infringing code.

• Incompatible or Uncompleted Projects: No motivation and clear objective that could drive
project delivery and provide continuous solutions.

• Security Issues: Open source code can be read and compromised in principle. It may not be
following security guidelines and lacks data encryption.

• Lack of Professional Technical Support: Business-level support expects 24/7 response time and
most of the open source solutions do not come with this unless the company subscribes to a
premium support package from the project leading company or a separate third party.

• Lack of Direction in Product Development: Some of the projects do not have a clear direction
and only focus on resolving the specific problem statement, which is not relevant to the latest
environment in the long run. Some of them are designed with limited features for training and
research purposes. NOX and Beacon, for example, are SDN controllers that are designed for
research purposes and are no longer maintained or updated [15].

• Higher Indirect Cost: There is a high indirect cost such as deployment, integration, and
maintenance with different vendors

• Not Entirely Free: Some of the features (limited or full capabilities) require a paid version.
• High Learning Curve: The learning curve is higher as the solution provides the required multi-

skills and good technical knowledge. Proof of concept and simulation can be performed without



CMC, 2024, vol.80, no.1 753

limitation as no license is required. For example, a list of ONOS released can be downloaded
from the public repository at any time without any restriction. A specific release can be tested
based on the features required.

• Lack of Proper Documentation and References: Open source packages are released regularly
with enhancement features or patches released for bug updates. Each component resource or
a guideline of installation must be documented for ease of future reference. These activities
require a dedicated team for management and control. Proper and updated documentation is
also required in any open- source project.

Most SDN users are still thoughtful of open-source software-based networking solutions. Mean-
while, quite several SDN vendors are pushing for commercial SDN that is simpler to realize and
manage. This is not always true. Commercial SDN is a closed-source arrangement that protects the
products and is keen to maintain control over the solution and user experience. Most of the commercial
solutions are distributed without the source code, and may not be fully interoperable with other
network solutions and network devices.

Open source controllers enable a modular-based framework composed of plug-in modules that
can dy-dynamically carry out various tasks and promote network function virtualization and cloud
computing readiness. Programming code is validated and tested hence increasing confidence in using
the SDN controller open source solution. The numerous open-source SDN controllers available
to the user are different from each other in several aspects. Open source, open standards, and
open protocols are essential to SDN. Networking is basically defined as an activity that connects
related systems. Thus, certain criteria must be outlined to administer this communication. In any
network infrastructure, network traffic is managed and controlled by closed proprietary hardware
that runs its network functions through proprietary software and some are partly operated based on
a combination of proprietary software and open-source software. Through APIs and open standards,
SDN restrictions no longer exist. As APIs for business applications and services become more
common, other opportunities such as Network Function Virtualization (NFV) of the networking
infrastructure have been made possible by SDN. SDN controllers are able to integrate cloud-based
services and together catalyst more commodity hardware and more open software through network
function virtualization capabilities. Most of the open-source SDNs listed below work well with NFV
environments, for example in the data centre and cloud use cases [16–18].

Based on a report made at the 2016 Open Session Summit in Santa Clara, CA, open sources impact
the telecommunication and network industry. Even at the previous meeting, the focus was more on the
areas of SDN. Among the key indicators of increasing open source impact are the level of adoption
and development of new open source-based products. Another is how companies that formerly utilized
the resources now turn to contributors for the development of projects which eventually became the
basis of a global initiative to the success of great technology companies.

There are many open-source planning and activities focused on building a controller SDN. These
activities are supported by many parties and one of them is Open Networking Lab (ON.Lab), a Non-
Profit Organization (NGO) founded by professionals from Stanford University and UC Berkeley.
ON.Lab runs many research projects and one of them is ONOS. ONOS is built on open source
specific for service providers. Another open-source activity focusing on building SDN controllers is
the OpenDayLight Project (ODL). Hosted by the Linux Foundation, ODL, established in 2013, aims
to provide open-source frameworks and an SDN platform set up with a solid foundation for NFV.

Both ONOS and ODL projects are hosted by the Linux Foundation, the non-profit organization
dedicated to the development of ecosystems through open source to advance technology development



754 CMC, 2024, vol.80, no.1

and in-increase usage rates in the industry. The great benefits to the success of SDN-based projects are
the ability to join and collaborate with the open source community, leveraging on the entire community
to build better products and bring them to market faster. For example, there is tremendous momentum
behind SDN projects like ONOS. SDN acceptance can be achieved with a deep interest in SDN’s
open-source project. In line with that, in 2015, the Open Network Foundation (ONF) introduced
OpenSourceSDN.org (accessed on 10/01/2024) to support and develop a more comprehensive open
SDN solution. Like open-source organizations such as ONOS, ODL, ON.Lab and Open Platform for
NFV (OPNFV), close collaboration with OpenSourceSDN.org in launching missions and objectively
expanding SDN-related businesses. Many community organizations are trying to figure out what
will ultimately be the basis for moving forward and leading to success. Open source has become
the dominant model for how the world’s SDN technology is built and operated. Although the
above-mentioned comparison deems open-source controllers to be a more suitable choice than the
commercial proprietary-based platform, providers are still divided regarding whether to deploy open-
source solutions or proprietary-based platforms.

Many surveys and research have been performed to understand why the open-source solution is
becoming popular and good choice [19,20]. The survey of Gigaom Research [21] reported that the
majority of the 600 survey respondents will have deployed SDN solutions for the next 1–3 years.
According to research firm HIS in 2016, more than 75% of operator respondents have deployed or
will deploy SDN in 2016–2017 [22]. These aggressive timelines reflect high hopes for SDN solutions
and also closely related open systems and open-source technologies. The findings also show that
network operators use a variety of suppliers to avoid vendor lock-in. Even though commercial or
proprietary SDN controller is still the most accepted solution, many deployments and proof of concept
have demonstrated that open-source SDN solution has the capabilities and technologies and has
matured into something even more powerful and useful. Table 1 compares open source and vendor-
based/proprietary SDN controllers. In the next sections, open-source SDN controller platforms will
be examined.

Table 1: Comparing vendor-based/proprietary and open-source SDN controller

Open Source SDN controller Vendor/Proprietary SDN controller

Vendor-lock in A neutral choice with no favouritism
of platform and vendor.

Strong attachment to vendor’s
technology and solution

Free solution and very minimal cost
for community fee membership if
required.

Costly and each service comes with a
rate per unit.

Cost No cost of licenses, software upgrades
and patches.

Upgrading, customization, and
integration work would require specific
costs and needs to renew high
operation and maintenance costs.

Minimum operating cost. Additional services, modules, and
upgrades will cost more.

(Continued)

https://opensourcesdn.org/lander
https://opensourcesdn.org/lander


CMC, 2024, vol.80, no.1 755

Table 1 (continued)

Open Source SDN controller Vendor/Proprietary SDN controller

Limitation/
Restriction

No restriction. Close architecture and enhancement
/tuning/hardening that do not work
well with different platforms or
technologies.

Ability to customize based on actual
business needs Open architecture and
interface concept.

Source codes are not shared.
Limitations or restrictions also may be
due to licensing that must be
purchased.

Support Public community. Strong support from vendors based on
what has been purchased or
maintenance job scope.

3 Open Source SDN Controllers
3.1 Architecture of the Open Source SDN Controller

SDN architecture consists of three layers: application (application layer), control plane (controller
layer), and data plane (network/data layer). The first one is an application layer where software
programs reside to perform network behavior tasks. The second is the control plane in charge of
the determination of an optimal path for data flow, and responsible for making network forwarding
decisions. Routing or data forwarding does not involve the management plane. The network adminis-
trative information oversees network programmability and administration duties such as OpenFlow,
NetConf, and BGP [23,24]. The third plane known as the data plane turns network devices into just
simple forwarding devices while providing programmability instead of configuration mode. Network
programmability designed and built by SDN refers to the potential to initialize, change, control,
and manage network behavior dynamically via open interfaces. As shown in the figure below, SDN
controllers are connected through northbound interfaces (NBI) and southbound interfaces (SBI).
Fig. 3 displays the SDN in high-level architecture. This section will provide a general overview of the
Open Source SDN Controllers.

3.2 Open Source Solutions

There are several SDN solutions have been developed for the adoption of open-source SDN
controllers [25–27]. Among these, are NOX, POX [28,29], Ryu [30], Floodlight [31], OpenDaylight
[32] and ONOS [33,34]. A comparative study is performed to explore the available open-source SDN
controllers and understand why ONOS controllers could be the highest choice of service providers.
Listed below are free and open-source SDN controllers. Here we will briefly discuss each of these
controllers. Fig. 4 shows the five different categories of open-source SDN controllers, and Fig. 5
illustrates their APIs.



756 CMC, 2024, vol.80, no.1

Figure 3: Layered model and architecture

Figure 4: Open source controllers



CMC, 2024, vol.80, no.1 757

Figure 5: SDN controller API

3.2.1 NOX

NOX was the first Open Flow-based SDN controller [28], initially developed by Nicira and later
became open source in 2008. It then expanded and was supported by ON. Lab activity at Stanford
University, UC Berkeley and ICSI. In 2011, the people responsible for constructing the frame of
SDN collectively established the Open Network Research Center (ONRC) and ON.Lab to concentrate,
improve, deploy, and support open-source SDN tools and platforms. NOX has two versions:

a) NOX Classic: The version that has been available since 2009 under GPL. It is a network control
platform based on C++ and supports Python. However, its line of development has been
suspended.

b) NOX: The “new NOX.” This version only supports C++ with less network application but it
has greater speed and provides a better codebase compared to NOX-Classic.

However, NOX has its limitations, for example, a new platform, POX had to be created to address
these problems. Known as the younger sibling of NOX, the POX controller is a pure Python version
of NOX [28].

3.2.2 Ryu

Ryu (which means dragon in Japanese) is built on a component-based SDN framework, Ryu, flows
and a school of thought). Ryu is fully written in Python and supported by NTT labs [30]. Its packages
with software components and well-defined API make it one of the popular SDN platforms used by
the developers. It supports organizations to customize deployments to meet their specific needs. On
the Southbound protocols, Ryu supports multiple protocols as plugins, e.g., OpenFlow 1.0 to 1.5,
Netconf, OFconfig, etc. In addition, Ryu also supports Nicira Extensions. Maintains and manages
by an open community and hosted on GitHub, Ryu source codes are freely available and usable. The
deployment of Ryu as a network controller is also supported by OpenStack, an open-source cloud
operating system. This support is positive for Ryu as OpenStack can control the computing, storing,
and networking of a pool of hardware resources.

3.2.3 Floodlight

The Floodlight Controller is an Open SDN Controller. It was originally developed at Standford
University and UC Berkeley [31]. It now continues to be supported by a community of open-source
developers including experts from Big Switch Networks. Floodlight works with OpenFlow to manage
data flow by allowing the SDN controller to instruct the forwarding plane to modify the behavior



758 CMC, 2024, vol.80, no.1

of network devices. Floodlight is designed to work with routers and physical and virtual switches that
make up the forwarding plane. It is also very flexible since it can work in a variety of environments, even
supporting network groups that are a hybrid of OpenFlow compatible and non-OpenFlow switches.
As it is written in Java, Floodlight adapts easily to software and develops applications. The controller
may be freely used, reproduced, modified, distributed or sold as Floodlight is released under a free
and open-source software (FOSS) licensing agreement from the Apache Software Foundation (ASF),
Apache 2.0. The software controller is also available under commercial packages.

3.2.4 OpenDayLight (ODL)

In 2013, the OpenDayLight (ODL) project was launched as an open-source project to further
enhance SDN [32]. It is hosted by the Linux Foundation with a framework supported by the industry
and led by the community for the ODL controller. It was renamed as ODL platform, and opened to
end-users and customers, providing a shared platform for those committed to SDN goals to find new
solutions by working together. Apart from Beacon and Floodlight, ODL is also a controller based
on the Open Service Gateway Initiative (OSGI) architecture. OSGI technology is an architecture for
modular application development that allows the dynamic component system of Java. For instance, it
supports applications running in the same network system as the controller. ODL is an open platform
for developers that can be utilized by different projects and communities to contribute, add more
features to it, and construct commercial-based products. It is a collaboration of vendors and projects
to encourage innovation and a transparent approach. With its ability to support other open standards
such as 12RS and NetConf besides the Open Flow protocol, it has added flexibility as its feature.
Many SDN platforms such as Brocade are based on the ODL platform. ODL has the opportunity to
progress further as it has extensive support from vendors such as Big Switch and Cisco. In addition
to supporting the open protocol of OpenFlow, OpenDayLight also supports and operates other
southbound protocols such as Border Gateway Protocol Link-State (BGP-LS) and Path Computation
Element Protocol (PCEP).

3.2.5 Open Network Operating System (ONOS)

The ONOS is driven by Open Networking Lab (ON.Lab) as an open-source SDN. The project
aims to construct an SDN operating system for communications service providers that has scalability,
high performance and high availability. ONOS programs software or modules controlling and
managing network components, including network elements such as switches and links. ONOS is
adopted as a distributed system across multiple servers that provides fault tolerance while forming
clusters for high resiliency. Thus, server failure or hardware or software upgrading will not impact
operation. The ONOS kernel and its components are written in Java and deployed over Karaf OSGI
container. Similar to ODL, OSGI components in Java ensure the modules in ONOS can work together
and subsequently operate interchangeably in a single Java virtual machine. Furthermore, as it operates
in the virtual machine, ONOS runs on several underlying OS platforms. ONOS was released as an
open-source project on 5 December 2014, focusing primarily on communication service providers to
be examined, evaluated, and improved by the SDN community [33,34].

4 Comparative Study of SDN Controllers

Every open-source controller provides manageable flow control that is able to practically deliver
automated policy control through software software-defined network environment [26–28]. Table 2
provides a detailed comparative study between Nox/Pox, Ryu, Floodlight, OpenDayLight (ODL),



CMC, 2024, vol.80, no.1 759

and Open Networking Operating System (ONOS), Table 3 describes the key features of ONOS while
Table 4 provides a comparison between different ONOS releases & the supported functions.

Table 2: Comparative matrix of SDN controller

NOX/POX RYU Floodlight OpenDaylight ONOS

Original
developer

Nicira
networks

NTT Big switch
networks

Linux
foundation

Open
networking
lab (ON.Lab)

First release 2008/2012 2012 2012 2014 2014
Language
support

C/C++ &
Python

Python Java Java Java

OpenFlow
support

� � � � �

OpenFlow
version
supported

1 1.0, 1.2, 1.3,
1.4, 1.5, Nicira
extensions

1.0, 1.2, 1.3, 1.4 1.0, 1.2, 1.3,
1.4, 1.5

1.0, 1.2, 1.3,
1.4, 1.5

Carrier Grade
(Cluster)

– – – – �

NFV Support � � � �
REST API � � � � �
Traffic
Engineering

– � �

Load
Balancing

� – � � �

Network
Monitoring

– – � � �

Web GUI – – � � �
NBI � Openstack

Neutron
plug-in, REST

Openstack
Neutron
plug-in, REST

� �

SBI � OpenFlow,
NET-CONF,
OF-Config,
OVSDB,
XFlow

� OpenFlow,
NET-CONF,
OF-Config,
OVSDB, LISP,
PCEP, BGP,
SNMP

OpenFlow,
NET-CONF,
YANG,
OF-Config,
OVSDB,
LISP, PCEP,
BGP, SNMP,
P4,
RESTCONF

(Continued)



760 CMC, 2024, vol.80, no.1

Table 2 (continued)

NOX/POX RYU Floodlight OpenDaylight ONOS

Documentation
and learning
curve

Low � Medium � High � � High Well
documented.

�High Well
documented.

Blogs, web
portals, forums,
subject groups,
summits,
tutorials.

Blogs, web
portals,
forums,
subject
groups,
summits,
tutorials.

Topology
discovery
Learning
switch
Network-wide
switch

Discovery,
Topology,
Authenticator,
Routing,
Monitoring

– – – Global
Network
Topology
View,
Authentica-
tion, LB,
DPI,
Routing,
Monitoring,
Intent
Framework
and Global
Network
View.

Network level Enterprise Enterprise Enterprise Enterprise
(Data Center)

Service
Provider
(Telcos).

Table 3: ONOS key features

Features Description

Distributed core The SDN operating system working in a cluster is aimed to meet the
carrier-grade requirement as follows (i) agility, (ii) resilience, (iii) high resiliency,
(iv) high performance, (v) flexible scalability through multi-applications and
capacity demands.

(Continued)



CMC, 2024, vol.80, no.1 761

Table 3 (continued)

Features Description

Northbound
abstraction/APIs

The northbound interface allow a component in the network to connect and
communicate with higher-level components. The interface is considered by
some experts as the most critical since it will influence the applications that can
be supported by the SDN. As the SDN needs to support a wide range of
applications, some APIs will be placed in the network to cover the job, due to
the ability and limitation of each API. Applications addressed by the
northbound abstraction include management solutions, security and
application orchestration across cloud resources. Southbound
abstraction/APIs: A southbound API enables a component to communicate
with a lower-level component such as physical and virtual switches, and routers.
OpenFlow southbound interface which has outlined the standard protocol of
SDN between the data plane and the forwarding plane. The interface helps the
network to adapt itself to the real-time demands of business. Cisco and OpFlex
are also southbound interfaces employed by users.

Table 4: Comparison between different ONOS release & the supported functions

Version ONOS release Core Northbound Application/Use
Cases/GUI

Southbound

1.12.0 Magpie Improved failure detection
for faster mastership election
times
Migration of all distributed
primitives to Atomix

gRPC Brigade
Added

New Use Cases
Simple Fabric:
Intents-based leaf-spine
fabric application for
physical switches.
GUI Brigade
Application View filter
Added Details Panel for
Ports, Meters, and
Groups views
Network Virtualization
Brigade
Virtualization
core-distributed virtual
flow rule store added
OFAgent handles
PORT_MOD,
FLOW_MOD,
GROUP_MOD,
METER_MOD
messages Log filtering
per OFA- gent tenant
capability is now
available

Packet Optical
Additional device
support by Equinix,
Polatis, OpLink

Raft log compaction
optimizations
Offline backup/restore

LinkService
HostService
MeterService
ComponentConfig
Service

Support for
PowerConfig API on
Polatis device REST
API to allow
applications outside
ONOS to access
PowerConfig API
Ciena transponder
supports more
API/Behaviours &
protocol options

RegionService
ApplicationService
Support gRPC service
registration with a static
binding mechanism

(Continued)



762 CMC, 2024, vol.80, no.1

Table 4 (continued)

Version ONOS release Core Northbound Application/Use
Cases/GUI

Southbound

1.11.0 Loon Re-architected Raft
implementation
Per-primitive sessions
Simplified log compaction
Multi-version serialization
Performance tests added
Fault injection/linearizability
verification tests added
New flow rule store
Backed by partitioned
consistent primitives

gRPC Brigade (ONF,
ZTE, Inspur) First
services merged
Structure for gRPC
system and naming
conventions established
Translation system
improved

GUI Brigade
(Villa-Tech, ONF)
Added new developer
tools for GUI
development NPM +
Gulp Linting Code
Coverage Bundled JS
and CSS Improved load
performance by
reducing the number of
requests made Added a
few more GUI
diagnostics tools, such
as port filtering
+ 19% code coverage
from tests Ported some
Topology functionality
to Topology 2 Updates
to the Flow View
Enable table column
reordering Show
Application ID

Dynamic Configuration
Brigade (Huawei, NEC,
ONF)
P4 Brigade (ONF,
POSTECH, NCTU,
Barefoot, AT&T)

1.10.0 Kingfisher Virtualization improvements
Support of flow objective
and mastership services for
virtual networks
Performance improvements

RESTCONF adapter
for YANG
Â· Intent Framework
improvements
Intent framework and
VPLS support for
OFDPA pipeline (e.g.,
Accton switches) New
intent installer to let
users create their intent
installer logic and plug
them in at run-time
Domain intents:
extension of Intent
Framework to generate
domain intents
Route subsystem
enhanced to support
multiple routes per
prefix

GUI
Added packets/second
mode to traffic
monitoring
Dark theme reinstated
Regions/layouts
enhancements-layouts
can use grid or geo
backgrounds for
example
Packet Optical
OpenROADM device,
network, and service
support
Full protection behavior
incl. hardware-based
demonstration
Datacenter/SONA
Support for VLAN-
based virtual network
provisioning
Unit tests and support
of OpenStack Tempest
API
vRouter
Enable multiple FPM
connections for HA
Added support for
multiple control plane
redi rects for multiple
Quagga routers

NETCONF adapter for
YANG
Apache Mina library
for NETCONF
OpenFlow 1.4 support
LISP subsystem
enhancements for
mapping services

(Continued)



CMC, 2024, vol.80, no.1 763

Table 4 (continued)

Version ONOS release Core Northbound Application/Use
Cases/GUI

Southbound

1.9.0 Junco Fabric Enhancements,
IPv6 segment routing,
Virtual Private Wire Service
(VPWS)
Framework
HA enhancements
Kafka now uses HA
primitives
Virtualization support (to
virtualize ONOS instances)

Optional Guaran-teed
Bandwidth Allocation
Protection Specification
Shared resource
modeling
Hashing support for
ECMP traffic
distribution

Scalability
improvements
Regionalization support
vRouter IPv6 support

YANG Models.
Enhance YANG
Compiler for
auto-generation of
JAVA as per YANG.
YANG Runtime for
automation of CODEC.
XML/JSON
Serialializers to adapt
Models.
Dataplane
Enhancements
New TL1 southbound
for Lumentum
WaveReady

1.7.0 Hummingbird – TE Topology NBI
Implement RES-CONF
client and server

– –

1.4.0 Emu Multicast, flowrule store
persistence

Resource reservation,
gRPC, security, iperf

New overlays, samples,
GUI for archetypes, doc

NetConf/Yang, optical
support

1.3.0 Drake TLS for security, metering,
multicast

Login authentication,
basic virtualization

Topology overlays, link
highlighting

OVSDB, PCEP,
VXLAN,
NetConf/Yang

1.2.0 Cardinal Dropped Hazel-cast, dist
primitives

MPLS+tunnel
intents,
performance
Flow objectives

Multiple GUI view TL-1, NetConf

1.2.1
1.2.2
1.1.0 Blackbird Events, RAFT

maps
AIF, clustering
app deployment

Modularized GUI Multi-table
Open-Flow

1.0.0 Avocet Distributed state,
management for scale,
performance, HA

Basic App Intent
Framework (AIF)

Basic GUI component
for developer and user

OpenFlow support

4.1 Origin and Community Support

The first Open Flow SDN controller was developed by Martin Casado, Nick McKeown and
Scottt Shenker under a project at Nicira Networks in 2007. The main focus of Nicira was on SDN
and network virtualization. NOX has been the foundation for numerous research projects in the early
growth of SDN research ever since it was made known to the research community in 2008. POX, a
NOX-based controller, supports Python together with C++. Ryu, an open-source SDN framework,
was developed and supported by NTT Labs. Similar to other open-source controllers, RYU also
enables the community to develop management and network applications with the existence of its well-
defined APIs. As one of the earliest SDN controllers, Ryu has been widely used by various stakeholders
from universities and industries including SDN application developers, network device developers,
and network service providers. Apart from being employed by the NTT cloud data centre, the NSA
is also utilizing the Ryu SDN controller to track and control its network. Floodlight is a Beacon-
based OpenFlow controller supported and developed by a community of open-source developers and
engineers from Big Switch Networks Inc. that initially began at Stanford University and UC Berkeley,



764 CMC, 2024, vol.80, no.1

released under an Apache 2.0 license in January 2012, Floodlight is freely downloadable to catalyse
third-party application development around it.

In April 2013, OpenDayLight was announced by the Linux Foundation as an open-source project
that encourages openness of the SDN platform and enables external application design and devel-
opment. The OpenDayLight Project was developed by engineers from Cisco, HP, Juniper Networks,
IBM, RedHat, Microsoft, Ericson, and VMWare. On 5 December, 2014, the Open Networking Lab
ON.Lab, AT&T and NTT Communications together with their industry partners released the ONOS
source code to initiate the open source community. ONOS later joined the Linux Foundation, as with
most open source projects, has a GitHub page where collaborators can contribute changes to the code.
The ONOS community has seen a steady growth in membership which now includes developers and
users from Google, AT&T, Verizon, NTT, Ciena, Fujitsu, and Huawei. ONOS is distributed under
the Apache 2.0 license. Tables 4 and 5 compare between different ONOS releases and their supported
functions.

Table 5: ONOS core

Release Remarks

Avocet First release carrier-grade features (distributed architecture, scalability, high availability
and high-performance features).

Blackbird Synchronization and redundant state across a collection of devices were maintained by
including an additional RAFT and network mapping capabilities were more consistent.

Cardinal The core was strengthened. Primitives and APIs were created to facilitate other services
and apps to utilize the distributed state management in order to meet carrier-grade
requirement.

Drake This release provides IGMP snooping with PIM-SSM and multicast for-ward app,
security enhancement of TLS, and OpenFlow QoS meter support to collect devices or
port information.

4.2 Architecture

NOX/POX architecture consists of two main components: core and sub-components. The core
component provides helper methods such as network packet process, threading, and event engine.
It, also, supports the OpenFlow APIs for interaction with OpenFlow switches and I/O operations
support. The in-built component of NOX makes up the middle layer. The connection manager, event
dispatcher, and OpenFlow manager are self-explanatory. The directory structure is examined by the
dynamic shared object (DSO) deployer for any components being positioned as DSOs. Cooperating
components generally make up the NOX applications that provide the required functionality. In brief,
a component captures the specific functionality that is accessible to NOX. RYU, the component-
based SDN, provides software components with well-defined northbound Python APIs and supports
southbound OpenFlow protocol.

The core architecture of Floodlight is modular and includes topology, device and web manage-
ment, path computation, OpenFlow counter store, and state storage abstraction. These controller
components load as a service with an interface that exports state, and provides extensible REST APIs
and event notification systems through applications. OpenDayLight architecture is constructed based
on the Open Services Gateway Initiative (OSGi), a modular development framework where the entire



CMC, 2024, vol.80, no.1 765

platform is constructed of modules that are loosely coupled. OpenDayLight layered architecture is
defined by clear integration points and APIs, allowing end users and networking vendors to explore
the powerful SDN potential of ODL.

Networking technologies and hardware from diverse vendors can be leveraged using ODL as
ensured by the southbound interface to ODL. On the other hand, end users and other cloud technolo-
gies such as OpenStack are provided with APIs by the northbound interface. ONOS architecture tiers
are constructed of the core layer, northbound abstraction and southbound abstraction layer. It was
specifically created as a response to carrier-grade networks’ demands of performance, high availability,
and scalability, with well-defined abstractions.

4.3 OpenFlow Protocol Support

Most of the SDN controllers in the market employ the OpenFlow protocol. The protocol is
applied by the SDN to configure network devices and select the best path for the data packets to
follow. NOX is the original OpenFlow controller that can control and manage OpenFlow devices in
the network. It includes sample applications that are written in Python and C++. Ryu is another
open-sourced controller that supports OpenFlow protocol. The Floodlight controller which is con-
structed based on the Beacon controller was released by Big Switch and aims to be employed by
production enterprise networks. Built on the OSGI framework, Beacon is one of the earliest Java-
based OpenFlow controllers. Applications developed on this platform can be regulated at run-time
without disconnecting switches. The OpenDaylight controller (ODL) which the Linux Foundation
hosts supports the OpenFlow protocol besides supporting other open SDN standards. ONOS supports
multiple southbound protocols including OpenFlow 1.0. Earlier ONOS versions supported the basic
functionalities of OpenFlow which was only a southbound protocol at that time.

4.4 Programming Language

The programming language employed by NOX is C++ while POX uses C++ and Python.
Floodlight, OpenDayLight, and ONOS are Java-based while RYU is written in Python.

4.5 Operating Support System

The Linux operating system is applied by NOX/POX, RYU, Floodlight, OpenDayLight and
ONOS. The Java-based project spearheaded by the Linux Foundation aims to accelerate the adoption
of SDNs such as ODL and ONOS. The open-source Linux-based SDN can offer full control, and
software support with extra tools for advancements and deployment.

4.6 NFV Support

Network Function Virtualization (NFV) aims to enhance the software-based networking
approach similar to SDN. Floodlight, OpenDayLight, and ONOS are open-source controllers that are
compatible with the NFV platform. GS NFV-EVE 005 report has called for the positioning of SDN
controllers in the ETSI NFV architectural framework. Project CORD (Central Office Re-architected
as a Datacentre) has merged NFV and ONOS SDN controllers.

4.7 Carrier-Grade Support

ONOS is the first SDN controller that meets carrier-grade requirements such as throughput,
availability, and scalability. ONOS is the core engine of many commercial-based SDN controllers.
ONOS carrier-grade controller is motivated by the high performance, scalability, and availability



766 CMC, 2024, vol.80, no.1

requirements. Driven by ON.Lab with a healthy community of users and vendors that work together
to develop, deploy, and support the platform. Despite the new open-source controller, ONOS
documentation is well-documented and regularly updated with new information. A vast range of
instruments to develop a new application based on the controller are provided by ONOS. Like any
other controller ONOS support OpenFlow versions 1.0, 1.2, 1.3, 1.4, and 1.5.

To communicate with network infrastructure, ONOS supports multiple southbound protocols
including Open-Flow, NetConf, and SNMP. By exposing northbound APIs and unique service
abstraction of the application intent framework, ONOS makes it open for the needs of multi-use-
cases services, application development, policy injection and other operations. In ONOS, unlike
other controllers, a distributed architecture is designed for clustering targets for scalability, HA,
and performance, this is to meet mission-critical service providers’ network demands. ONOS is
globally deployed in Research and Educational Networks (NRENs) [35,36]. Service providers like
Huawei deployed ONOS in the China Unicom network [37]. In AT&T, ONOS was delivered as part
of the deployment of Central Office Re-architected as Data Center (CORD) and Mobile-CORD
solution [38].

5 Open Networking Operating System (ONOS)

ONOS is a network operating system that was specially built for service providers. The mission-
critical and complex nature of the service provider networks requires a control platform that is highly
reliable, scalable, and has proven capabilities. It provides well-defined network abstraction and APIs
to enable application development and interaction with network elements. Furthermore, it enables
operators or service providers to develop and build production SDN solutions. Thus, ONOS offers an
open-source network operating system, and carrier-grade SDN control plane [33,34].

5.1 ONOS Evolution

On 5 December, 2014, ONOS launched its first open-source release known as Avocet version
1.0.0. Releases and development of ONOS follow a time-based release cycle and a new release has
been issued every quarter of the year. Blackbird version 1.1.0, which is the second release of its
open-source SDN controller, was introduced on 17 March, 2015. Its main goal was to improve the
performance and scalability characteristics of ONOS, specifically in the areas of intent flow operation
throughput and latency. This release was developed with several performance improvement targets
which included subsystems, APIs, cluster application development and management, enhanced map
functionality based on RAFT, device driver framework, GUI interface, and IPv6 support. With
enhanced performance, ONOS is able to achieve the high target of million flow operations of less than
10 ms latency while maintaining a diversified range of operations and network configurations through
intents and flow rules. This performance study demonstrated how ONOS open-source SDN controller
can be scaled out as required to deliver high network resiliency while maintaining high performance
and availability.

ONOS has seen thirteen major releases and thirty different versions since its first release in 2014.
Over four years later a lot has changed, ONOS open source SDN solution has gained many new
features and functions in its core, interfaces level, subsystem, applications, API, and devices. Each
ONOS release made a number of significant advancements and optimizations in many areas, the per-
formance and scalability elements have continued improvement in subsequent releases. Furthermore,
the latest Magpie release version 1.12.0 shows that ONOS can react to a topology event latency for
example switch failure in less than 10 ms compared to 10.4 ms in the case of Loon release, and the



CMC, 2024, vol.80, no.1 767

intent operations performance has increased from 3K events/s in Loon to 5K events/s in Magpie while
maintaining 3 million flow operations per second. The details are shown in Tables 4 and 5.

The growth of ONOS development and continued enhancement of the project has seen significant
momentum in platform features. The iterations of ONOS release from the first release of Avocet till
the latest Magpie. A comparison of four ONOS releases, Avocet, Blackbird, Cardinal and Drake are
provided in Table 5.

5.1.1 Core

Use cases as specified by service providers in supporting core architecture, new applications, and
Proof of Concepts.

5.1.2 Northbound

The northbound interface refers to the API’s ability of an ONOS controller to create communi-
cation with the application layer and coordinate to program the network and request service from it.
These are some of the values of SDN controller northbound APIs that are able to support various
applications. These APIs are also able to establish connectivity with the NFV platform, for instance,
OpenStack or any cloud management service. The most popular northbound interface protocol is the
REST protocol. To enable interface interaction to deliver service deployment. This involved interface
with other protocols, and applications, and improved performance. Four improvements of the ONOS
Northbound API are compared in Table 6.

Table 6: ONOS Northbound API

Release Remarks

Avocet Build with Application Intent Framework (AIF) subsystem for global policy controls
which enables applications to define it requires resources and complete sys tem tasks.

Blackbird The intent framework for ONOS was extended and upgraded with more cluster features
and application deployment capabilities. Improved performance with new metrics SDN
test methods.

Cardinal High performance was delivered by (i) MPLS and (ii) enhancement tunnel intents
support, network conflict resolution capabilities, and flow-objective subsystem in the
distributed core for device-agnostic SDN deployment.

Drake Login authentication and virtualization basics were added. To improve and simplify the
setup of cross-domain constructs or flows, a new northbound intent abstraction was
introduced. This also simplifies specific domains with an intent.

Emu The enhancement continues in resource reservation API and supports a new type of
resource, integration of Yangforge for Yang-based model development. Emu release also
supports gRPC, dynamic REST interfaces, and bandwidth meters mechanism (SBI).
Additionally, it also supports RIB multicast APIs and new intent domains (IETF’s
Service Function Chaining) protocols.

5.1.3 Southbound

The southbound interface is used to communicate and enable programmable control according to
real-time demands and requirements between the ONOS and network elements over the network.



768 CMC, 2024, vol.80, no.1

Changes to forwarding rules in the data plane were made possible through exposed APIs of the
network elements. The network elements could be routers, switches, servers, etc. The most popular
SDN protocol for southbound APIs is OpenFlow. Other southbound interface supporters of ONOS
are NetConf and OVSDB. L3 protocols of OSPF, BGP, and IS-IS which serve as south-bound
interfaces are introduced to support hybrid networks or to maintain traditional networking [30].
Southbound capabilities include (i) command and protocol interface competencies supporting other
open-source distributions, (ii) protocols, (iii) standards and applications as well as security, (iv)
OPNFV, (v) OpenStack, and (vi) the ability to model external traffic and new services. A summary of
ONOS Southbound API is provided in Table 7.

Table 7: ONOS Southbound API

Release Remarks

Avocet ONOS avocet release supports OpenFlow version 1.3 (OF 1.3). The first release also
supports other SBP protocols (via plugins).

Blackbird “Multi-table support is allowing capabilities to handle IPv6 traffic, enhance
multi-path and segregation of logical events while improving table pipeline in
production ASICs based networking.”

Cardinal “Additional SBI added in this release includes TL1, PCEO, and NetConf. This newly
added interface is also to support solution POCs.”

Drake “Drake releases support path computation and more functionalities in PCEP rules.
TLI networking API is further refined by adding OVSDB, VXLAN, and device
configuration capabilities.”

Emu Topology information from the network was able to be collected and made available
to other apps by adding a new plugin to the ONOS controller (Border Gateway
Protocol with Link State Distribution extension (BGP-LS)). Further introduction of
ECI in ONOS controller improves optical applications of supporting ODU
multiplexing and cross-connect services through SBI based on ONF standards.

5.1.4 Graphical User Interface (GUI)

ONOS GUI focuses on the ability to visualize the network and device’s state together with other
information such as traffic flows and policies. Different releases related to ONOS GUI are summarized
in Table 8. ONOS GUI includes:

Table 8: ONOS GUI

Release Remarks

Avocet Provide a single-view GUI focusing on the network topology and basic end-to-end
flow/traffic information.

(Continued)



CMC, 2024, vol.80, no.1 769

Table 8 (continued)

Release Remarks

Blackbird “Upgrade user interphase (UI) framework to AngularJS framework. Enhancement of
topology view with the capability to display additional port numbers on highlighted
links. Furthermore, a device view and information were added in the Blackbird
release. To provide more UI content in ONOS, a UI extension mechanism was
applied to have the capabilities to enrich content into the UI.”

Cardinal “All the POCs (Multi-layer Network Control (MLNC), the SDN-IP peering
ap-plication, Internet2’s real-world deployment showcase, and CORD and VNFs
(vCPE, vOLT, vBNG) at the central office) at ONS2015 were supported by GUI.
Information on the hosts, links, intents, applications, and instances are also
populated as flows, ports, and groups per device. The new toolbar was supported in
the topology view.”

Drake “Topology overlays were included to allow apps to highlight links programmatically
and tailor the content of the Summary and Details panels of the Topology View. With
Drake, ONOS’ GUI interfaces became secured by default.”

Emu And added new archetypes for views and topology overlays. Topology overlays
provide the capabilities for the users to customize the view of the network. The
sample application was also added to demonstrate the content insertion method of
UI contents.

a) ONOS Architecture

Build to meet carrier-grade requirements, ONOS architected for scalability, high availability, and
performance. It presents innovative abstractions of northbound and southbound interfaces. It is a
module that allows well-defined software functions, abstractions, and customization. Fig. 6 shows the
tiers architecture of ONOS.

ONOS is a distributed system and runs as a cluster. Symmetrical instances of cluster deployed as
a service on a server enable failure in the event of an ONOS instance breakdown. As the requirement
grows, control plane capacity can be scaled out without network disruption. The created instances
form and operate in cluster mode. Whether it runs on single or multiple instances, ONOS will be
seen as a single platform. The distributed core manages the states across instances and it is the key
component enabling scale and high availability. Table 9 summarizes the characteristics of ONOS.

A pluggable Southbound allows OpenFlow or other protocols to interact with network elements.
Southbound abstraction is composed of network elements including switches, hosts and links generally
known as an ONOS object. Through the abstraction of the network element, the addition of devices
and protocols such as NetConf or OpenFlow can be materialized. The Southbound abstraction in
ONOS allows plugins of various protocols and devices. Thus, it enables ONOS to control and manage
different types of devices and protocols.



770 CMC, 2024, vol.80, no.1

Figure 6: ONOS Architecture tiers

Table 9: Characteristics of ONOS

Characteristic Notes

Distributed Core “Carrier-grade features provide high availability, scalability, and
performance. Exposed agnostic API protocol for applications and providers
layer. Able to perform as a cluster based and replication add agility to the
SDN control plane.”

Northbound
abstraction/APIs

NB API for applications to interact with the network model.

Southbound
abstraction/APIs

SB API for providers to inject environment data and to receive control inputs

Software Modularity Allows customizations and integration to minimize complexity and offer a
stable platform for evolution.

Drake “Drake releases support path computation and more functionalities in PCEP
rules. TLI networking API is further refined by adding OVSDB, VXLAN,
and device configuration capabilities.”

Emu Topology information from the network was able to be collected and made
available to other apps by adding a new plugin to the ONOS controller
(Border Gateway Protocol with Link State Distribution extension
(BGP-LS)). Further introduction of ECI in ONOS controller improves
optical applications of supporting ODU multiplexing and cross-connect
services through SBI based on ONF standards.



CMC, 2024, vol.80, no.1 771

Northbound abstractions and APIs are an application programming interface. The global network
view is physically distributed across multiple controllers but logically centralized across multiple
controllers. It allows applications to program their view of the network while users do not need to
know the details of how the service will be established. Thus, it enables network programming at a
high level.

Software modularity architecture is designed to ease software maintenance. The software is
constructed into modules and interrelated with each other. As a development paradigm, modular
software emphasizes self-contained, flexible, and independent pieces of functionality.

This feature allows new functions to be added whenever desired, and unwanted functions to be
removed, making it a user-friendly software that has great flexibility. The diagram in Fig. 7 shows that
the main structures of ONOS consist of tiers centered around the distributed core. Thus, the NBIs and
SBIs at the macro level provide an initiative to insulate structures from each other. In addition, the
independent architecture is open for any new application or new protocol adapters or plugins to be
added as required. In conclusion, with the level of abstractions and open APIs available, ONOS offers
an open SDN solution that enables the innovation, and development of enriched network management
applications and next-generation services which is compatible with legacy network elements and
existing network protocols. This is also encouraging the transition from static network infrastructure
to automated network control.

Figure 7: ONOS Architecture tiers



772 CMC, 2024, vol.80, no.1

b) ONOS Application Deployed

Open source is one of the spurring factors behind the ONOS deployments. Numerous groups of
users which include network developers, researchers to industrial network architects have improvised
and utilized different ONOS- based applications to meet their specific requirements. Table 10 lists
below the different applications developed and utilized based on the ONOS controller.

Table 10: Application deployment based on ONOS

No App name Description Developed by

1 Inter-Cluster ONOS
Network Application

Manage the intercommunication of
geographically distributed ONOS clusters
and deliver faster controller re-response
time during network events such as
failures or congested links.

CREATE-NET and
the University of
Rome Tor Vergata

ICONA [36,39] ICONA project.
2 SDX L2/L3 [40] Manage Internet eXchange Points (IXP)

via L2 and L3 connectivity. SDX-L2
ONOS application.

CNIT,
CREATE-NET,
GEANT and the
University of Rome
Tor Vergata

3 Mobile-CORD [41] A platform for 5G mobility exploration
based on commodity HW and open source
solutions. M-CORD ONOS application.

OpenCord, Cavium,
Radisys, Airhop,
Nec, Cobham, Intel,
Tech-Mahindra,
Viavi, Netronome,
and Lime-Micro

4 Virtual Private LAN
Service (VPLS) [34]

Creates Virtual Private Broadcast L2
networks based on VLANs, on demand.
VPLS ONOS application.

ON.Lab, AmLight,
NCTU

5 Transport SDN TSDN
[42,38]

SDN-based IP Optical network transport
with bandwidth on demand (BoD),
network virtualization, and VTS features.

Huawei and ONF

6 Transport SDN TSDN
[43]

SDN-based Carrier Ethernet network
with BoD and OSS/BSS

TM R&D and
Fiber-Home

7 vRouter [44] Emulate hardware-based. Layer 3 IP
routing. The application was created in the
form of a VNF.

Tech-Mahindra

8 DHCP Relay [44] Agent to insert information about client’s
identity into DHCP client request being
sent to a DHCP server. The app modifies
DHCP packet sent to the server.

Tech-Mahindra

9 Castor [45] Provides L2/L3 connectivity for SDX. AARNET

(Continued)



CMC, 2024, vol.80, no.1 773

Table 10 (continued)

No App name Description Developed by

10 SDN-IP [46,47] SDN-based IP transit network using BGP
protocol and L3 connectivity with other
legacy devices while allowing multiple
Administrative Domains to communicate
through the SDN network. SDN-IP
ONOS application.

AmLight Internet2
KREONET and
NCTU

11 SD-WAN [48,49] KREONET-S

As stated earlier the architecture of ONOS is based on three key pillars; (i) scalability, (ii) high
availability, and (iii) high performance. Its well-known API abstractions and module-based architec-
ture are remarkable features that encourage creative innovations. The innovative features of ONOS
simplify the creation, deployment, management, and control of applications. Above application, use-
cases simulate and deploy based on ONOS SDN controller and the features to meet service provider
carrier-grade level.

(i) SDN-IP: Fig. 8 shows how the cross-regional testbed was first deployed between 2015 and
2016. The deployment testbed covers five continents involving thirteen Research and Education
Networks (RENs) and Research Institutions. Initiated by AMLight, GEANT, and Internet2,
this testing facility is then linked to several RENs from Asia, Europe, and America [46,50].

Figure 8: SDN-IP global deployment map [50]



774 CMC, 2024, vol.80, no.1

AmLight decided to join the SDN Global Deployment with several considerations: (1) create a
global SDN network; (2) provide L2 and L3 connectivity without legacy equipment in the network
core; (3) bring network innovation by exploiting new applications developed internally at AmLight.
It is also worth highlighting that as the network aims to become a platform for innovation, both
CSIRO/AARNet and GEANT have developed and employed their SDN/IP application to bridge
the legacy IP/BGP and the SDN worlds. This accomplishment highlights the flexibility of ONOS in
accepting a new software piece and making it interoperable with existing applications [50].

As a result of the project led by ONOS, three regional networks in the US, Latin America, and
Europe have emerged and linked to each other. The project aims to create a global SDN network
that will allow entities to communicate at Level 3 without legacy routers in the network core. The
project also aims to show that ONOS can function to provide high performance, high availability,
and scalability in real networks. In making these goals a reality, a network of partners have utilized
and installed ONOS, provided feedback, and then deployed the latest version of ONOS using an agile
deployment model. In its current state, three SDN networks have joined together to form the network.

Internet2 is a collaboration between researchers and educators from the universities, government,
and industries to develop advanced Internet technology. The Internet2 is seen as a ‘playground’
in testing network capabilities in a real-world environment. In 2015, Internet2 and Internet2 NOC
at Indiana University migrated to an SDN-based network with an ONOS-based solution. Five
universities in North America: The University of Utah; Duke University; the University of Maryland;
the Indiana Gigapop; and Florida International University in Miami were connected to the virtual
slice applying ONOS. The ONOS and SDN-IP network abstractions are achieved by using a Flowspace
firewall that allows university legacy routers to be connected to Internet2 through OpenFlows switches.
The deployment connects South America, Europe, and the United States. In South America, the AM
Light network connects Florida International University in Miami with REUNA and RedClara in
Santiago, Chile; ANSP and RNP in Sao Paulo, Brazil; and CKLN in the Caribbean. The network
consists of six OpenFlow switches and utilizes Brocade and Juniper physical hardware. Internet2
and AM Light are connected through a legacy router at Florida International University in Miami.
Gèant/GARR, in Europe connects Universitá Roma Tor Vergata in Rome and CREATE-NET in
Trento, Italy over five OpenFlow switches [47,50].

In total, there are more than 50 OpenFlow switches connecting 14 institutions on three continents
in this project. The project has successfully validated ONOS applications such as SDN-IP, SDX-L2/L3,
and Castor. However, ONOS has suggested to providers to rethink Open Flow support and consider
multi-table pipelines. The mentality of R&E network operators have to change to software and agile
methodologies and more R&E network operators are needed to focus on stability, performance, and
scalability. In the meantime, work on commercial deployments is in progress at Kreonet in South Korea
and AARNet in Australia.

(ii) Data Centre SDN: As shown in Fig. 9, Multilayer SDN Control of Packet and Optical
Networks. This demo presents the integration of SDN control of packet and optical networks
with ONOS to maximize the full potential of optical network agility. This demo demonstrates
the effectiveness of ONOS SDN control across devices and technologies involving optical
devices from optical vendors such as Ciena, Huawei, and Fujitsu. A logical overlay is placed
over the ROADM network and the networks are coordinated at the optical by treating both
layers logically using a single SDN layer to control. As a result, interoperation between the
optical layer and the IP layer is achieved [50].



CMC, 2024, vol.80, no.1 775

Figure 9: SDN-DC global deployment [50]

These demonstrations simulate the real environment and how ONOS operates and reacts in
a production environment. In this simulation, a single control plane supports a multi-vendor and
multi-protocol network which is represented by a virtual machine acting as a switch and modified
mininet. This demonstration shows how multi-layer SDN control can be achieved by ONOS controller
regardless of the diversity of applications and vendors involved.

(iii) SDN Network Function Virtualization (NFV): Argela research and development group of
Turk Telekom deployed SDN NFV infrastructure and adopted ONOS as a network operating
system (see Fig. 10 which describes Argela’s SDN-NFV framework). Argela has initiated
the deployment of ONOS at three different Turkish government institutions besides Turk
Telekom’s intranet. The infrastructure provides extensive centralized analytics, policy manage-
ment, zero-touch traffic management, enhanced topology management, and complete network
security.

Configured ONOS allows system functions to cover multiple aspects of user access security, data,
system control and application layers. This includes security aspects of DDoS threats, IDS and network
access protection. Ever since its emergence, Argela has a wide experience with SDN controllers,
integrating SDN controllers with Open Stack and even developing their controller known as YakamOs.
Their experience and commitment to the research and development in wireless communication
networks have earned them a good reputation as a well-known high technology company [50].

c) ONOS Based Commercial Solution and Project

In addition to being deployed in a testbed environment and experiment, ONOS was materialized
by telco vendors and technology providers as a new SDN project and some of them were developed
as commercial products. By leveraging the open-source ONOS SDN controller, new products and
projects were introduced. Vendor-based solutions on ONOS are shown in Table 11.



776 CMC, 2024, vol.80, no.1

Figure 10: Argela’s SDN-NFV framework [51]

Some other vendors have already announced and plan to build commercial products and solutions
based on ONOS and other vendors are planning the same activities. SK Telecom, Turk Telekom,
KT, Samsung, Telefonica and many more are some of the players that have deployed ONOS-based
solutions for several use cases and commercial products. ONOS is seen as a critical element of many
SDN projects as the SDN controller [52].

Table 11: Product solution and project deployment based on ONOS

No. Vendor/Provider Solution Description

1 Huawei [53,54] Agile Controller 3.0 (AC 3.0) Introduced in Huawei Connect
2016, AC 3.0 main target on the
enterprise campus, data center
networks, WAN, and IoT.
Improve the resource scheduling,
network efficiency for carrier
customers, and customer
experience.

2 Ciena [55] Blue Planet ONOS A commercial grade SDN
controller focused on the data
center use case, multi-domain
and orchestration.

(Continued)



CMC, 2024, vol.80, no.1 777

Table 11 (continued)

No. Vendor/Provider Solution Description

3 NTT* Open and Disaggregated
Transport Networks

To build data center interconnect
using disaggregated optical
equipment, open and com mon
standards, and open source
software.

T&T, SK Telecom,
Verizon, China Uni-
com and NTT [41,56]

4 TM R&D Fiberhome
[44]

Transport SDN Providing bandwidth on demand
over packet transport network.
Customers are able to manage
and control bandwidth
requirements through BoD
portal.

5 ECI [57] SmartLIGHT Focusing on multilayer control of
IP and optical layer networks.
ECI developed its own
ONOS-based SDN controller to
be part of the SmartLIGHT
solution.

6 vRouter [45] Emulate hardware-based
Layer 3 IP routing. The
application was created in the
form of a VNF of the NFV
platform

Tech-Mahindra

7 DHCP Relay [45] Agent to insert information
about client’s identity into
DHCP client request being
sent to a DHCP server. The
app modifies the DHCP
packet sent to the server.

Tech-Mahindra

8 Castor [46] Provides L2/L3 connectivity
for SDX

AARNET

(Continued)



778 CMC, 2024, vol.80, no.1

Table 11 (continued)

No. Vendor/Provider Solution Description

9 SDN-IP [47,48] SDN-based IP transit network
using BGP protocol and L3
connectivity with other legacy
devices while allowing
multiple Administrative
Domains to communicate
through the SDN network.
SDN-IP ONOS application,

AmLight Internet2
KREONET and NCTU

Note: *https://group.ntt/en/ (accessed on 10/01/2024).

6 Advances in the Investigation of Open SDN Controllers

In the literature, several research works have been carried out extensively on various topics of SDN
such as comparison studies, controller performance and evaluation, SDN models and architecture,
traffic engineering, security, adoption, deployment, and development applications of SDN controllers.
In this section, several related studies and some of their drawbacks will be briefly discussed.

6.1 Performance Evaluation, Comparison and Analysis

Tootoonchian et al. [58] are considered among the pioneers in conducting a comparative analysis
of SDN controllers. The main focus was controller performance by NOX-MT, Beacon, and Maestro
which was rather limited. However, with the rapid advancements in the performance of controllers,
NOX-MT, Beacon and Maestro have been surpassed by POX, Ryu, FloodLight, OpenDaylight, and
ONOS. The underlying review in [59] outlined a comparison between five controllers that includes
TLS support, open interface, Graphical User Interface (GUI), Representational State Transfer
(RESTful) API, documentation, modularity, platform support, virtualization, OpenFlow protocol
support, and OpenStack network support known as Neutron. The Multi-Criteria Decision Making
(MCDM) method named Analytical Hierarchy Process (AHP) adopted a monotonic interpolation or
extrapolation mechanism to analyze the comparison. In this method, the values of the properties were
mapped to a value on a pre-defined scale. Results from the adopted AHP in the comparison concluded
that “Ryu” was the best controller based on their requirements.

An advanced study of SDN/OpenFlow Controllers was carried out in [27,60] by employing a
framework known as hcprobe. The main objective of this study is to test and analyze the efficiency
of SDN controllers such as NOX, POX, Beacon, Floodlight, MUL, Maestro, and Ryu. The study
concluded that maximum throughput could be achieved by Beacon and most of the controllers were
capable of coping with an average workload during long-term testing. However, there were possible
security issues with the tested controllers.

In [61], the proactive and reactive operating modes were compared. They reported that the
proactive mode performed better than the reactive mode since the rules in the proactive mode were
loaded to the switch in the beginning. On the other hand, the rules in the reactive mode were loaded
to the switch each time it received a packet with no matching rule in its flow table. Another study
conducted in [62] suggested further considerations when devising a new controller. Two types of
architecture were considered: First: static partitioning with static batching. Second, a shared queue

https://group.ntt/en/


CMC, 2024, vol.80, no.1 779

with adaptive batching. SDN controllers tested were Beacon, Maestro, NOX-MT, and Floodlight.
The highest performance was recorded by Beacon which employs static batching while Maestro, which
utilizes adaptive batching, presented the best latency records.

Studies carried out by [61,63] reported that the choice of the programming language has a great
impact on the mobility and performance of the controller. Java was selected as the best programming
language since it supports multithreading and is a cross-platform language. On the other hand, Python
had issues with multithreading on the performance level, and C, and C++ encountered problems with
memory management and the Net languages were dependent on the runtime platform; compatibility
with Linux is not supported. Thus, Java-based Beacon was awarded as the most excellent performer
among several other controllers (NOX, POX, Maestro, Floodlight, Ryu) in the study.

The issue of software aging was highlighted by the research conducted in [62]. The main issue
studied was memory leakage between two Java-based controllers (Floodlight and Beacon). Floodlight
was beaten by Beacon since the latter displayed less memory consumption. In this study, the most
common open-source controllers were compared based on multiple criteria. Thus, the requirements
laid out by the researcher will influence the result in selecting the best controller.

Authors in [64] shared their experiences and lessons learned from building two ONOS prototypes
based on performance, scalability, and availability. The idea is to verify the core features and improve
the performance of remote data operations. Research revealed how ONOS as a distributed SDN
controller able to meet the criteria of production networks. Two use-cases of simple proactive route
maintenance, and BGP interfacing application deployed over ONOS platform. The authors also
explored other use cases in packet optical core networks (traffic engineering and scheduling), next-
generation points of presence (PoPs) focusing on virtualization, network resources (computers, stor-
ages and networks), and customer-based networks. ONOS also provides an abstraction of connectivity
that leads to the ability to handle the mechanism of network topology, host location, or change of
utilization. This is based on their experience deploying SDN-IP peering applications.

The authors in [65] conducted a performance evaluation of the POX controller and OpenFlow
using mininet simulator using service delay, utilized bandwidth, received packets and bytes as metrics
and iperf and D-ITG as network monitoring tools. The authors recommend using the POX controller
for rapid development and prototyping of a network control system and its use as the framework for
interaction with open-flow switches.

Using mininet, the authors in [66] evaluated the performance of pox and RYU SDN controllers
with D-ITG used for performance evaluation and iperf for measuring maximum available bandwidth.
Results show the RYU controller yielded better performance with respect to coverage, delay, jitter, bit
rate, and throughput, and the application requirement should dictate the selection of the controller.
The authors in [67] conducted a performance analysis of a simple IDS implemented in an SDN
environment, analyzing the resulting CPU usage and memory allocation of the controller. The authors
in [68] studied the performance analysis of a load-balancing algorithm using the POX controller. They
set up experimental tests to implement and compare four load-balancing algorithms (Random, RR,
WRR, LC). Using mininet emulator and OpenFlow switch which was connected to POX. This is
evaluated based on the degree of load balancing, workload, and time values by generating different
numbers and sizes of packets. The results show the accuracy of the workload metric and average RT
metric.

The authors in [69] studied the performance analysis of floodlight and RYU under mininet
simulator. Using tools like mininet and qperf. The bandwidth and delay of floodlight and Ryu were
compared under different network topologies. Floodlight was shown to have higher bandwidth and



780 CMC, 2024, vol.80, no.1

lower latency than the Ryu controller. The authors in [70] studied the implementation and performance
analysis of the SDN firewall on the POX controller. The authors used POX and Open vSwitch while
virtualBox and mininet were used to create SDN topology while wireshark and iperf were used to
analyze the performance of the firewall. It implements some firewall (which works at layer 2-layer 4
which can detect traffic and enforce rules) function on SDN via writing a firewall application that runs
on top of the POX controller.

The authors in [71] implemented SDN architecture using an open-source RYU SDN controller
for analysing the network traffic. The performance of the SDN architecture was evaluated using a
custom network topology for node-to-node performance parameters, e.g., bandwidth, throughput,
and RTT. The proposed work performs better than the default SDN network topology. The authors
in [72] studied the performance analysis of two OpenFlow-enabled controllers (floodlight and ONOS
controller) over both linear and tree topologies using metrics such as transfer, delay, bandwidth, and
jitter using mininet. The results showed that ONOS performed better compared to floodlight in TCP
and UDP traffic. The authors in [73] conducted the performance evaluation of POX and floodlight
using mininet. Floodlight was shown to outperform POX in terms of throughput. The authors in
[74] study the use of an RYU SDN controller-based test bed for testing the performance of the
source address validation technique. Data packets are forwarded using the destination address without
validation of the host address which makes SDN vulnerable. The proposed testbed worked well based
on the sequence of source address validation techniques.

The authors in [75] conducted a performance comparison of RYU and floodlight controllers using
mininet network emulator. The authors in [76] conducted a performance comparison of RYU and
floodlight controllers under different SDN topologies e.g., single, linear, tree, torus and custom for
throughput, jitter, latency, and packet loss. RYU was shown to yield better throughput compared to
floodlight in all topologies. Except for Torus, RYU performs better with respect to latency and jitter.

The authors in [77] conducted a performance analysis of RYU and POX controllers with latency
and throughput using simple tree-based and fat tree-based network topologies. Using mininet, the
authors develop an SDN model. The authors show that RYU yields a better performance than POX
and thus it is suitable for small-scale SDN while for throughput, POX performed better showing it
can respond properly under FTB traffic load but with greater utilization of hardware resources. POX
can respond to requests faster under complex FTB traffic loads, at the expense of higher hardware
resource utilization.

The authors in [78] conducted performance analysis of POX vs floodlight over different network
topologies using throughput, RTT, and delay using mininet single, linear, tree end user-defined
topologies. Floodlight performed better with respect to POX using RTT as well as throughput as
metrics. The authors in [79] performed an extensive performance analysis of ODL and ONOS using
mininet then wireshark packet analyzer and iperf were used. Particularly, iperf provides real-time
traffic flow between mininet and controller. ONOS was shown to perform better wrt throughput,
TCP under scaling, TCP/UDP bandwidth burst rate, jitter, goodput, RTT, usability and TCP stevens
graph.

The authors in [80] conducted a performance comparison of two popular controllers, floodlight
and Opendaylight, in terms of delay and loss under different topologies and network load under
different use cases. OpenDL was shown to outperform floodlight in low-loaded networks and for
tree topologies in networks with medium load for latency while floodlight performs better in networks
with heavy load for tree topologies (wrt packet loss) and linear topologies (wrt latency). No significant
differences were observed in other cases. The authors in [81] studied node-to-node performance



CMC, 2024, vol.80, no.1 781

evaluation and test analysis with respect to throughput, RTT, etc. via RYU SDN controller. This is
achieved using mininet containing a RYU controller with a switching hub, one OpenFlow switch and
3 nodes.

The authors in [82] studied the performance of floodlight and POX under different scenarios. This
was conducted by examining mobile wireless station connectivity with the fixed wired station using the
mininet Wi-Fi emulator. The authors in [83] conduct a performance evaluation of distributed SDN
using floodlight controllers. The paper sheds light on SN challenges, including the ability to scale
and to be fault-tolerant. The authors in [84] study the effect of different link failure scenarios on
DC network performance using Ripl-POX controller using a 4k-fat tree DC network on a mininet
environment.

Another important aspect of performance evaluation is the use of multi-criteria decision-making
methods. These approaches have led to interesting results and comparisons for different controllers
[85–91].

Controller selection is one of the most important issues in SDN networks. The authors in
[85] divide the features of SDN controllers into two categories. Thus, regarding how diverse SDN
controllers are, the authors consider answering questions relating to how appropriate SDN controllers
should be chosen. This question is challenging because of the diverse characteristics of SDN con-
trollers, making it more difficult to arrive at the most accurate decision. For this reason, the authors
deploy multi-criteria decision-making. The authors compare POX, NOX, Beacon, Floodlight, Ryu,
ODL, and ONOS. Deploying MCDM, particularly the best-worst multi-criteria, they find the most
appropriate SDN controller. They solve an optimization problem and study the performance with
throughput and latency, and the result of the initial evaluation revealed that ONOS and ODL yield
the highest throughput while NOX, POX, and Ryu yield the lowest throughput. The final evaluation
using all criteria confirmed that ONOS and ODL were robust compared to open controllers.

Considering that every controller supports several features, some features may be more prominent
in a particular controller. Then, the authors in [86] leveraged the analytical network process to rank the
SDN controllers based on their features. Thereafter, they created a hierarchical control plane cluster
of the top two controllers that yielded the highest weight. Internet OS3E topology was used in the
experimental evaluation. The results show that ODL which has a high weight, outperforms ONOS with
a lesser weight when the controller is used without clustering and when the proposed HCPC approach
is applied. HCPC with ODL performs better than ONOS and DCC for delay, CPU utilization, jitter,
load balancing, recovery time, and scalability.

The authors in [87] study the specifications of most of the open-source NOS and categorize the
features into two groups: non-functional features and functional features. Non-functional features
include security, interoperability, maturity, ease of use, scalability, and availability. Functional features
include traffic protection solutions, packet forwarding techniques, troubleshooting and fault verifi-
cation, and virtualization. They used AHP, a decision support system, to assess the specifications of
ONOS, Ryu, Floodlight, POX, and Tungsten. The objective is to find the best NOS for CDC via an
assessment of the specification of ONOS according to the criteria of the requirements of the cloud
data center. Results show that ODL is the best NOS for cloud data centers. Also, ODL and ONOS
yield similar scores when compared to the other network operating systems.

The authors in [91] deploy entropy-based TOPSIS to select the best controller for load balancing
in the control plane. Four controllers (POX, Beacon, Floodlight, and RYU) are selected and evaluated
over tree topology considering throughput, delay, response time, and message cost via mininet
simulator. The results using TOPSIS to rank controllers show that Floodlight yielded the best



782 CMC, 2024, vol.80, no.1

performance when compared to other controllers in a scenario involving 5000 packets analyzed under
a tree topology.

6.2 Monitoring

The research done by [65,92] addressed monitoring in the ONOS framework, which has a multi-
controllers feature. Real-time monitoring results were provided with the recording of OpenFlow
messages exchanged on the ONOS logging system by the former. The overall load of individual
controllers working in a logically centralized SDN environment was dynamically monitored by an
adaptive monitoring solution by the latter. However, neither monitoring wireless-specific metrics, nor
network performance metrics were given any attention.

The introduction of SDN technology has catalyzed the development of many SDN controllers.
The initial design of a single SDN controller has problems in managing large-scale networks due to
high traffic congestion in the control plane. In order to address this issue, the Open Network Operating
System (ONOS), which is designed based on the concept of a distributed SDN controller was then
proposed. However, due to a lack of performance assessment to determine how the workload is to
be distributed, ONOS not able to solve the congestion problem. Studies have been done on how to
monitor ONOS performance. Works from [92,93] focused on OFMon, the first monitoring system in
ONOS to detect and monitor activities of OpenFlow messages on ONOS controllers and OpenFlow-
based switches. Further to this study, an experiment was performed to test and evaluate the CPU and
memory usage of OFMon. Performance results showed very little network resource utilization, with
a maximum of 4% more CPU and 6% of memory usage recorded by OFMon.

The authors in [94] study the use of floodflight controllers as SDN traffic monitoring in data
center networks. The tool does not require additional traffic as it depends on traffic querying.
The results show the successful detection of elephant and cheetah flow which can be re-routed to
improve QoS.

6.3 Topology and Architecture

Authors in [23,95] suggested that by decoupling the physical network in terms of topology,
address and control functions, multiple tenants can share the same physical infrastructure and create
independent virtual networks (VNs). The programmability feature of the SDN paradigm may pave
the way to materialize full network virtualization (NV). Many advantages have been brought about
by SDN to both network operations and management such as programmability, agility, elasticity,
and flexibility. Nevertheless, existing SDN-based NV solutions still have some drawbacks in terms
of scalability and high availability. The proxy-based architecture also introduced high latency between
the planes and thereby added a list to the existing problems.

In their thesis [95], they introduced a new NV platform, named Open Network Hypervisor
(ONVisor) as a step towards a scalable and flexible SDN-based network virtualization by extending
ONOS. Among the features in the design objectives are (i) multi-tenancy, (ii) scalability, (iii) flexibility,
(iv) isolated VNs, and (v) VN federation. As research in solving existing NV platform issues, ONVisor
sets out some of the key criteria of (i) remote control and data plan per VN, (ii) distributed oper-
ation support, (iii) extensible translators, (iv) on-platform development and implementation of VN
applications and execution, and (v) support of diverse SDN data-plane implementations. Experiments
were carried out to compare the NV platform to a non-virtualized SDN network in terms of control
and plane performance in various test scenarios and environments. Outcomes from the experiments
showed that ONVisor can provide only a slightly lesser control plane performance and similar data



CMC, 2024, vol.80, no.1 783

plane performance to VNs. The authors in [96] proposed an SDN architecture for IoT network that
is based on an ONOS controller using mininet.

6.4 Security

In [97], Sandra Scott-Hayward discussed the evolution of SDN security. Although SDN tech-
nology has progressed rapidly in the past few years, the emphasis on security was not moving at the
same pace. The researcher focused on the security evolution of the two most popular SDN controllers;
ONOS and ODL, which have a broad deployment and strong contributor base. Although the focus on
security has increased within both controller communities through security support and new features
introduced with each new software released, the lack of security integration should raise concern
among the developer community. Although there is a demand for more secure, robust and resilient
controllers especially for public networks, the response to a more secure controller design is still very
limited.

The authors in [98] analyzed the detection and mitigation of DDOS attacks with RYU controller.
They study the early detection and mitigation of DDOS on services using ML models. This was
used to minimize the prediction time and ensure the correctness of the dataset and model accuracy.
The authors in [99] performed a security analysis of ODL and ONOS controllers and decreased
vulnerability issues in SDN controllers. The authors attempt to address the security vulnerability of
SDN with ODL and ONOS controllers for DDOS attacks.

The authors in [100] focus on the implementation of SDN traffic monitoring using the RYU
controller. RYU was used to obtain the flow of information of the switch via OpenFlow protocol
to obtain the load status and remaining bandwidth of the network link. The result is useful for SDN
congestion control and load balancing. The authors in [101] performed a security analysis deploying
packet sniffing and spoofing on POX and RYU controllers. Layer 2 security test was conducted on
POX and layer 3 on RYU where packets are filtered based on packet type. Results show that RYU is
among the most comprehensive programmable controllers for providing security.

The authors in [102] perform a security analysis of Opendaylight ONOS, Rosemary and RYU
SDN controllers, OpenDaylight was shown to be the most secure. The authors provide a summary
of current security developments concerning SDN. The authors in [103] provide a comprehensive
resilience analysis of ONOS recovery and openDL recovery time when there are link and switch
failures. The authors in [104] study the security of floodlight zerosSDN, beacon and POX using the
STRIDE threat modelling technique. SE floodlight was shown to be the most resilient. The authors
in [105] summarize SDN security issues for future SDN mobile networks. Experiments were also
presented for network topologies using network attack scenarios to showcase how security could be
taught using SDN controllers. ONOS was used to perform experiments showing security can be easily
taught using ONOS.

7 Discussion

In this section, we aim to answer the following questions relating to the implications of the
open-source nature of SDN controllers with regard to vendor lock-in, interoperability, and standards
compliance, real-world use cases and success stories of organizations implementing open-source
SDN controllers in their networks, how the open- source community contribute to the development
and improvement of SDN controllers, and the key challenges faced by open-source SDN projects.
Similarly, considerations organizations should take into account when choosing an open-source SDN
controller for their specific networking requirements and goals, and how emerging technologies



784 CMC, 2024, vol.80, no.1

like Artificial Intelligence (AI) and Machine Learning (ML) impact the evolution and capabilities
of open-source SDN controllers. In addition, the challenges and limitations associated with deploying
open-source SDN controllers in production networks, how can they be mitigated, and finally how
open-source SDN controllers handle network security and ensure that network configurations and
policies are robust and resilient. Also, we would discuss some other challenges and future considera-
tions.

7.1 Implications of Open-Source SDN Controllers

Although SDN brings benefits concerning manageability and the automation of network pro-
cesses, amongst others, vendor lock-in, investment in SDN-capable hardware, and backward incom-
patibility are some of the major challenges [106]. Particularly, a non-open, i.e., closed or proprietary
technology, leads to vendor lock-in problems where users end up with fewer or no options but to use
the legacy proprietary controllers or tools. Particularly with the advancement of technology, vendors
enhance, upgrade, and develop equipment. However, this leads to issues in interoperability between
different devices, which “compels” the customer to use the equipment of the present vendor or change
all devices, which is at a huge cost. An example is that if two nodes in a network may not see each other
(be visible) on the same management GUI, they may need more than one application to handle them
[107]. Usually, the same vendor provides devices and network management tools. This leads to issues
that make vendor lock-in problems deepen as the network evolves. However, with open technologies,
there is higher network flexibility, extended choices, innovation, and a reduction in vendor lock-
in since open software can control multi-vendor assembly of different components through open
and standard interfaces [108]. Therefore, companies can re-use open source applications or vendor-
agnostic applications in the application plane, and there is a possibility to write code in different
languages for performing intelligence, optimization, and new services [109] leading to innovation. As
such, when many vendors use a particular open SDN controller, it is viable and easier to achieve
cross-vendor interoperability [110]. Finally, APIs can be used to facilitate network automation and
micro-service function orchestration to cater to the requirements of different applications. This can
facilitate interoperability between network application developers of the different sub-functions of the
SDN controller [111].

As regards standardization, it is important to comply with standards and resolve software issues
against a service level agreement. Large telecommunications companies need service guarantees to
softwarize their network (using open controllers). Such Softwarization helps to deliver new services
as it makes programming and deployment more flexible; however, standardization, which provides
stability, more interoperability, and flexibility and triggers more innovation, comes with some trade-
offs. Softwarization can facilitate rapid innovation, whereas standardization moves solutions towards
more harmony and is less flexible concerning the outcomes [112]. However, when experts contribute
actively to open controllers, the need for interoperability could foster faster standardization while
accommodating variety via community participation, review, and discussions. However, this requires
a lot of organization and coordination within the open-source community.

7.2 Real-World Use Cases and Success Stories

One of the main purposes of SDN is its availability to all as open source without hidden
proprietary components. This helps to facilitate the independent use and growth of SDN. Some
hardware companies are now forced to consider open-source options as some of their competitors
have found a place for open standards in their production lines [113].



CMC, 2024, vol.80, no.1 785

7.2.1 Examples of Use Cases Using OpenDaylight

A few real-world use cases of open-SDN using OpenDaylight involve different telcos, academic
and research institutions, and enterprises. For instance, for automated service delivery, these include
AT&T, Caltech, globo.com (accessed on 10/01/2024), KT, and Orange. For cloud and NFV, companies
include Cable Labs, CenturyLink, China mobile, globo.com and Orange1:

• Telstra’s PEN platform empowers users to build on-demand high-performance networks with
the required scalability and flexibility for building hybrid clouds. It is cost-effective and reliable,
and PEN pioneers the way with SDN all around the globe to enable businesses to self-provision
dynamic network services.

• The high energy physics researchers at California Institute of Technology (Caltech) are among
the large network of researchers around the globe who are performing experiments using the
Large Hadron Collider, the biggest machine in the world at CERN and France for making new
findings about the evolution of the Universe using Linux and open source software.

• Globo.com is a company based in Brazil, Grupo Globo which provides internet-related services
and platforms to the companies in the group. Globo.com’s aggressive innovation was motivated
by the network scale needed to support the company’s internal cloud. As the main controller,
OpenDayLight was chosen due to its large open-source community, good documentation and
well-defined interfaces for both users and services.

• KT Corporation is the largest telecommunications service provider in South Korea and offers
high-speed internet access, wireless services, and wireline telephony. It was previously known
as Korea Telecom and was founded in 1981. It deploys the OpenDaylight SDN platform for
creating and deploying new, flexible and scalable Transport SDN WAN network as the leading
nationwide carrier WAN services.

• Orange has been the leading supporter of open standards with a long history of participation
and contribution to open-source communities. It is one of the largest telecommunications
operators around the globe, providing a wide range of both mobile and fixed services to more
than 247 million users in 29 countries. Orange has been actively participating in the community
since OpenDayLight was launched in 2013. Orange is a founding member of ONAP, OPNFV
and a platinum member of LFN.

• A research and development consortium that is not profit-based, CableLabs is dedicated to the
creation of novel ideas that impact the business of its international member cable operators.
They are prototyping SDN and NFV use cases to define interoperable solutions among their
members and technology supplies. This is aimed at reducing costs, creating competition in the
supply chain and driving scale.

CenturyLink’s full commitment was to virtualize its IP core network by 2019 and they are
emulating the work in some open-source communities to create a central office re-architected as data
center.

7.2.2 Some Other Projects Using Open-Source SDN Controllers

The first milestone of ONF was recently achieved in the SMaRT-5G project. Particularly, this
is with the demonstration of an intelligent cell switching (ON/OFF) radio access network energy
savings application that works together with the xApp traffic steering application to ensure QoS while
optimizing energy consumption. These applications are implemented entirely in open source. Both

1https://www.opendaylight.org/use-cases/stories (accessed on 10/01/2024).

http://globo.com
http://globo.com
http://Globo.com
http://Globo.com
https://www.opendaylight.org/use-cases/stories


786 CMC, 2024, vol.80, no.1

(energy saving and traffic steering) are two important mobile industry use cases which are combined
as a unified open source solution for the first time by the ONF community [114].

Big Switch has an open programmable SDN product suite which makes it easy to adapt new
network applications as compared to traditional non-programmable networks. Open standards and
APIs are supported by the hardware platform-independent suite by Big Switch. Big Switch uses
OpenFlow and Floodlight, which are two popular open sources for providing abstraction for the
physical infrastructure, policy-based functions, and central intelligence for SDN/programmable-based
networks. HP also offers OpenFlow-enabled controllers and switches, indicating its support for open
standards [113].

Broadcom has SDN technologies with open-source initiatives from major industry experts aiming
to make networks more scalable, flexible, and programmable and improve infrastructure performance.
Its SDN technologies support several network management procedures and applications while also
improving optimization, harnessing network-level control, and reducing network complexity. Broad-
com worked closely with ONF on developing the OpenFlow protocol and has played a pivotal role in
the development and demonstration of OpenFlow running at scale [115].

China Mobile pioneered packet-based transport networking and is leading the introduction of
SDN for future-generation packet-based transport networks. They are collaborating to unleash the
full potential of OpenFlow over merchant silicon and working to develop technologies for transport
networking [115].

According to the CTO at Deutschland Telekom, Walter Goldenits, open-source projects are at
the forefront of the promising movement enabling their industry to manage data growth efficiently
[116]. Thus, Deutsche Telekom, one of the leading integrated telecommunication networks in the
world, with about 165 million mobile customers, 18.5 million broadband lines, and 28.5 million fixed-
network lines, joins AT&T, China Unicom, Google, NTT Communications, Comcast, and Verizon
as one of the leading operators that guide ONF’s mission to drive innovation in operator networks
while concurrently working towards the transformation of business models across the industry. DT
began a live trial in Berlin, putting the SD-RAN open-RAN project by ONF to the test. The trial
features disaggregated hardware, including central units paired with open-source nRT-RIC software
and xApps developed as part of the SD-RAN project. Deutsche Telekom is one of the companies that
joined the ONF as a full partner member, which is the highest tier of support and investment in ONF
and a significant indication of an operator’s help to drive the mission and impact of ONF. ONF has
over two hundred members, which gives it a large breadth of solutions. The open initiative makes it
much easier for vendors to identify operator use cases, contribute to solutions, and take the solutions
to operator trials. Vendors can identify new markets and take advantage of opportunities by leveraging
the broader communities’ work to reduce the cost of research and development while accelerating the
time to market using the solutions [116].

Cisco and some of its partners addressed many challenges in the UK 5G Rural first project by
deploying 5G at a lower cost than ever using the Cisco open software-defined architecture [117]. The
Agile SDN Controller of Huawei is based on ONOS and they also ensured it was compatible with
ODL using API 2.

2https://www.sdxcentral.com/ (accessed on 10/01/2024).

https://www.sdxcentral.com/


CMC, 2024, vol.80, no.1 787

7.3 Contribution of Open Source Community and Challenges

The open-source community contributes differently to the growth and development of open-
source controllers. These could be in terms of skills, financial support, and ideas. Codes are edited and
reviewed by a wide variety of contributors; documentation is provided via community collaboration;
large players in the industry are participants; discussions are made and suggestions are provided;
documentation and code are reviewed; new and updated versions can be released with contributions
from the community; bugs could be fixed within the larger community; a wide range of support can be
provided; support for different languages [118] can also be accommodated; and many more. Different
experts all around the globe can contribute to these open-source projects; mentoring and supervision
of new entry-level technical support teams are also provided. The result is controllers that achieve
flexibility, progress of different projects towards standardization, adaptability to different use cases
and needs, and a wide range of support. Similarly, for instance, in some cases, the ODL open-source
solution [119] has been able to support several global network subscribers. In summary, the open-
source community helps to develop solutions that are agile at a fraction of the cost of traditional
proprietary solutions [120].

Challenges regarding the open-source SDN community include coordination of input from
contributors and deadlines; financial support could be inconsistent; participation can sometimes be
skewed toward specific parts of projects; and new hands might not be forthcoming on other parts.
A review of documentation could take a significant amount of time; delays could be experienced in
fixing bugs and releasing new versions; and uncertainties might be experienced in the time needed
to get community support. Also, a significant amount of time may be required to validate different
architectures and interfaces to ensure interoperability and consideration for mass market deployment
by companies. Other challenges experienced include, in some cases, inconsistent maintenance of the
open SDN project, need for constant and continuous tracking of dependencies, ensuring software
maturity, ensuring constant and consistent (verification and) approval of changes, and ensuring
dependencies are constantly looked into. Also, ensuring the reliability and security of the open source
projects and constantly reviewing compliance, continuous review of code for vulnerabilities, slow patch
development, and compromise of code packages [121] are all inherited from challenges in general open
source projects.

7.4 Considerations for Choosing Open Source SDN Controllers

Choosing the right open-source technology is a critical decision and plays a major role in
improving scalability, efficiency, and the overall success of the project [122]. There are so many factors
to consider when choosing an open-source SDN and open-source solutions in general: code quality
or maintainability, security risks (as well as breaches), and vulnerability. Does vulnerability have
patches or solutions [123]? Similarly, several requirements can be extended to SDNs too [122]. Project
requirements and objectives should align with those of the open-source controllers; it is also important
that the open SDN controller can handle the projected growth of the company’s demands (to avoid
bottlenecks). In addition, is it easier to deploy, and does it provide the best experience? Is there active
and continuous community support? Is there technical expertise and familiarity with the frameworks
and languages of the controller? Is there a prospect for longevity of relevance and adaptation to future
trends and expectations? Similarly, market response, reliability mechanisms, interoperability with
current solutions, the existence of skilled talents to optimally deploy the controllers, larger and richer
discussion and support forums, and comparison with paid solutions (for comparisons, especially when
paid expertise is required to efficiently deploy open source solutions), then who takes responsibility
for risks associated with the controller? The issue of security is broad, and it is most important to



788 CMC, 2024, vol.80, no.1

understand how open-source solutions can match the security priorities of the organization [124].
Other issues include the diversity of the community involved and the level of expansion of the project,
and terms and conditions of use [125].

7.5 Role of AI on the Evolution of SDN Controllers

AI plays a vital role in different aspects of open SDN controllers and their development,
particularly in improving the functionality of SDN controllers. Such functionality includes network
monitoring and security, load balancing, network virtualization and orchestration, and policy enforce-
ment. These four aspects [126] are vital. For instance, network monitoring is one of the most important
use cases of SDN since the controller leverages the bird-eye view of the network topology and can
thus query the network performance more proactively. With AI, this becomes even more efficient
due to the prediction capabilities of different AI algorithms [126]. Also, load balancing plays a very
crucial role in optimizing different performance aspects and measures, including the minimization
of response time, maximization of throughput, and optimization of resource allocation [126]. SDN
controllers help to facilitate efficient network virtualization by enabling network slicing and multi-
tenant hosting on existing physical resources. Thus, AI-aware optimization techniques can make this
more efficient. Policy enforcement is another important functionality of SDN controllers, as efficient
rules can be implemented with the assistance of AI techniques that can learn the system to suggest
efficient policies to be applied for optimal results [126]. Thus, AI is promising to largely influence the
future of the development of SDN controllers. Currently, one of the most popular use of AI is security
for DOS Attack detection and mitigation, as done in [127–143], then anomaly detection in general
[144,145], network management and intrusion detection [146–149].

Other scenarios where AI has been featured include: achieving scalability [150,151], load balancing
[152], optimization [153], prediction-based controller placement [154], traffic classification and predic-
tion [155–157], performance trade-offs of flow monitoring in SDN [158] load balancing, routing and
policy optimization [159], resource allocation [160,161].

7.6 Challenges Associated with Deploying Open-Source SDN

Deploying open-source SDN in production networks can be quite challenging. Even before
deployment, one of the most prominent challenges is identifying which open-source SDN controller
is most suitable for production, considering its strengths and its compatibility with the production
application requirements and objectives, and whether consideration should still be given to using other
compatible proprietary tools and solutions in addition to the open-source controllers. Determining the
scalability of the open-source controllers to accommodate growth and network expansion is another
key challenge. Ensuring the deployment is hack-free and not vulnerable to security threats. Ensuring
ease of adoption of the open source controller as well as the maturity of the controller over time
by significant community contributions. Another is ensuring that the community is responsive to
queries and responds quickly to issues discovered by others. Determining the adaptability of the
open-source solutions and the convenience with which they could be customized or extended to
address the peculiar needs of the company. Also, determining the potential risk of malicious code
introduced by third parties in the code. Some others include navigating customization, deployment,
etc., determining whether it meets current industry standards, and how interoperable the controllers
are with the existing solutions in the production chain. Finally, another challenge relates to handling
network security, especially due to the security risk that may be incurred or inherent, and ensuring that
network configurations and policies are robust and resilient.



CMC, 2024, vol.80, no.1 789

Ensuring that network configurations and policies are robust and resilient can be achieved
through proper traffic monitoring, community involvement, policy optimization and enforcement,
and integrating security frameworks. AI can play a vital role in determining optimal policies and
configurations for the best results, as well as prove useful in anomaly detection and attack mitigation.

7.7 Other Challenges and Future Work

The evolution in the network architecture of SDN will create new potential and challenges. Several
considerations should be taken to determine the best-suited solution for the implementation of an
SDN solution. Listed below are several potential challenges and opportunities:

• Standardization is one of the key issues around SDN. Standards bodies like the Open Network-
ing Foundation (ONF), the Telecommunication Standardization Sector of the International
Telecommunications Union (ITU-T), the Internet Engineering Task Force (IETF), and the
Optical Internetworking Forum (OIF) are involved in different areas of SDN. Unlike some
network technologies, such as Ethernet, there is a need for standard bodies responsible for
coordinating open standards for SDN. To a slight degree, there are strong initiatives from
industry players in developing standards and guidelines for SDN. Open standards can easily
provide a platform by which some of the benefits of open-source SDN controllers can be
fully harnessed such as interoperability, and foster innovation by harmonizing inputs towards
landmark improvements that could set the pace even ahead of proprietary SDN controllers.

• Centralization of the controller creates a single point of failure, scalability issues, and a lack
of efficiency. The scalability and availability of using a centralized SDN controller may lead to
security issues. As the intelligence of SDN logically centralizes in the controller, the network
is vulnerable to malicious attacks and system reliability. Earlier development of controllers
is more focused on research and small-scale operation which does not focus more on high
availability and reliability. As the requirement expands to the service provider environment, the
design of a controller such as ONOS is built for carrier-grade specific as such clustering support.
Thus ensuring a very robust management and proper security protection of the controller is of
paramount importance and the developments in machine learning and artificial intelligence can
play a huge role in the prevention, detection, and mitigation of security attacks (such as DDoS)
at the controller. Similarly, the optimization of different network performance metrics related
to the centralized control in the network is another consideration that ought to be further given
attention.

• Regarding Application Programming Interfaces or APIs, at the moment no dominant protocol
standards apply. Most SDN controllers inclusive ONOS support OpenFlow as the standard
southbound interface of SDN architecture but there are still challenges with the industry
acceptance. While most of the SDN controllers are OpenFlow ready, they are also built with
legacy southbound interfaces including existing BGP, Netconf, XMPP, OVSDB, MPLS-TP
and many more. OpenFlow may not remain the choice of SDN protocol. SDN controller
APIs dictate how the application is written and exposed and thus more variety with regard
to standardized APIs would be required bearing in mind the importance of interoperability in
open-source solutions.

SDN industry is seen to be growing in tandem with the diversity of initiatives and projects that
have been brought together despite the challenges posed above.

• While standards have been challenging, a significant effort on open source initiatives and
industries supports the future SDN standard emerging trends from several standards bodies.



790 CMC, 2024, vol.80, no.1

ONF, for example, is very aggressive in collaborating with standards bodies and technology
vendors to come out with common standards that could lead to single standard references for
the SDN industry. A lot of standards initiatives activities towards SDN and many of those
standards are still emerging.

• Since the current providers’ network is composed of multi-layer technology with different
vendor solutions and control protocols, SDN eliminated the complexity by creating centralized
control and directly programmable regardless of the underlying network infrastructure of
the network. Thus, gain the ability to reroute data traffic on the fly, and enhance network
performance and agility over different network applications (Bandwidth on Demand, Load
balancer, Deep Packet Inspection, DDoS mitigation, etc.) and services.

• SDN has the potential to be used in diverse fields and sectors. Apart from telecommunications
and networking, aviation traffic has begun to apply the concept of SDN. The security industry
of Air Traffic Safety (ATM) has practiced the concept of ONOS SDN, driven by Air Navigation
Service Providers (ANSP), Frequentis’ NetBroker built on ONOS in broadband optimization
and automated routing. In 2017, ONOS-based NetBroker was being rolled out in Brazil [52].

• SDN is well suited to operate in the cloud and virtualization environment. SDN and Network
Function Virtualization (NFV) both aim to simplify while automating the traditional way that
network operators build and manage networks. For SDN to work well in the virtualization layer,
it needs to go hand in hand with NFV. If SDN is about logically centralized network control,
extracting complicated parts of the typical network environment, NFV is about network
virtualization, the orchestration of network functions, and management. SDN and NFV are
highly complementary [52].

• ONOS is the latest open SDN controller that focuses on service providers’ needs and the only
SDN controller that focuses on carrier-grade compliance, completely open source, fit high-
performance aspects, and has the reliability to increase the availability and scalability of service
provider network critical requirements and compliance with open standards. Respecting the
openness and scalability criteria, ONOS has quickly matured and been adopted by carrier-grade
networks and telcos.

The future of SDN is open source and also the future of network providers. Looking to the future,
provider networks are no more vendor lock-in-based. Companies are aggressively involved in open-
source projects and run their business operation through open-source solutions as the underlying
technology. SDN is introduced as the solution to today’s network complexity. Decoupling network
control into separate centralized devices and the ability of the operation to be operated through
virtualization and standard protocols may result in less capital and operating costs. Furthermore, ease
of management from a centralization controller, and become directly programmable of the devices.
Open standards become so important for companies to move further and be more innovative. There
is a strong transition of legacy to a neutral network. One of the latest SDN open-source projects is
ONOS, which is an SDN controller deployed by the industry.

The future of SDN is believed to diversify existing technology variations to become more
prominent in improving programmability and automation. Thus, many options are offered in SDN
variants such as SDN-WAN and SDN-DC. These variations exist due to several factors such as (i)
The provision of many public and private clouds; (ii) Improving automation to reduce mean time to
deliver and restoration; (iii) The need to monitor and operate a hybrid infrastructure over physical or
virtual network; (iv) Product change and service monolithic to micro-service; (v) High demand using
white box infrastructure and lower-cost options.



CMC, 2024, vol.80, no.1 791

8 Conclusion

The software-defined networking offers affordable opportunities for service providers to build
and adopt various types of SDN solutions. Growing operators and vendors have begun to take more
resource adoption of the open source domain as the trends move towards deployment plans using
SDN technologies as a new way of designing, controlling, and managing networks. The main target
is to have a more scalable, agile, and reliable networking system with a software-based approach. One
of the key factors for growing the support of open-source SDN controllers is various organizations’
commitment to the use of open-source or build controller platforms based on open-source solutions.
This would create a complete and open networking ecosystem. Thus, operators and vendors should
take advantage of the open-source SDN controller platform.

The open-source SDN controllers, ONOS provide an alternative to service providers to deliver
carrier-grade networks. ONOS has progressed tremendously and has been accepted by carrier-grade
networks and telecommunication companies due to their openness and scalability criteria apart from
the criteria discussed in the previous section. ONOS was completely open source, fit high-performance
aspects, and the reliability to increase the availability and scalability of service provider network critical
requirements and compliance with open standards. ONOS focuses on service providers’ needs and is
the only SDN controller that focuses on carrier-grade compliance. ONOS is designed and developed
for scalability, high performance, and high availability.

This paper compares five popular and commonly deployed open-source controllers which are
NOX/POX, Ryu, Floodlight, OpenDayLight, and ONOS. Each of the controllers is briefly introduced
and compared in terms of the origin, programming language, carrier-grade support, learning curve,
etc. ONOS has been created with (i) carrier-grade features such as scalability, high availability and
performance in terms of throughput (application intents per second) and latency (time to process
network events); (ii) northbound abstraction/APIs to ease the creation of new services using ONOS
by extending the agility of software to networks; and (iii) southbound abstraction with device and
protocol plugins as a means for ONOS to provide SDN control over OpenFlow enabled devices and
legacy devices. It allows a smooth transition to an SDN-based network operating over white boxes
or any community servers. This paper explores and provides relevant information that ONOS has
filled a critical role in the service provider network by providing a set of high-level abstractions and
models, which it exposes to the network elements and applications layer while following emerging
open standards. Leading service providers and vendors have also assisted ONOS by guiding it with
use cases. The network industry giant and leading service providers have planned and deployed SDN
and ONOS in their lab environments and brownfield operation networks. Thus, ONOS will be the
stronger choice for service providers that need to meet carrier-grade networks yet require open SDN
solutions to the industry.

This paper has also provided answers to several important questions relating to the implications
of open-source SDN controllers on standard compliance, interoperability, and vendor lock-ins as
well as examples of the use of open-source SDN in real projects, the contributions of the open SDN
community, the role of AI, and how security issues are handled. Particularly, there have been a lot of
studies on the use of AI to detect distributed denial of service attacks. This paper has also provided
some of the recent studies on open-source SDN controllers concerning performance evaluation, traffic
monitoring, topology and architecture as well as security. Challenges associated with open-source
SDN and future directions have also been provided.



792 CMC, 2024, vol.80, no.1

Acknowledgement: The authors wish to express their appreciation to the reviewers for their helpful
suggestions which greatly improved the presentation of this paper.

Funding Statement: Sunway University funded the APC for this paper. Oluwatosin Ahmed Amodu’s
research is supported by Universiti Kebangsaan Malaysia, under Dana Impak Perdana 2.0. (Ref: DIP–
2022–020).

Author Contributions: The authors confirm their contribution to the paper as follows: study conception
and design: Johari Abdul Rahim, Rosdiadee Nordin; data collection: Johari Abdul Rahim, Oluwatosin
Ahmed Amodu; draft manuscript preparation: Johari Abdul Rahim, Oluwatosin Ahmed Amodu;
Supervision: Rosdiadee Nordin; Funding: Rosdiadee Nordin. All authors reviewed the results and
approved the final version of the manuscript.

Availability of Data and Materials: The data and codes that support the findings of this study are
available from the corresponding authors upon reasonable request.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] B. Duck and N. Bridge, “Future of open source survey,”2016. Accessed: Apr. 25, 2018. [Online]. Available:

https://opensource.com/business/16/5/2016-future-open-source-survey
[2] S. Krishnamurthy, “An analysis of open source business models,” in Perspectives on Free and Open Source

Software, pp. 279–296, 2005. doi: 10.7551/mitpress/5326.003.0022.
[3] M. Mustonen, “Copyleft—the economics of Linux and other open source software,” Inf. Econ. Policy,

vol. 15, no. 1, pp. 99–121, Mar. 2003. doi: 10.1016/S0167-6245(02)00090-2.
[4] M. Godfrey and M. Tu, “Growth, evolution, and structural change in open source software,” in Proc. 4th

Int. Workshop on Princ. Softw. Evol., ACM Press, 2001, pp. 103–106.
[5] S. Koch, “Evolution of open source software systems–A large-scale investigation,” in Proc. 1st Int. Conf.

Open Source Syst., Genoa, Italy, Jul. 2005, pp. 148–153.
[6] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, and I. Herraiz, “Evolution and growth in large libre

software projects,” in Proc. Eighth Int. Workshop on Princ. Softw. Evol. (IWPSE 2005), IEEE Computer
Society, 2005, pp. 165–174.

[7] C. K. Roy and J. R. Cordy, “Evaluating the evolution of small scale open source software systems,”
Advances in Computer Science and Engineering, vol. 123, 2006. Accessed: Apr. 25, 2018. [Online]. Available:
https://research.cs.queensu.ca/home/cordy/Papers/RCS_RoyCordyEvolution.pdf

[8] G. Succi, J. Paulson, and A. Eberlein, “Preliminary results from an empirical study on the growth of open
source and commercial software products,” in EDSER-3 Workshop, 2001, pp. 14–15.

[9] Grand View Research, “Software defined networking market size, share & trends analysis report by end-
use, by service, by solution, by application, by region, and segment forecasts, 2018–2024,” Market Analysis
Report, Report ID: 978-1-68038-114-6.

[10] C. Prabha, A. Goel, and J. Singh, “A survey on sdn controller evolution: A brief review,” in 2022 7th Int.
Conf. Commun. Elect. Syst. (ICCES), Coimbatore, India, IEEE, 2022, pp. 569–575.

[11] S. H. Darekar, M. Z. Shaikh, and H. B. Kondke, “Performance evaluation of various open flow SDN
controllers by addressing scalability metric based on multifarious topology design on software-defined
networks: A comprehensive survey,” in Proc. Third Int. Conf. Intell. Comput., Inform. Control Syst.:
ICICCS 2021, Springer Nature Singapore, Mar. 2022, pp. 327–338.

[12] S. Ahmad and A. H. Mir, “Scalability, consistency, reliability and security in SDN controllers: A survey
of diverse SDN controllers,” J. Netw. Syst. Manag., vol. 29, pp. 1–59, 2022.

https://opensource.com/business/16/5/2016-future-open-source-survey
https://doi.org/10.7551/mitpress/5326.003.0022
https://doi.org/10.1016/S0167-6245(02)00090-2
https://research.cs.queensu.ca/home/cordy/Papers/RCS_RoyCordyEvolution.pdf


CMC, 2024, vol.80, no.1 793

[13] K. Nisar et al., “A survey on the architecture, application, and security of software defined networking:
Challenges and open issues,” Int. Things, vol. 12, no. 5, pp. 100289, 2020. doi: 10.1016/j.iot.2020.100289.

[14] N. Anerousis, P. Chemouil, A. A. Lazar, N. Mihai, and S. B. Weinstein, “The origin and evolution of open
programmable networks and SDN,” IEEE Commun. Surv. Tutorials, vol. 23, no. 3, pp. 1956–1971, 2021.
doi: 10.1109/COMST.2021.3060582.

[15] SDX Central, “The future of network virtualization and SDN controllers,” 2016. Accessed: Apr. 25, 2018.
[Online]. Available: https://www.sdxcentral.com

[16] H. Galiza, M. Schwarz, J. Bezerra, and J. Ibarra, “Moving an IP network to SDN: A global use case
deployment experience at AmLight,” in Brazilian Symp. Comput. Netw. Distrib. Syst. (SBRC) Workshop
on Future Int. Res. Experiment. (WPEIF), Salvador Bahia Brazil, Jun. 2016, pp. 15–18.

[17] C. Macapuna, C. Rothenberg, and M. Magalhaes, “In-packet bloom filter based data center networking
with distributed OpenFlow controllers,” in GLOBECOM Workshops (GC Wkshps), 2010, pp. 584–588.

[18] Open vSwitch, “Production quality, multilayer open virtual switch,” Accessed: Jun. 6, 2024. [Online].
Available: http://www.openvswitch.org

[19] F. P. Deek and J. A. M. McHugh, Open Source: Technology and Policy. New York: Cambridge University
Press, 2008.

[20] S. Walli, D. Gynn, and B. von Rotz, “The growth of open source software in organizations,” 2005.
Accessed: Apr. 25, 2018. [Online]. Available: http://www.optaros.com/en/publications/white_papers_
reports

[21] M. Leary, “SDN, NFV and open source: The operator’s view,” 2014. Accessed: Apr. 25, 2018. [Online].
Available: http://research.gigaom.com/report/sdn-nfv-and-open-source-the-operators-view/

[22] I. H. S. Markit, “IHS Markit: 75% of carriers surveyed have deployed or will deploy SDN this year,” The
ComSoc Technology Blog website, 2016. Accessed: Apr. 25, 2018. [Online]. Available: http://techblog.
comsoc.org/2016/09/08/ihs-markit-75-of-carriers-surveyed-have-deployed-or-will-deploy-sdn-this-year/

[23] Y. Han, “Software defined networking-based traffic engineering for data center networks,” in Proc. 16th
Asia-Pacific Netw. Operat. Manag. Symp., Sep. 2014.

[24] ONF, “Protocol independent forwarding,” Accessed: Apr. 25, 2018. [Online]. Available: https://www.
opennetworking.org/images/stories/downloads/sdn-resources/white-papers/OF-PIA_Protocol_Independ
ent_Layer_for_OpenFlow_v1-1.pdf

[25] S. Rao, “SDN series part eight: Comparison of open source SDN controllers,” 2018. Accessed: Apr. 25,
2018. [Online]. Available: http://thenewstack.io/sdn-series-part-eight-comparison-of-open-source-sdn-
controllers/

[26] R. Khondoker, A. Zaalouk, R. Marx, and K. Bayarou, “Feature based comparison and selection of
Software Defined Networking (SDN) controllers,” in 2014 World Congress on Computer Applications and
Information Systems (WCCAIS), Hammamet, Tunisia, Jan. 2014, pp. 1–7.

[27] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky, “Advanced study of SDN/Open-
Flow controllers,” in Proc. 9th Central & Eastern Eur. Softw. Eng. Conf., Russia, ACM, 2013, pp. 1.

[28] J. Mccauley, “POX: A python-based OpenFlow controller,” Accessed: Apr. 25, 2018. [Online]. Available:
https://noxrepo.github.io/pox-doc/html/

[29] V. Gude et al., “NOX: Towards an operating system for networks,” ACM SIGCOMM Comput. Commun.
Rev., no. 3, pp. 105–110, 2008. doi: 10.1145/1384609.1384625.

[30] Nippon Telegraph and Telephone Corporation, “Ryu network operating system,” 2012. Accessed: Apr.
25, 2018. [Online]. Available: http://osrg.github.com/ryu/

[31] Floodlight Is an Open SDN Controller, “Project floodlight,” Accessed: Apr. 25, 2018. [Online]. Available:
https://github.com/floodlight/floodlight

[32] OpenDaylight: Open Source Programmable Networking Platform, “OpenDaylight, a linux foundation
collaborative project,” Accessed: Apr. 25, 2018. [Online]. Available: http://www.opendaylight.org/software

[33] U. Krishnaswamy et al., “ONOS: An open source distributed SDN OS,” 2013. Accessed: Apr. 25, 2018.
[Online]. Available: http://www.slideshare.net/umeshkrishnaswamy/open-network-operating-system

https://doi.org/10.1016/j.iot.2020.100289
https://doi.org/10.1109/COMST.2021.3060582
https://www.sdxcentral.com
http://www.openvswitch.org
http://www.optaros.com/en/publications/white_papers_reports
http://www.optaros.com/en/publications/white_papers_reports
http://research.gigaom.com/report/sdn-nfv-and-open-source-the-operators-view/
http://techblog.comsoc.org/2016/09/08/ihs-markit-75-of-carriers-surveyed-have-deployed-or-will-deploy-sdn-this-year/
http://techblog.comsoc.org/2016/09/08/ihs-markit-75-of-carriers-surveyed-have-deployed-or-will-deploy-sdn-this-year/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/OF-PIA_Protocol_Independent_Layer_for_OpenFlow_v1-1.pdf
http://thenewstack.io/sdn-series-part-eight-comparison-of-open-source-sdn-controllers/
http://thenewstack.io/sdn-series-part-eight-comparison-of-open-source-sdn-controllers/
https://noxrepo.github.io/pox-doc/html/
https://doi.org/10.1145/1384609.1384625
http://osrg.github.com/ryu/
https://github.com/floodlight/floodlight
http://www.opendaylight.org/software
http://www.slideshare.net/umeshkrishnaswamy/open-network-operating-system


794 CMC, 2024, vol.80, no.1

[34] Wiki ONOS Project, “Falcon release content of ONOS,” 2018. Accessed: Apr. 25, 2018. [Online].
Available: https://wiki.onosproject.org/display/ONOS/Falcon+release+content

[35] S. A. Shah, J. Faiz, M. Farooq, A. Shafi, and S. A. Mehdi, “An architectural evaluation of SDN
controllers,” in Commun. (ICC) 2013 IEEE Int. Conf., 2013, pp. 3504–3508.

[36] M. Gerola et al., “ICONA: Inter cluster ONOS network application,” in 1st IEEE Conf. Netw. Softwar.
(NetSoft), London, IEEE, 2015, pp. 1–2.

[37] T. Rosado and J. Bernardino, “An overview of Openstack Architecture,” in Proc. 18th Int. Database Eng.
& Appl. Symp., IDEAS ’14, Porto Portugal, Jul. 2014, pp. 366–367. doi: 10.1145/2628194.2628195.

[38] C. Janz, L. Ong, K. Sethuraman, and V. Shukla, “Emerging transport SDN architecture and use cases,”
IEEE Commun. Mag., vol. 54, no. 10, pp. 116–121, Oct. 2016. doi: 10.1109/MCOM.2016.7588279.

[39] M. Gerola, F. Lucrezia, M. Santuari, E. Salvadori, S. S. P. L. Ventre, and M. Campanella, “ICONA: A
peer-topeer approach for software defined wide area networks using ONOS,” in Eur. Workshop Softw.
Defined Netw. (EWSDN), Oct. 2016.

[40] A. Gupta et al., “SDX: A software defined internet exchange,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 4, pp. 551–562, 2015. doi: 10.1145/2740070.2626300.

[41] M-CORD, “Mobile CORD,” Accessed: Apr. 25, 2018. [Online]. Available: https://www.opennetworking.
org/solutions/m-cord/

[42] International Telecommunications Union, Architecture of Optical Transport Networks, “ITU-T Recom-
mendation G.872,” 2019. Accessed: Apr. 25, 2018. [Online]. Available: https://www.itu.int/rec/T-REC-
G.872-201912-S/en

[43] E-Cube, “E2 Infra, TMRND,” Accessed: Feb. 27, 2018. [Online]. Available: http://www.tmrnd.com.my/
research-themes/e-cube

[44] “Tech Mahindra joins ONOS as a collaborator,” Accessed: Apr. 25, 2018. [Online]. Available: https://
onosproject.org/2016/02/22/tech-mahindra-joins-onos-as-a-collaborator/

[45] W. Mitchell, “AARNET-X [PowerPoint slides],”2017. Accessed: Apr. 25, 2018. [Online]. Available: https://
meetings.internet2.edu/media/medialibrary/2017/10/11/20171017-mitchell-aarnet-x.pdf

[46] ESNet, GEANT, Indiana, U, and Internet2, “Perfsonar-performance service oriented network mon-
itoring architecture,” 2016. Accessed: Apr. 25, 2018. [Online]. Available: http://perfsonar.net

[47] GEANT, “Geant-european research and education network,” Accessed: Jan. 19, 2024. [Online]. Available:
http://www.geant.org

[48] S. Jain et al., “B4: Experience with a globally-deployed software-defined WAN,” ACM SIGCOMM
Comput. Commun. Rev., vol. 43, pp. 3–14, 2013.

[49] Y. H. Kim and D. Kim, “ONOS-based KREONET-S deployment and VDN application system,” 2016.
Accessed: Apr. 25, 2018. [Online]. Available: https://documents.pub/document/onos-based-kreonet-s-
deployment-and-vdn-application-systemkreonet-snetreleaseonos-build-2016-yhkimpdf.html?page=1

[50] Wiki ONOS Project, “Global SDN deployment powered by ONOS,” 2017. Accessed: Apr. 25, 2018.
[Online]. Available: https://wiki.onosproject.org/display/ONOS/Global+SDN+Deployment+Powered+
by+ONOS

[51] Argela, “Argela-Secure Network Infrastructures,” Accessed: Dec. 30, 2023. [Online]. Available: https://
www.argela.com.tr/en/secure-network-infrastructures

[52] ONOS in action, “Onos project,” 2017. Accessed: Apr. 25, 2018. [Online]. Available: https://onosproject.
org/in-action/

[53] Huawei ICT Insights Publications, “China Unicom and Huawei Collaborate on SDN-ONOS [Press
release],” Aug. 2016. Accessed: Jun. 21, 2024. [Online]. Available: https://e-file.huawei.com/~/media/EBG/
Download_Files/Publications/en/ICT%20Insights%20Issue%2018.pdf

[54] Huawei ICT Insights Publications, “Enabling Service Innovation in Cloud Era [Press release],” Septem-
ber 2, 2016. Accessed: Apr. 25, 2018. [Online]. Available: https://www.huawei.com/en/press-events/
news/2016/9/Industry-First-Full-Scenario-Agile-Controller-3

[55] Blue Planet Product, “Blue Planet ONOS,” 2024. Accessed: Apr. 25, 2018. [Online]. Available: https://
www.blueplanet.com/products

https://wiki.onosproject.org/display/ONOS/Falcon+release+content
https://doi.org/10.1145/2628194.2628195
https://doi.org/10.1109/MCOM.2016.7588279
https://doi.org/10.1145/2740070.2626300
https://www.opennetworking.org/solutions/m-cord/
https://www.opennetworking.org/solutions/m-cord/
https://www.itu.int/rec/T-REC-G.872-201912-S/en
https://www.itu.int/rec/T-REC-G.872-201912-S/en
http://www.tmrnd.com.my/research-themes/e-cube
http://www.tmrnd.com.my/research-themes/e-cube
https://onosproject.org/2016/02/22/tech-mahindra-joins-onos-as-a-collaborator/
https://onosproject.org/2016/02/22/tech-mahindra-joins-onos-as-a-collaborator/
https://meetings.internet2.edu/media/medialibrary/2017/10/11/20171017-mitchell-aarnet-x.pdf
https://meetings.internet2.edu/media/medialibrary/2017/10/11/20171017-mitchell-aarnet-x.pdf
http://perfsonar.net
http://www.geant.org
https://documents.pub/document/onos-based-kreonet-s-deployment-and-vdn-application-systemkreonet-snetreleaseonos-build-2016-yhkimpdf.html?page=1
https://documents.pub/document/onos-based-kreonet-s-deployment-and-vdn-application-systemkreonet-snetreleaseonos-build-2016-yhkimpdf.html?page=1
https://wiki.onosproject.org/display/ONOS/Global+SDN+Deployment+Powered+by+ONOS
https://wiki.onosproject.org/display/ONOS/Global+SDN+Deployment+Powered+by+ONOS
https://www.argela.com.tr/en/secure-network-infrastructures
https://www.argela.com.tr/en/secure-network-infrastructures
https://onosproject.org/in-action/
https://onosproject.org/in-action/
https://e-file.huawei.com/~/media/EBG/Download_Files/Publications/en/ICT%20Insights%20Issue%2018.pdf
https://e-file.huawei.com/~/media/EBG/Download_Files/Publications/en/ICT%20Insights%20Issue%2018.pdf
https://www.huawei.com/en/press-events/news/2016/9/Industry-First-Full-Scenario-Agile-Controller-3
https://www.huawei.com/en/press-events/news/2016/9/Industry-First-Full-Scenario-Agile-Controller-3
https://www.blueplanet.com/products
https://www.blueplanet.com/products


CMC, 2024, vol.80, no.1 795

[56] Open CORD Project, “Open cord,” 2018. Accessed: Apr. 25, 2018. [Online]. Available: https://opencord.
org

[57] PR Newswire, “ECI develops an ONOS-based software-defined networking (SDN) controller [Press
release],” Dec. 17, 2015. Accessed: Jun. 21, 2024. [Online]. Available: https://www.ecitele.com/media/1509/
eci-collaborates-with-onos-press-release-dec-17-2015-final.pdf

[58] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood, “On controller performance
in software-defined networks,” in Proc. Hot-ICE “12 Proc. 2nd USENIX Conf. Hot Top. Manag. Internet,
Cloud, Enterp. Netw. Serv., 2012, pp. 10.

[59] D. Kreutz et al., “Software-defined networking: A comprehensive survey,” Proc. IEEE, vol. 103, no. 1,
pp. 1–76, 2015. doi: 10.1109/JPROC.2014.2371999.

[60] A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation using OpenFlow: A survey,” IEEE
Commun. Surv. Tut., vol. 16, pp. 493–512, 2014.

[61] S. Azodolmolky, Software defined networking with OpenFlow. UK: Packet Publishing Ltd., 2013.
[62] O. Salman et al., “SDN controllers: A comparative study,” in Elect. Conf. (MELECON), 2016 18th

Mediterranean, IEEE, 2016. Accessed: Apr. 25, 2018. [Online]. Available: https://www.researchgate.net/
publication/304457462_SDN_controllers.

[63] J. Kim et al., “OF@ TEIN: An OpenFlow-enabled SDN testbed over international SmartX Rack sites,”
Proc. Asia Pac. Adv. Netw., vol. 36, pp. 17–22, 2013. doi: 10.7125/APAN.36.3.

[64] P. Berde et al., “ONOS: Towards an open, distributed SDN OS,” in Proc. Third Workshop on Hot Topics
in Softw. Def. Netw., HotSDN ’14, New York, NY, USA, ACM, 2014, pp. 1–6.

[65] H. M. Noman and M. N. Jasim, “POX controller and open flow performance evaluation in software-
defined networks (SDN) using mininet emulator,” IOP Conf. Series: Mat. Sci. Eng., vol. 881, pp. 012102,
Jul. 2020.

[66] N. M. Kazi, S. R. Suralkar, and U. S. Bhadade, “Evaluating the performance of POX and RYU SDN
controllers using mininet,” in Data Science and Comput. Intell.: Sixteenth Int. Conf. Inform. Process.,
ICInPro 2021, Oct. 22–24, 2021, Bengaluru, India, Springer International Publishing. pp. 181–191.

[67] S. H. Choi and J. Kwak, “Performance analysis of simple IDS for floodlight controller in SDN Environ-
ment, international information institute (Tokyo),” Information, vol. 17, no. 11, p. 5435, 2014.

[68] M. A. M. Alrammahi and W. S. Bhaya, “Performance analysis for load balancing algorithms using POX
controller in SDN,” in 2022 Int. Conf. Data Science and Intell. Comput. (ICDSIC), IEEE, Nov. 2022, pp.
175–180.

[69] Y. Li, X. Guo, X. Pang, B. Peng, X. Li and P. Zhang, “Performance analysis of floodlight and Ryu SDN
controllers under mininet simulator,” in 2020 IEEE/CIC Int. Conf. Commun. in China (ICCC Workshops),
IEEE, Aug. 2020, pp. 85–90.

[70] W. M. Othman, H. Chen, A. Al-Moalmi, and A. N. Hadi, “Implementation and performance analysis of
SDN firewall on POX controller,” in 2017 IEEE 9th Int. Conf. Commun. Softw. Netw. (ICCSN), IEEE,
May 2017, pp. 1461–1466.

[71] S. Bhardwaj and S. N. Panda, “Performance evaluation using RYU SDN controller in software-
defined networking environment,” Wirel. Pers. Commun., vol. 122, no. 1, pp. 701–723, 2022. doi:
10.1007/s11277-021-08920-3.

[72] A. H. Eljack, A. H. M. Hassan, and H. H. Elamin, “Performance analysis of ONOS and floodlight SDN
controllers based on TCP and UDP traffic,” in 2019 Int. Conf. Comput., Control, Elect., and Elect Eng.
(ICCCEEE), IEEE, Sep. 2019, pp. 1–6.

[73] C. Fancy and M. Pushpalatha, “Performance evaluation of SDN controllers POX and floodlight in
mininet emulation environment,” in 2017 Int. Conf. Intell. Sustain. Syst. (ICISS), IEEE, Dec. 2017, pp.
695–699.

[74] R. C. Meena, M. Bundele, and M. Nawal, “RYU SDN controller testbed for performance testing of source
address validation techniques,” in 2020 3rd Int. Conf. Emerg. Technol. Comput. Eng.: Machine Learn Int.
Things (ICETCE), IEEE, Feb. 2020, pp. 1–6.

https://opencord.org
https://opencord.org
https://www.ecitele.com/media/1509/eci-collaborates-with-onos-press-release-dec-17-2015-final.pdf
https://www.ecitele.com/media/1509/eci-collaborates-with-onos-press-release-dec-17-2015-final.pdf
https://doi.org/10.1109/JPROC.2014.2371999
https://www.researchgate.net/publication/304457462_SDN_controllers
https://www.researchgate.net/publication/304457462_SDN_controllers
https://doi.org/10.7125/APAN.36.3
https://doi.org/10.1007/s11277-021-08920-3


796 CMC, 2024, vol.80, no.1

[75] A. Sharma and G. S. Verma, “Performance comparison of Ryu and floodlight SDN controller,” in AIP
Conference Proceedings, AIP Publishing, Jun. 2023, vol. 2705, no. 1, pp. 040007. doi: 10.1063/5.0133684.

[76] R. K. Chouhan, M. Atulkar, and N. K. Nagwani, “Performance comparison of Ryu and floodlight
controllers in different SDN topologies,” in 2019 1st Int. Conf. Adv. Technol. Intelligent Control, Environ,
Comput. & Commun. Eng. (ICATIECE), IEEE, Mar. 2019, pp. 188–191.

[77] D. Cabarkapa and D. Rancic, “Performance analysis of Ryu-POX controller in different tree-based SDN
topologies,” Adv. Electr. Comp. Eng., vol. 21, no. 3, pp. 31–38, 2021. doi: 10.4316/AECE.2021.03004.

[78] I. Z. Bholebawa and U. D. Dalal, “Performance analysis of SDN/OpenFlow controllers: POX versus
floodlight,” Wirel. Pers. Commun., vol. 98, no. 2, pp. 1679–1699, 2018. doi: 10.1007/s11277-017-4939-z.

[79] A. Singh, N. Kaur, and H. Kaur, “Extensive performance analysis of OpenDayLight (ODL) and Open
Network Operating System (ONOS) SDN controllers,” Microprocess. Microsyst., vol. 95, no. 15, pp.
104715, 2022. doi: 10.1016/j.micpro.2022.104715.

[80] S. Rowshanrad, V. Abdi, and M. Keshtgari, “Performance evaluation of SDN controllers: Floodlight and
OpenDaylight,” IIUM Eng. J., vol. 17, no. 2, pp. 47–57, 2016. doi: 10.31436/iiumej.v17i2.615.

[81] M. T. Islam, N. Islam, and M. A. Refat, “Node to node performance evaluation through RYU SDN
controller,” Wirel. Pers. Commun., vol. 112, no. 1, pp. 555–570, 2020. doi: 10.1007/s11277-020-07060-4.

[82] A. E. S. F. Ahmed and H. A. Elsayed, “Performance comparison of SDN wireless network under
floodlight and POX controllers,” in 2022 13th Int. Conf. Elect. Eng. (ICEENG), IEEE, Mar. 2022, pp.
91–95.

[83] A. B. Zainab and M. B. Al-Somaidai, “Network performance evaluation of distributed SDN using flood-
light controllers,” in 2019 2nd Int. Conf. Elect., Commun., Comput., Pow. Control Eng. (ICECCPCE),
IEEE, Feb. 2019, pp. 34–39.

[84] I. K. Nisrina, A. Aginsa, E. Vinietta, and N. R. Syambas, “Link failure analysis in SDN data-center using
RipL-POX controller,” in 2015 9th Int. Conf. Telecommun. Syst. Serv. Appl. (TSSA), IEEE, Nov. 2015,
pp. 1–6.

[85] E. Amiri, E. Alizadeh, and M. H. Rezvani, “Controller selection in software defined networks using best-
worst multi-criteria decision-making,” Bull. Electr. Eng. Inform., vol. 9, no. 4, pp. 1506–1517, 2020. doi:
10.11591/eei.v9i4.2393.

[86] J. Ali and B. H. Roh, “Quality of service improvement with optimal software-defined networking
controller and control plane clustering,” Comput. Mater. Contin., vol. 67, no. 1, pp. 849–875, 2021. doi:
10.32604/cmc.2021.014576.

[87] M. Zaher and S. Molnár, “A comparative and analytical study for choosing the best suited SDN network
operating system for cloud data center,” Annals of Emerg. Technol. Comput. (AETiC), vol. 6, no. 1, pp.
43–59, 2022. doi: 10.33166/AETiC.2017.10.01.

[88] B. Sapkota, B. R. Dawadi, and S. R. Joshi, “Controller placement problem during SDN deployment in
the ISP/Telco networks: A survey,” Eng. Rep., vol. 6, no. 2, pp. e12801, 2024. doi: 10.1002/eng2.12801.

[89] J. Ali, B. H. Roh, and S. Lee, “QoS improvement with an optimum controller selection for software-defined
networks,” PLoS One, vol. 14, no. 5, pp. e0217631, 2019. doi: 10.1371/journal.pone.0217631.

[90] J. Ali, B. Lee, J. Oh, J. Lee, and B. H. Roh, “A novel features prioritization mechanism for con-
trollers in software-defined networking,” Comput. Mater. Contin., vol. 69, no. 1, pp. 267–282, 2021. doi:
10.32604/cmc.2021.017813.

[91] D. Kannan and R. Thiyagarajan, “Entropy based TOPSIS method for controller selection in software-
defined networking,” Concurr. Comput.: Pract. Exp., vol. 34, no. 1, pp. e6499, 2022. doi: 10.1002/cpe.6499.

[92] W. Kim, J. Li, J. W. K. Hong, and Y. J. Suh, “OFMon: OpenFlow monitoring system in onos controllers,”
in 2016 IEEE NetSoft Conf. Workshops (NetSoft), IEEE, 2016, pp. 397–402.

[93] S. A. R. Shah, S. Bae, A. Jaikar, and S. Y. Noh, “An adaptive load monitoring solution for logically cen-
tralized sdn controller,” in 2016 18th Asia-Pacific Netw. Operat. Manag. Symp. (APNOMS), IEEE, 2016,
pp. 1–6.

[94] H. Sahu, R. Tiwari, and S. Kumar, “SDN-based traffic monitoring in data center network using flood-
light controller,” Int. J. Intell. Inform. Technol. (IJIIT), vol. 18, no. 3, pp. 1–13, 2022.

https://doi.org/10.1063/5.0133684
https://doi.org/10.4316/AECE.2021.03004
https://doi.org/10.1007/s11277-017-4939-z
https://doi.org/10.1016/j.micpro.2022.104715
https://doi.org/10.31436/iiumej.v17i2.615
https://doi.org/10.1007/s11277-020-07060-4
https://doi.org/10.11591/eei.v9i4.2393
https://doi.org/10.32604/cmc.2021.014576
https://doi.org/10.33166/AETiC.2017.10.01
https://doi.org/ 10.1002/eng2.12801
https://doi.org/10.1371/journal.pone.0217631
https://doi.org/10.32604/cmc.2021.017813
https://doi.org/10.1002/cpe.6499


CMC, 2024, vol.80, no.1 797

[95] Y. Han et al., “Onvisor: Towards a scalable and flexible SDN-based network virtualization platform on
ONOS,” Int. J. Netw. Manag., vol. 28, no. 2, pp. e2012, Mar./Apr. 2018. doi: 10.1002/nem.2012.

[96] C. M. Iurian, I. A. Ivanciu, B. M. Marian, D. Zinca, and V. Dobrota, “An SDN architecture for IoT
networks using ONOS controller,” in 2020 19th RoEduNet Conf.: Netw. Edu. Res. (RoEduNet), IEEE,
Dec. 2020, pp. 1–6.

[97] Scott-Hayward, Sandra, “Trailing the Snail: SDN Controller Security Evolution,” 2017. Accessed: Apr.
25, 2018. [Online]. Available: https://www.researchgate.net/publication/321241950_Trailing_the_Snail_
SDN_Controller_Security_Evolution

[98] H. Gocher, S. Taterh, and P. Dadheech, “Impact analysis to detect and mitigate distributed denial of
service attacks with Ryu-SDN Controller: A comparative analysis of four different machine learning
classification algorithms,” SN Comput. Sci., vol. 4, no. 5, pp. 456, 2023. doi: 10.1007/s42979-023-01842-w.

[99] P. Ohri, S. G. Neogi, and S. K. Muttoo, “Security analysis of open source SDN (ODL and ONOS)
controllers,” in 2023 IEEE Int. Students’ Conf. Elect., Electron Comput. Sci. (SCEECS), IEEE, Feb. 2023,
pp. 1–4.

[100] J. Ma, R. Jin, L. Dong, G. Zhu, and X. Jiang, “Implementation of SDN traffic monitoring based on Ryu
controller,” Int. Symp. Comput. Appl. Inform. Syst. (ISCAIS 2022), vol. 12250, no. 01, pp. 203–212, May
2022. doi: 10.1117/12.2639589.

[101] Y. Gautam, B. P. Gautam, and K. Sato, “Experimental security analysis of SDN network by using packet
sniffing and spoofing technique on POX and Ryu controller,” in 2020 Int. Conf. Network. Netw. Appl.
(NaNA), IEEE, Dec. 2020, pp. 394–399.

[102] R. K. Arbettu, R. Khondoker, K. Bayarou, and F. Weber, “Security analysis of OpenDaylight, ONOS,
Rosemary and Ryu SDN controllers,” in 2016 17th Int. Telecommun. Netw. Strat. Planning Symp.
(Networks), IEEE, Sep. 2016, pp. 37–44.

[103] M. Dagli, S. Keskin, Y. Yigit, and A. Kose, “Resiliency analysis of ONOS and Opendaylight SDN
controllers against switch and link failures,” in 2020 Fifth Int. Conf. Res. Comput. Intell. Commun. Netw.
(ICRCICN), IEEE, Nov. 2020, pp. 149–153.

[104] Q. Ilyas and R. Khondoker, “Security analysis of floodlight, zeroSDN, beacon and POX SDN con-
trollers,” in R. Khondoker (ed.) SDN and NFV Security, Cham: Springer, 2018, vol. 30, pp. 85–98. doi:
10.1007/978-3-319-71761-6_6

[105] C. Bouras, A. Kollia, and A. Papazois, “Teaching network security in mobile 5G using ONOS SDN
controller,” in 2017 Ninth Int. Conf. Ubiquit. Future Netw. (ICUFN), IEEE, Jul. 2017, pp. 465–470.

[106] B. Sokappadu and A. Mungur, “A middleware for integrating legacy network devices into software-
defined networking (SDN),” in Towards New e-Infrastruct. e-Services for Develop. Countries: 12th EAI Int.
Conf., AFRICOMM 2020, Mauritius, Springer International Publishing, Dec. 2–4, 2020, pp. 121–139.

[107] A. Rajaratnam, R. Kadikar, S. Prince, and M. Valarmathi, “Software defined networks: Comparative
analysis of topologies with ONOS,” in 2017 Int. Conf. Wireless Commun., Signal Process. Netw. (WiSP-
NET), IEEE, Mar. 2017, pp. 1377–1381.

[108] Q. P. van, D. Verchere, H. Tran-Quang, and D. Zeghlache, “Container-based microservices SDN control
plane for open disaggregated optical networks,” in 2019 21st Int. Conf. Transparent Optical Netw.
(ICTON), IEEE, Jul. 2019, pp. 1–4.

[109] R. Alvizu et al., “Comprehensive survey on T-SDN: Software-defined networking for trans-
port networks,” IEEE Commun. Surv. Tutorials, vol. 19, no. 4, pp. 2232–2283, 2017. doi:
10.1109/COMST.2017.2715220.

[110] N. Gupta, M. S. Maashi, S. Tanwar, S. Badotra, M. Aljebreen and S. Bharany, “A comparative study of
software-defined networking controllers using mininet,” Electronics, vol. 11, no. 17, pp. 2715, 2022. doi:
10.3390/electronics11172715.

[111] S. T. Arzo et al., “MSN: A playground framework for design and evaluation of microservices-based sdn
controller,” J. Netw. Syst. Manage., vol. 30, no. 1, pp. 1–31, 2022. doi: 10.1007/s10922-021-09631-7.

https://doi.org/10.1002/nem.202
https://www.researchgate.net/publication/321241950_Trailing_the_Snail_SDN_Controller_Security_Evolution
https://www.researchgate.net/publication/321241950_Trailing_the_Snail_SDN_Controller_Security_Evolution
https://doi.org/10.1007/s42979-023-01842-w
https://doi.org/10.1117/12.2639589
https://doi.org/10.1007/978-3-319-71761-6_6
https://doi.org/10.1109/COMST.2017.2715220
https://doi.org/10.3390/electronics11172715
https://doi.org/10.1007/s10922-021-09631-7


798 CMC, 2024, vol.80, no.1

[112] D. Lake, N. Wang, R. Tafazolli, and L. Samuel, “Softwarization of 5G networks-implications to
open platforms and standardizations,” IEEE Access, vol. 9, pp. 88902–88930, 2021. doi: 10.1109/AC-
CESS.2021.3071649.

[113] M. H. Raza, S. C. Sivakumar, A. Nafarieh, and B. Robertson, “A comparison of software defined
network (SDN) implementation strategies,” Procedia Comput. Sci., vol. 32, pp. 1050–1055, 2014. doi:
10.1016/j.procs.2014.05.532.

[114] ONF, “ONF demonstrates SMaRT-5GTM open source energy savings platform at Fyuz,” Accessed:
Dec. 12, 2023. [Online]. Available: https://opennetworking.org/news-and-events/press-releases/onf-
demonstrates-smart-5g-open-source-energy-savings-platform-at-fyuz/

[115] Broadcom, “Software-defined networking open-source software innovation is driving more agile net-
works,” Accessed: Dec. 12, 2023. [Online]. Available: https://www.broadcom.com/solutions/data-center/
software-defined-networking

[116] The Linux Foundation, “Deutsche Telekom (DT) joins the Open Networking Foundation (ONF) as a
Partner,” Jul. 20, 2017. Accessed: Dec. 12, 2023. [Online]. Available: https://www.linuxfoundation.org/
press/pressrelease/deutsche-telekom-dt-joins-the-open-networking-foundation-onf-as-a-partner

[117] D. Kurschner, SP360: Service Provider, “Cisco leads with 5G at mobile world congress 2019 Los Angeles,”
Nov. 4, 2019, Accessed: Dec. 12, 2023. [Online]. Available: https://blogs.cisco.com/sp/hitting-it-out-of-the-
park-at-mobile-world-congress-2019-los-angeles

[118] S. M. Kerner, “Open source floodlight extends software defined networking to openstack,” Jul. 10,
2012, Accessed: Dec. 12, 2023. [Online]. Available: https://www.enterprisenetworkingplanet.com/os/open-
source-floodlight-extends-software-defined-networking-to-openstack/

[119] D. Ramel, “OpenDaylight SDN controller marks 6 years with 10th Release, Neon,”Sep. 4, 2019. Accessed:
Dec. 12, 2023. [Online]. Available: https://virtualizationreview.com/articles/2019/04/01/opendaylight-
neon.aspx

[120] Menlo Park, “Coalition announces global breakthrough for software-defined networking,” May 6,
2015. Accessed: Dec. 12, 2023. [Online]. Available: https://www.prnewswire.com/news-releases/coalition-
announces-global-breakthrough-for-software-defined-networking-300078450.html

[121] A. Venkat, “Top 10 open source software risks for 2023,” Mar. 1, 2023. Accessed: Dec. 12, 2023. [Online].
Available: https://www.csoonline.com/article/574615/top-10-open-source-software-risks-for-2023.html

[122] Sunmait Technologies, “Choosing the right technology for your IT projects,” Sep. 5, 2023. Accessed: Dec.
12, 2023. [Online]. Available: https://medium.com/@sunmait/choosing-the-right-technology-for-your-it-
projects-213feedcfe5c

[123] Help Net Security, “The double-edged sword of open-source software,” Apr. 25, 2023. Accessed: Dec. 12,
2023. [Online]. Available: https://www.helpnetsecurity.com/2023/04/25/open-source-dependencies

[124] S. S. Dang, “How to address cybersecurity issues in open source software?,” Dec. 22, 2022. Accessed: Dec.
12, 2023. [Online]. Available: https://www.forbes.com/sites/sanjitsinghdang/2022/12/22/how-to-address-
cybersecurity-issues-in-open-source-software/

[125] Expert Panel, Forbes Technology Council, “16 expert tips for choosing the best software vendor for
your business,” Apr. 1, 2022. Accessed: Dec. 12, 2023. [Online]. Available: https://www.forbes.com/sites/
forbestechcouncil/2022/04/01/16-expert-tips-for-choosing-the-best-software-vendor-for-your-business

[126] L. Zhu et al., “SDN controllers: A comprehensive analysis and performance evaluation study,” ACM
Comput. Surv., vol. 53, no. 6, pp. 1–40, 2020. doi: 10.1145/3421764.

[127] M. Aslam, D. Ye, M. Hanif, and M. Asad, “Machine learning based SDN-enabled distributed denial-of-
services attacks detection and mitigation system for Internet of Things,” in Mach. Learn. Cyber Security:
Third Int. Conf., ML4CS 2020, Guangzhou, China, Springer International Publishing, Oct. 8–10, 2020,
pp. 180–194.

[128] K. Alhamami and S. Albermany, “DDOS attack detection using machine learning algorithm in
SDN network,” in 2023 Al-Sadiq Int. Conf. Commun. Inform. Technol. (AICCIT), IEEE, Jul. 2023,
pp. 97–102.

https://doi.org/10.1109/ACCESS.2021.3071649
https://doi.org/10.1016/j.procs.2014.05.532
https://opennetworking.org/news-and-events/press-releases/onf-demonstrates-smart-5g-open-source-energy-savings-platform-at-fyuz/
https://opennetworking.org/news-and-events/press-releases/onf-demonstrates-smart-5g-open-source-energy-savings-platform-at-fyuz/
https://www.broadcom.com/solutions/data-center/software-defined-networking
https://www.broadcom.com/solutions/data-center/software-defined-networking
https://www.linuxfoundation.org/press/pressrelease/deutsche-telekom-dt-joins-the-open-networking-foundation-onf-as-a-partner
https://www.linuxfoundation.org/press/pressrelease/deutsche-telekom-dt-joins-the-open-networking-foundation-onf-as-a-partner
https://blogs.cisco.com/sp/hitting-it-out-of-the-park-at-mobile-world-congress-2019-los-angeles
https://blogs.cisco.com/sp/hitting-it-out-of-the-park-at-mobile-world-congress-2019-los-angeles
https://www.enterprisenetworkingplanet.com/os/open-source-floodlight-extends-software-defined-networking-to-openstack/
https://www.enterprisenetworkingplanet.com/os/open-source-floodlight-extends-software-defined-networking-to-openstack/
https://virtualizationreview.com/articles/2019/04/01/opendaylight-neon.aspx
https://virtualizationreview.com/articles/2019/04/01/opendaylight-neon.aspx
https://www.prnewswire.com/news-releases/coalition-announces-global-breakthrough-for-software-defined-networking-300078450.html
https://www.prnewswire.com/news-releases/coalition-announces-global-breakthrough-for-software-defined-networking-300078450.html
https://www.csoonline.com/article/574615/top-10-open-source-software-risks-for-2023.html
https://medium.com/@sunmait/choosing-the-right-technology-for-your-it-projects-213feedcfe5c
https://medium.com/@sunmait/choosing-the-right-technology-for-your-it-projects-213feedcfe5c
https://www.helpnetsecurity.com/2023/04/25/open-source-dependencies
https://www.forbes.com/sites/sanjitsinghdang/2022/12/22/how-to-address-cybersecurity-issues-in-open-source-software/
https://www.forbes.com/sites/sanjitsinghdang/2022/12/22/how-to-address-cybersecurity-issues-in-open-source-software/
https://www.forbes.com/sites/forbestechcouncil/2022/04/01/16-expert-tips-for-choosing-the-best-software-vendor-for-your-business
https://www.forbes.com/sites/forbestechcouncil/2022/04/01/16-expert-tips-for-choosing-the-best-software-vendor-for-your-business
https://doi.org/10.1145/3421764


CMC, 2024, vol.80, no.1 799

[129] N. M. Yungaicela-Naula, C. Vargas-Rosales, and J. A. Perez-Diaz, “SDN-based architecture for transport
and application layer DDoS attack detection by using machine and deep learning,” IEEE Access, vol. 9,
pp. 108495–108512, 2021. doi: 10.1109/ACCESS.2021.3101650.

[130] A. T. Kyaw, M. Z. Oo, and C. S. Khin, “Machine-learning based DDOS attack classifier in software-
defined network,” in 2020 17th Int. Conf. Elect. Eng./Electron., Comput., Telecommun. Inf. Technol.
(ECTI-CON), IEEE, 2020, pp. 431–434.

[131] V. Mohan, B. K. Madhavi, and S. B. Kishor, “Detection of UDP SYN flood ddos attack using random
forest machine learning algorithm in a simulated software defined network,” in Int. Conf. Inform.
Commun. Technol. Intell. Syst., Springer Nature Singapore, Apr. 2023, pp. 513–523.

[132] R. K. Chouhan, M. Atulkar, and N. K. Nagwani, “A framework to detect DDoS attack in Ryu controller
based software defined networks using feature extraction and classification,” Appl. Intell., vol. 53, no. 4,
pp. 4268–4288, 2023. doi: 10.1007/s10489-022-03565-6.

[133] C. Wang et al., “METER: An ensemble DWT-based method for identifying low-rate DDoS attack in
SDN,” in 2021 IEEE 19th Int. Conf. Embed. Ubiquitous Comput. (EUC), IEEE, Oct. 2021, pp. 79–86.

[134] N. M. Yungaicela-Naula, C. Vargas-Rosales, J. A. Pérez-Díaz, and D. F. Carrera, “A flexible SDN-based
framework for slow-rate DDoS attack mitigation by using deep reinforcement learning,” J. Netw. Comput.
Appl., vol. 205, no. 20, pp. 103444, 2022. doi: 10.1016/j.jnca.2022.103444.

[135] Y. Al-Dunainawi, B. R. Al-Kaseem, and H. S. Al-Raweshidy, “Optimized artificial intelligence model for
DDoS detection in SDN environment,” IEEE Access, vol. 11, pp. 106733–106748, 2023.

[136] K. Puranik et al., “A two-level DDoS attack detection using entropy and machine learning
in SDN,” in 2023 3rd Int. Conf. Intell. Technol. (CONIT), Hubli, India, 2023, pp. 1–7. doi:
10.1109/CONIT59222.2023.10205776.

[137] H. Kousar, M. M. Mulla, P. Shettar, and D. G. Narayan, “Detection of DDoS attacks in software defined
network using decision tree,” in 2021 10th IEEE Int. Conf. Commun. Syst. Netw. Technol. (CSNT),
Bhopal, India, IEEE, 2021, pp. 783–788.

[138] A. K. Tahirou, K. Konate, and M. M. Soidridine, “Detection and mitigation of DDoS attacks in
SDN using Machine Learning (ML),” in 2023 Int. Conf. Digital Age & Technol. Adv. Sustain. Develop.
(ICDATA), IEEE, May 2023, pp. 52–59.

[139] A. Maheshwari, B. Mehraj, M. S. Khan, and M. S. Idrisi, “An optimized weighted voting based ensemble
model for DDoS attack detection and mitigation in SDN environment,” Microprocess. Microsyst., vol.
89, no. 1, pp. 104412, 2022. doi: 10.1016/j.micpro.2021.104412.

[140] B. V. Karan, D. G. Narayan, and P. S. Hiremath, “Detection of DDoS attacks in software defined
networks,” in 2018 3rd Int. Conf. Comput. Syst. Inform. Technol. Sustain. Solutions (CSITSS), IEEE,
Dec. 2018, pp. 265–270.

[141] S. Y. Mehr and B. Ramamurthy, “An SVM based DDoS attack detection method for Ryu SDN controller,”
in Proc. 15th Int. Conf. Emerging Netw. Exper. Technol., 2019, pp. 72–73.

[142] J. A. Perez-Diaz, I. A. Valdovinos, K. K. R. Choo, and D. Zhu, “A flexible SDN-based architecture
for identifying and mitigating low-rate DDoS attacks using machine learning,” IEEE Access, vol. 8, pp.
155859–155872, 2020. doi: 10.1109/ACCESS.2020.3019330.

[143] B. Isyaku, K. B. A. Bakar, M. S. Ali, and M. N. Yusuf, “Performance comparison of machine learning
classifiers for DDOS detection and mitigation on software defined networks,” in 2023 IEEE Int. Conf.
Autom. Control Intell. Syst. (I2CACIS), IEEE, Jun. 2023, pp. 69–74.

[144] M. F. Akbaş, C. Güngör, and E. Karaarslan, “Usage of machine learning algorithms for flow based
anomaly detection system in software defined networks,” in Intell. Fuzzy Tech.: Smart and Innov.
Solutions: Proc. INFUS 2020 Conf., Istanbul, Turkey, Springer International Publishing, July 21–23, 2020,
pp. 1156–1163.

[145] T. Jafarian, M. Masdari, A. Ghaffari, and K. Majidzadeh, “Security anomaly detection in software-
defined networking based on a prediction technique,” Int. J. Commun. Syst., vol. 33, no. 14, pp. e4524,
2020. doi: 10.1002/dac.4524.

https://doi.org/10.1109/ACCESS.2021.3101650
https://doi.org/10.1007/s10489-022-03565-6
https://doi.org/10.1016/j.jnca.2022.103444
https://doi.org/10.1109/CONIT59222.2023.10205776
https://doi.org/10.1016/j.micpro.2021.104412
https://doi.org/10.1109/ACCESS.2020.3019330
https://doi.org/10.1002/dac.4524


800 CMC, 2024, vol.80, no.1

[146] L. M. Halman and M. J. Alenazi, “MCAD: A machine learning based cyberattacks detector in software-
defined networking (SDN) for healthcare systems,” IEEE Access, vol. 11, pp. 37052–37067, 2023. doi:
10.1109/ACCESS.2023.3266826.

[147] S. Sanagavarapu and S. Sridhar, “Route prediction in software defined networks using ensemble extreme
learning machines,” in 2021 Int. Conf. Inform. Commun. Technol. Converg. (ICTC), IEEE, Oct. 2021, pp.
1801–1806.

[148] R. Batra, M. Mahajan, and A. Goel, “An Optimized active learning TCM-KNN algorithm based on
intrusion detection system,” in Congress on Intell. Syst.: Proc. CIS 2021, Springer Nature Singapore, Jul.
2022, vol. 1, pp. 621–634.

[149] A. O. Alzahrani and M. J. Alenazi, “ML-IDSDN: Machine learning based intrusion detection system
for software-defined network,” Concurr. Comput.: Pract. Exp., vol. 35, no. 1, pp. e7438, 2023. doi:
10.1002/cpe.7438.

[150] A. Ashraf, Z. Iqbal, M. A. Khan, U. Tariq, S. Kadry and S. O. Park, “Scalable offloading using machine
learning methods for distributed multi-controller architecture of SDN networks,” J. Supercomput., vol.
78, no. 7, pp. 10191–10210, 2022. doi: 10.1007/s11227-022-04313-w.

[151] C. Manso et al., “First scalable machine learning based architecture for cloud-native transport SDN
controller,” in Optical Fiber Commun. Conf., Optica Publishing Group, Jun. 2021, pp. F4H-6.

[152] S. Liang, W. Jiang, F. Zhao, and F. Zhao, “Load balancing algorithm of controller based on SDN
architecture under machine learning,” J. Syst. Sci. Inform., vol. 8, no. 6, pp. 578–588, 2020. doi:
10.21078/JSSI-2020-578-11.

[153] G. Choudhury, G. Thakur, and S. Tse, “Joint optimization of packet and optical layers of a core network
using SDN controller, CD ROADMs and machine-learning-based traffic prediction,” in Optical Fiber
Commun. Conf., Optica Publishing Group, Mar. 2019, pp. M2A-1.

[154] G. Ramya and R. Manoharan, “Prediction based dynamic controller placement in SDN,” EAI Endorsed
Transact. Scalable Inform. Syst., vol. 8, no. 32, pp. 1–14, Apr. 2021. doi: 10.4108/eai.27-4-2021.169420.

[155] A. R. Mohammed, S. A. Mohammed, and S. Shirmohammadi, “Machine learning and deep learning
based traffic classification and prediction in software defined networking,” in 2019 IEEE Int. Symp.
Measure. & Netw. (M&N), IEEE, Jul. 2019, pp. 1–6.

[156] A. Malik, R. de Fréin , M. Al-Zeyadi, and J. Andreu-Perez, “Intelligent SDN traffic classification using
deep learning: Deep-SDN,” in 2020 2nd Int. Conf. Comput. Commun. Inter. (ICCCI), IEEE, Jun. 2020,
pp. 184–189.

[157] A. I. Owusu and A. Nayak, “An intelligent traffic classification in SDN-IoT: A machine learning
approach,” in 2020 IEEE Int. Black Sea Conf. Commun. Netw. (BlackSeaCom), IEEE, 2020, pp. 1–6.

[158] J. Suárez-Varela and P. Barlet-Ros, “Flow monitoring in software-defined networks: Finding
the accuracy/performance tradeoffs,” Comput. Netw., vol. 135, no. 2, pp. 289–301, 2018. doi:
10.1016/j.comnet.2018.02.020.

[159] T. T. Huong, N. D. D. Khoa, N. X. Dung, and N. H. Thanh, “A global multipath load-balanced routing
algorithm based on reinforcement learning in SDN,”in 2019 Int. Conf. Inform. Commun. Technol. Converg.
(ICTC), IEEE, Oct. 2019, pp. 1336–1341.

[160] S. K. Tayyaba et al., “5G vehicular network resource management for improving radio access through
machine learning,” IEEE Access, vol. 8, pp. 6792–6800, 2020. doi: 10.1109/ACCESS.2020.2964697.

[161] R. P. Singh, J. Grover, and G. R. Murthy, “Self organizing software defined edge controller in IoT
infrastructure,” in Proc. 1st Int. Conf. Int. Things and Mach. Learn., Oct. 2017, pp. 1–7.

https://doi.org/10.1109/ACCESS.2023.3266826
https://doi.org/10.1002/cpe.7438
https://doi.org/10.1007/s11227-022-04313-w
https://doi.org/10.21078/JSSI-2020-578-11
https://doi.org/10.4108/eai.27-4-2021.169420
https://doi.org/10.1016/j.comnet.2018.02.020
https://doi.org/10.1109/ACCESS.2020.2964697

	Open-Source Software Defined Networking Controllers: State-of-the-Art, Challenges and Solutions for Future Network Providers
	1 Introduction
	2 Overview of the SDN Controller
	3 Open Source SDN Controllers
	4 Comparative Study of SDN Controllers
	5 Open Networking Operating System ONOS
	6 Advances in the Investigation of Open SDN Controllers
	7 Discussion
	8 Conclusion
	References


