
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.052016

ARTICLE

Optimised CNN Architectures for Handwritten Arabic Character Recognition

Salah Alghyaline*

Department of Computer Science, The World Islamic Sciences and Education University, Amman, 1101-11947, Jordan

*Corresponding Author: Salah Alghyaline. Email: salah.alghyaline@wise.edu.jo

Received: 20 March 2024 Accepted: 07 May 2024 Published: 20 June 2024

ABSTRACT

Handwritten character recognition is considered challenging compared with machine-printed characters due to the
different human writing styles. Arabic is morphologically rich, and its characters have a high similarity. The Arabic
language includes 28 characters. Each character has up to four shapes according to its location in the word (at
the beginning, middle, end, and isolated). This paper proposed 12 CNN architectures for recognizing handwritten
Arabic characters. The proposed architectures were derived from the popular CNN architectures, such as VGG,
ResNet, and Inception, to make them applicable to recognizing character-size images. The experimental results
on three well-known datasets showed that the proposed architectures significantly enhanced the recognition rate
compared to the baseline models. The experiments showed that data augmentation improved the models’ accuracies
on all tested datasets. The proposed model outperformed most of the existing approaches. The best achieved results
were 93.05%, 98.30%, and 96.88% on the HIJJA, AHCD, and AIA9K datasets.

KEYWORDS
Optical character recognition (OCR); handwritten arabic characters; deep learning

1 Introduction

Optical Character Recognition (OCR) converts printed or handwritten text inside the image into
a text [1]. OCR has many applications such as form processing [2,3], automatic indexing [4,5] bank
checks processing [6,7], card scanner [8,9], and text translation [10,11]. The extracted text is usually
used for further processing according to the user’s needs.

Recognizing Arabic characters is challenging due to many facts [12,13]; the Arabic language is
morphologically rich. Also, each letter of the alphabet has many shapes according to its appearance
in the word (at the beginning, middle, end, and isolated). Diacritics are also used in Arabic and
have different locations (under and above the letter). Dots are essential to the letter structure and
can be above and under the letter. Many Arabic letters have the same shape, but the position of the
dots changes the meaning of the letter and therefore the meaning of the word. The Arabic alphabet
is written in cursive lines. Therefore, recognizing handwritten characters is more challenging than
printed text due to the different written styles used by different persons [12]. Character recognition is
a fundamental stage for higher-level task, word, or sentence recognition. Many models were proposed
for character-level recognition, some of them are reviewed in the related work section of this paper.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.052016
https://www.techscience.com/doi/10.32604/cmc.2024.052016
mailto:salah.alghyaline@wise.edu.jo


4906 CMC, 2024, vol.79, no.3

Enhancing character level recognition significantly improves the overall performance of the OCR
system. Therefore, developing accurate and fast models for character-level recognition is crucial for
researching the OCR domain.

Deep learning achieved remarkable results in image processing in terms of accuracy and speed
[13–15]. Many Convolutional Neural Networks (CNN) architectures have been proposed for image
classification and object detection. CNN consists of layers varying in number, type, and passed
parameters. CNN layers include convolution, pooling, fully connected, drop, activation, shortcut, and
others. In addition to the CNN architectures, optimization techniques, such as Adam and RMSprop
techniques, are used to decrease the loss function and update the network weights. Many CNN
architectures were proposed in the literature and are widely used in many applications in our lives.
Some of the famous architectures are: VGG [16], GoogleNet [17], ResNet [18], EfficientNet [19], Vision
Transformers (ViT) [20], MobileNet [21], Inception [22], AlexNet [23], and LeNet [24]. Increasing the
number of layers does not constantly improve the recognition accuracy. The dimensions for written
Arabic characters are small (usually 32 × 32 pixels), which requires special CNN architecture to avoid
dimension and gradient vanishing after a certain number of layers of convolutions and pooling.

This paper investigates the performance of eight well-known CNN architectures on handwritten
Arabic optical character recognition. Moreover, this paper modified some famous CNN architectures
to improve the recognition rate. The eight used architectures are VGG, GoogleNet, ResNet, Efficient-
Net, Vision Transformers (ViT), MobileNet, Inception, and Shi et al. [25]. The experimental results on
three well-known handwritten Arabic datasets, mainly HIJJA, AHCD, and AIA9K, proved that the
proposed modification on these CNN architectures improved the optical character recognition rates.
Experimental results demonstrated that data augmentation significantly improves the accuracy of
OCR. The newly proposed models are optimized compared with the baseline models for the following
reasons: They reduced the time complexity by decreasing the number of layers and parameters,
addressed the overfitting problem, generalized well with unseen data, and improved the recognition
rates.

The paper is organized as follows: The related work section reviews the Arabic language and the
existing handwritten Arabic character recognition models. The materials and methods section shows
the existing CNN architectures and the proposed CNN architectures. The experiment materials section
explains the machine used to implement the code and the datasets used. The results and discussion
section presents the accuracy of different proposed CNN Architectures and compares them with the
existing approaches. The conclusion and future work are presented in the last section.

2 Related Work
2.1 The Arabic Language

Arabic is the formal language for 22 Arabic countries, with a population of more than 464 million
in the year 2022 [26]. The Holy Quran is written in Arabic, and Muslims worldwide recite it in Arabic.
Arabic is written from right to left in a cursive way. Arabic includes 28 characters, as shown in Table 1.
Each character has up to four shapes which depend on the character’s position in the word (at the
beginning, middle, end, and isolated), as shown in Table 2. A sample of printed and handwritten
Arabic characters is shown in Table 3. It is clear from the table that there are many similarities between
some Arabic characters. These similarities make recognising handwritten Arabic characters difficult
and increase the recognition error rate [27,28]. Moreover, the handwritten character could suffer from
rotation, and it is not identical to printed characters due to the different writing styles that people use.
This makes it confusing for the CNN model to recognize them accurately compared with the printed



CMC, 2024, vol.79, no.3 4907

characters. Many studies have shown that Arabic script is more challenging in terms of OCR compared
to Latin script, and most of the existing OCR tools are made for the English language [1,29,30].

Table 1: The printed Arabic alphabet with their names in English

Alif Jeem Dhaal Sheen Zaa Qaaf Noon
Baa Haa Raa Saad ‘Ayn Kaaf Haa’
Taa Khaa Zaay Daad Ghayn Laam Waaw
Thaa Daal Seen Taa’ Faa Meem Yaa

Table 2: Sample of four handwritten Arabic characters at different positions in the word

Character Beginning Middle End Isolated

Kaaf

Taa

Meem
Yaa

Table 3: Sample of eight printed and handwritten Arabic characters

Printed Arabic character

Handwritten Arabic character
Character pronunciation Baa Taa Thaa Yaa Meem Daal Alif Seen

2.2 Handwritten Arabic Recognition

The section reviews the related work in handwritten Arabic recognition. The input for the OCR
system could be machine-printed or human handwritten characters; the handwritten OCR is more
challenging and still an unsolved problem due to the different handwritten styles and formats that the
language users use [31].

Reference [32] built a CNN architecture of two Conv2d layers and two max pooling layers. The
Conv2d filters are 80 and 64 for the first and the second convolutional layers, respectively. Filter size
is 7 × 7 for the Conv2d filter and 2 × 2 for the max pooling layers. Two fully connected layers were
used; their sizes are 1024 and 28, respectively. SoftMax is used to classify the network output into 28
characters. A new dataset called AHCD was proposed, and the proposed architecture achieved 94.9%
accuracy on the AHCD dataset.

Reference [33] designed a CNN with three Conv2d and kernel size is 7 × 7, each followed by a max
pooling layer; the network flattens and passes to a fully connected layer with size 1024. SVM was used



4908 CMC, 2024, vol.79, no.3

to classify the resulting vector into 28 characters. The system achieved 95.07% accuracy on a private
dataset of 840 images.

Reference [34] built a CNN to recognize handwritten Arabic characters. The architecture includes
two Conv2d layers, each with 32 filters, and the filter size is 5 × 5. Each Conv2d layer is followed by
a max pooling layer with 2 × 2. The fifth layer is a Conv2d layer with 64 filters and a 4 × 4 filter size.
The output is passed to a fully connected layer with 256 sizes and another fully connected layer with
28 sizes. Finally, it was classified into 28 characters using SoftMax. The experiments on three datasets,
AHCR, AHCD, and HIJJA achieved 89.9%, 95.4% and 92.5%, respectively.

Reference [35] proposed 14 different CNN architectures for recognizing handwritten Arabic text.
All architectures have three Conv2d and three max pooling layers and from two to three fully connected
layers. However, the architectures used different filter numbers and sizes and tested different activation
functions. The HMBD dataset was used to evaluate the model. Data augmentation with the HMBD
dataset was used to boost the recognition accuracy and the best reported accuracy was 92.88%.

The CNN architecture comprises four Conv2d layers, a max pooling layer after each two Conv2d
layers [36]. The filter numbers are 16 for the first and second Conv2d layers and 32 for the third and
fourth layers. The filter size is 3 × 3 for Conv2d layers and 2 × 2 for the max pooling layers. There
are two fully connected layers, each with a length of 100. The architecture used a dropout layer of 0.6
after each fully connected layer. The experiments performed on AHCD and HIJJA datasets showed
that the architectures achieved recognition rates of 98.48% and 91.24%.

The proposed model includes three Conv2d layers, each containing 32 filters, followed by max
pooling and dropout layers [37]. Then, there are two Conv2d layers, each consisting of 128 filters,
followed by max pooling and dropout layers. The output is passed into two fully connected layers,
each with a size of 512. Then, the output is classified using the SoftMax classifier. The experiments on
two datasets, AHCD and HIJJA achieved 98%, and 91% accuracy, respectively.

VGG16 is used to classify handwritten Arabic characters. Different activation and optimiza-
tion functions were tested with the AHCD dataset. The best-achieved accuracy by the model
was 95.89 [38].

The model is based on handcrafted features such as projections, profiles, widths and heights,
extrema, concave arcs, endpoints, holes, and junctions [39]. The extracted features were then classified
using KNN, SVM, and RF. Experiments on the HCDB and AIA9K datasets showed that the
architectures achieved recognition rates of 97.97% and 92.91%, respectively.

The model is based on ResNet50. It replaced the architecture’s last layer with Random Forest (RF)
and Support Vector Machine (SVM) classifiers [40]. It is reported that this reduces the classification
time and increases the recognition rate. The reported accuracies were 92.4%, 99%, and 95% for HIJJA,
AHCD, AIA9K, and datasets.

Reference [41] proposed an approach to segment and recognize handwritten Arabic characters.
The approach segments the word into sub-words and then segments the sub-words into characters. The
Alex Net architecture was used to segment and identify the Arabic characters. The IESK-ArDB Arabic
dataset was used to evaluate the models. They achieved 96% for the word-to-sub-word segmentation
accuracy and 96.97% for the word-to-character segmentation accuracy.



CMC, 2024, vol.79, no.3 4909

3 Materials and Methods
3.1 VGG Model

VGG [16] stands for Visual Geometry Group, the group at Oxford University that proposed the
architecture. The team reported that VGG16 and VGG19 achieved the state of the art on the ImageNet
dataset. The VGG16 architecture includes 13 Cov2D Layers, 5 MaxPool2D layers, one Flatten Layer,
and three fully connected layers. VGG19 has the same architecture as VGG16 but has three more
Cov2D layers. The first two columns in Table 4 show the architectures for VGG19 and VGG16,
respectively. The Cov2D filter size is a window of 3 × 3, whereas the MaxPool2D window size is 2
× 2. ReLU (Rectified Linear Unit) is activated after each Cov2D layer.

Table 4: Proposed VGG-based CNN architectures for Arabic handwritten recognition

ConvNet configuration

VGG19 VGG16 VGGA VGGB VGGC VGGD VGGE VGGF

25 layers 22 layers 18 layers 17 layers 20 layers 23 layers 19s layers 25 layers

Input image (32 × 32 grayscale image)

Conv2D-64 Conv2D-64 Conv2D-64 Conv2D-64 Conv2D-64 Conv2D-64 Conv2D-64 Conv2D-64
Conv2D-64 Conv2D-64 Conv2D-64 Conv2D-64 Conv2D-64 Conv2D-64 Conv2D-64 Conv2D-64

Maxpool

Drop 0.5 Drop 0.5

Conv2D-128 Conv2D-128 Conv2D-128 Conv2D-128 Conv2D-128 Conv2D-128 Conv2D-128 Conv2D-128
Conv2D-128 Conv2D-128 Conv2D-128 Conv2D-128 Conv2D-128 Conv2D-128 Conv2D-128 Conv2D-128

Maxpool

Drop 0.5 Drop 0.5

Conv2D-256 Conv2D-256 Conv2D-256 Conv2D-256 Conv2D-256 Conv2D-256 Conv2D-256 Conv2D-256
Conv2D-256 Conv2D-256 Conv2D-256 Conv2D-256 Conv2D-256 Conv2D-256 Conv2D-256 Conv2D-256
Conv2D-256 Conv2D-256 Conv2D-256 Conv2D-256 Conv2D-256 Conv2D-256 Conv2D-256 Conv2D-256
Conv2D-256 Conv2D-256 Conv2D-256

Maxpool

Drop 0.5 Drop 0.5

Conv2D-512 Conv2D-256 Conv2D-256 Conv2D-512 Conv2D-512 Conv2D-256 Conv2D-256 Conv2D-512
Conv2D-512 Conv2D-256 Conv2D-256 Conv2D-512 Conv2D-512 Conv2D-256 Conv2D-256 Conv2D-512
Conv2D-512 Conv2D-256 Conv2D-256 Conv2D-512 Conv2D-256 Conv2D-256 Conv2D-512
Conv2D-512 Conv2D-512 Conv2D-512

Maxpool

Drop 0.5 Drop 0.5

Conv2D-512 Conv2D-512
Conv2D-512 Conv2D-512
Conv2D-512 Conv2D-512

(Continued)



4910 CMC, 2024, vol.79, no.3

Table 4 (continued)
ConvNet configuration

VGG19 VGG16 VGGA VGGB VGGC VGGD VGGE VGGF

25 layers 22 layers 18 layers 17 layers 20 layers 23 layers 19s layers 25 layers

Conv2D-512
Maxpool Maxpool

Flatten
FC-4096
FC-4096

Drop 0.5 Drop 0.5 Drop 0.5

FC-number_of_classes
SoftMax

The VGG19 and VGG16 were designed for large-scale images. The input is an RGB image with
224 × 224 dimensions. However, grayscale images with 32 × 32 dimensions are used in most datasets
for handwritten Arabic characters. Therefore, this paper proposed six new VGG-based architectures:
VGGA, VGGB, VGGC, VGGD, VGGE, and VGGF to enhance the recognition rate for handwritten
Arabic OCR. Table 4 shows the eight architectures; each column represents a single architecture. The
new architectures differ in the number of Cov2D layers, number of filters, and dropout layers. The
architecture layers ranged from 17 in VGGB to 25 in VGGF, whereas the Conv2D ranged from 9 in
VGGB to 12 in VGGF. Drop layers with 50% are used after each MaxPool2D in architectures VGGD
and VGGF. VGGE has a single drop layer before the last fully connected layer. The numbers of filters
used were 64, 128,256, and 512.

The VGG19 and VGG16 architectures include four blocks of Cov2D Layers, each followed by a
MaxPool2D layer; the MaxPool2D layer reduces the spatial dimensions of the input image by 50%.
Therefore, the architectures start with an image of 32 × 32 pixels and 64 filters (32 × 32 × 64) and
end with 1 × 1 pixels and 512 filters (1 × 1 × 512). Reducing the spatial dimensions to 1 × 1 pixels
might result in loss of spatial information. The proposed VGGA to VGGF removed the last block of
Cov2D Layers. The same input as the VGG19 and VGG16, but the output is 2 × 2 × 512, improving
the network’s ability to learn more. Moreover, adding drop layers with 50% prevents overfitting and
allows the network to learn more robust features. It also does not make it rely on specific neurons
during training.

3.2 Inception Model

The inception model [22] includes a sequence of Cov2D, Batch Normalization, and MaxPool2D
layers. Different Cov2D respective fields are used (1 × 1, 3 × 3, 5 × 5). The Inception Modules
concatenate the outputs from different convolutional layers and capture features from different scales.
Fig. 1 shows how Inception Modules of type A concatenate features from four previous convolutional
layers [22]. InceptionV3 is a very deep architecture with 159 layers. The input for InceptionV3
is an RGB image with 299 × 299 × 3 dimensions. InceptionV3 does not accept less than 75 ×
75 × 3 dimensions. However, a small grayscale image with 32 × 32 dimensions is used in most
datasets for handwritten Arabic characters. Therefore, using a very deep model does not yield a good
accuracy result. This paper proposes four new Incept-based architectures: Inception_A, Inception_B,



CMC, 2024, vol.79, no.3 4911

Inception_C, and Inception_D. Table 5 shows the four architectures, each column represents a single
architecture. The proposed architectures use fewer layers than the InceptionV3 model. Three filters:
64,128, and 256 like the VGG model filters were used.

Figure 1: Inception module of type A

Table 5: Proposed Incept-based CNN architectures for handwritten Arabic recognition

Inception_A Inception_B Inception_C Inception_D

24 layers 24 layers 27 layers 37 layers
Input Image (32 × 32 grayscale image)

Conv2D (32) Conv2D (64) Conv2D (64) Conv2D (64)
BatchNormalization

Activation(ReLU) Activation(ReLU) Activation(ReLU) Activation(ReLU)
Conv2D (32) Conv2D (64) Conv2D (64) Conv2D (64)

BatchNormalization
Activation(ReLU) Activation(ReLU) Activation(ReLU) Activation(ReLU)
Conv2D (64) Conv2D (64) Conv2D (64) Conv2D (64)

BatchNormalization
Activation(ReLU) Activation(ReLU) Activation(ReLU) Activation(ReLU)
MaxPooling2D MaxPooling2D MaxPooling2D
Conv2D (80) Conv2D (128) Conv2D (128) Inception layer as

shown in Fig. 1BatchNormalization
Activation(ReLU) Activation(ReLU) Activation(ReLU)
Conv2D (192) Conv2D (128) Conv2D (128)

BatchNormalization
Activation(ReLU) Activation(ReLU) Activation(ReLU)
Conv2D (64) Conv2D (256) Conv2D (256)

BatchNormalization
Activation(ReLU) Activation(ReLU) Activation(ReLU)

MaxPooling2D
Conv2D (256)
BatchNormalization
Activation(ReLU)

(Continued)



4912 CMC, 2024, vol.79, no.3

Table 5 (continued)

Inception_A Inception_B Inception_C Inception_D

Flatten
FC-128

FC number_of_classes
soft-max

This paper investigated the performance of InceptionV3 architecture on handwritten Arabic
character recognition and proposed new models based on InceptionV3. Table 6 shows the Inception_D
model. It includes three Cov2D layers, each Cov2D followed by a BatchNormalization and a ReLU
activation layers. After that, an Inception module of type A is added to the architecture. Then, the
output is flattened and passed to two fully connected layers. Finally, SoftMax is used for classification.
The number of layers in Inception_D is 37 (including batch normalization, activation, flatten, and fully
connected layers) and the number of parameters is 9.1 M. Inception_A includes the first 24 layers
of the InceptionV3 model without using the Inception module. In Inception_B, the architecture of
Inception_A is used, but the number of filters is changed to 64, 128, and 256 like the VGG model. In
Inception_C, three more layers were added compared to Inception_B: Cov2D, BatchNormalization,
and ReLU

Table 6: Proposed Inception_D CNN architectures

Type of layer Patch size Input size

Conv2D (64) (3 × 3) 32 × 32 × 1
Conv2D (64) (3 × 3) 32 × 32 × 64
Conv2D (64) (3 × 3) 30 × 30 × 64
MaxPooling2D (2 × 2) 28 × 28 × 64
Inception As in Fig. 1 14 × 14 × 64
Flatten – 14 × 14 × 352
FC-128 – 1 × 68992
FC Number_of_classes logits 1 × 128
SoftMax classifier 1 × Number_of_classes

The number of layers is reduced from 159 in InceptionV3 to 24, 27, and 37 layers in the proposed
architectures. Additionally, the number of filters is changed to become like VGG architecture. The
InceptionV3 architecture is deep. Deep networks are more prone to overfitting mainly when applied
to character recognition with small input image sizes (32 × 32 pixels). InceptionV3 is designed for
large images with high resolution and rich features. The small pictures have fewer details making it
hard for the model to identify the character’s label correctly. The proposed architectures aim to solve
the problem of overfitting by simplifying the InceptionV3 model complexity. Also, it aims to reduce
its ability to memorize the training data and perform well in unseen data.



CMC, 2024, vol.79, no.3 4913

3.3 ResNet Model

ResNet [18] achieved first place in the ILSVRC 2015 competition. ResNet tried to address the
vanishing gradient problem using the residual learning technique. Fig. 2 shows the structure of the
residual learning block as presented in [18]. This allows the network to learn even with deeper
networks. Instead of stacking layers above each other (such as in VGG architecture), ResNet uses
a skip (shortcut) layer. The skip layer ignores a certain number of layers and adds the original input
to the output of the Conv layer. This paper evaluated the performance of the original Resnet50 (48
Conv2D, one Avg Pool, and one fully connected layer) which includes 177 layers (counting all layers
from the input to the output layer not only Conv layers). Two additional ResNet-based models were
proposed, mainly ResNet_A and ResNet_B. These two models have 20 and 29 layers, respectively,
much smaller than Resnet50 (177 layers). The proposed ResNet_A architecture includes 5 Conv2D
layers. Each Conv2D layer is followed by batch normalization and activation layers. As shown in
Fig. 3, there are two residual operations. The output of the third Conv2D is added to the output of the
first Conv2D layer, and the new features are passed to the next layer. The second residual operation
includes adding the output of the third Conv2D with the output of the fifth Conv2D. The filter size is
3 × 3 and the number of filters is 32 for all Conv2D layers. Compared with ResNet_A, the ResNet_B
architecture includes two residual blocks but with two more Conv2D layers, adding Conv2D for each
residual block, as shown in Fig. 4.

Figure 2: Residual learning block

Figure 3: Proposed ResNet_A



4914 CMC, 2024, vol.79, no.3

Figure 4: Proposed ResNet_B

ResNet was designed for large RGB images with 224 × 224 pixels. The large number of layers
and parameters leads to overfitting when applied to a small image of Arabic characters. Therefore, the
proposed architectures reduced the number of layers. This makes computation more efficient, and the
model generalizes well with unseen data.

3.4 GoogLeNet Model

GoogLeNet architecture [17] won the 2014 ILSVRC competition. It used inception modules to
perform multiple convolutions simultaneously and then combine the results from these convolutional
layers. Therefore, GoogLeNet combines image features at different scales. Performing multiple
convolutions simultaneously reduces the running time and improves accuracy.

3.5 EfficientNet Model

Reference [19] proposed eight architectures from EfficientNet-B0 to EfficientNet-B7. The authors
reported that EfficientNet-B7 achieved the state of the art results on CIFAR-100 and ImageNet
datasets compared with other architectures such as ResNet, DenseNet, Inception, Xception, ResNeXt,
PolyNet, AmoebaNet, PNASNet, and GPipe. The architecture is smaller and faster than the best
existing architectures. The EfficientNet used MobileNets and ResNet architectures as base models
and scaled them from three sides: Width, depth, and resolution in a balanced way.

3.6 Vision Transformer (ViT) Model

Reference [20] introduced a transformer encoder to the CNN architectures. The input image is
divided into patches and converted into a vector. The position of the patch is embedded in the vector.
Then, the vector is passed into a transformer encoder. ViT achieved remarkable results when it was



CMC, 2024, vol.79, no.3 4915

trained on a large scale dataset. The model achieved the state of the art results compared to other
CNN architectures.

3.7 Shi et al.’S Model

Shi et al. [25] proposed end-to-end OCR for natural scenes. They reported that the architecture
achieved superior results compared to prior arts in the three datasets: IIIT-5K, ICDAR, and Street
View Text. The architecture used a sequence of convolutional layers and recurrent neural networks
(bidirectional LSTM) (19 layers). The proposed architecture showed superior results on IC03, IC13,
IIIT5k, and SVT datasets.

3.8 MobileNet Model

Reference [21] was designed for mobile phones and small embedded system applications. There-
fore, its goal is to achieve high accuracy with less computational cost to make it applicable to small
devices. It is reported that MobileNet has accuracy close to that of the VGG16 model and is 32 times
faster than the VGG16 model.

4 Experiment Materials

The experiments were implemented using Python and TensorFlow [42]. The machine that is
used to run the code is an Intel(R) Core (TM) i5-8600K CPU with 3.60 GHz speed, 40 GB RAM,
and GTX1080 GPU. Three well-known datasets for handwritten Arabic character recognition were
used to evaluate the performance of the different CNN architectures. HIJJA, AHCD, and AIA9K,
respectively, according to their size. HIJJA is the biggest and includes four shapes for each character
(at the beginning, middle, end, and isolated). Table 7 shows the hyperparameters used to evaluate all
models.

Table 7: Hyper-parameters for experiments

Hyperparameters Setting

Input size 32 × 32 (Grayscale image)
Batch size 256
Learning rate 0.001
Epochs 1000
Early stopping Patience = 50 epochs for val_accuracy and restore_best_weights = True
Optimizer Adam
Loss function Categorical_Crossentropy

4.1 Dataset Details

4.1.1 HIJJA Dataset

HIJJA [43] includes 47434 images. Each image is 32 × 35 pixels. The images represent 29 Arabic
characters (28 Arabic alphabets and “hamza” character) written by 598 Arabic native speakers in
Riyadh, Saudi Arabia in 2019. Students’ ages ranged from 7–12 years old. The dataset consists of 29
folders. Each folder includes a subfolder representing a single Arabic character. The subfolder consists



4916 CMC, 2024, vol.79, no.3

of different forms of writing a single character at the beginning, middle, and end of the word. These
various forms of writing Arabic characters make the dataset more complicated than other datasets
that use a single form of character writing (isolated form). A sample of 12 pictures from the HIJJA
dataset is shown in Fig. 5A. The dataset used in the experiments was obtained from https://github.
com/israksu/Hijja2.

Figure 5: Pictures from the used datasets

4.1.2 AHCD Dataset

AHCD [32] includes 16800 images of handwritten Arabic characters, and each image is 32 × 32
× 1 (Grayscale image). 13440 images are used for training and 3360 for testing. The Arabic characters
were written by 60 people from Egypt and their ages were between 19–40. The images represent 28
Arabic alphabet characters; the isolated form of Arabic characters was used in the dataset. A sample
of 12 pictures from the AHCD dataset is shown in Fig. 5B.

4.1.3 AIA9K Dataset

The AIA9K [44] contains 8737 pictures that represent 32 × 32 × 1 grayscale images. Each image
includes a single isolated Arabic character. The pictures are divided into three categories: 6115, 1310,
and 1312 for training, validating, and testing, respectively. The dataset was written by 107 students
from Alexandria University in Egypt. The participants’ ages were between 18 and 25 years old. A
sample of 12 pictures from the AIA9K dataset is shown in Fig. 5C. The dataset used in the experiments
was obtained from http://www.eng.alexu.edu.eg/staff/mehussein/public_html/AIA9k/index.html.

5 Results and Discussion

This section shows the performance of different proposed deep-learning architectures for recog-
nizing handwritten Arabic characters. Eight architectures were used and modified to improve character
recognition rates: VGG, GoogleNet, ResNet, EfficientNet, Vision Transformers (ViT), MobileNet,
Inception, and Shi et al. [25]. The evaluation was performed on three popular datasets in the literature:
HIJJA, AHCD, and AIA9K. The Accuracy, Recall, Precision, and F1-score metrics were used for the
models’ evaluation as shown in Eqs. 1–4 TP is a true positive, FN is a false negative, TN is a true
negative, and FP is a false positive.

Accuracy = TP + TN
TP + TN + FP + FN

(1)

Recall = TP
TP + FN

(2)

Precision = TP
TP + FP

(3)

https://github.com/israksu/Hijja2
https://github.com/israksu/Hijja2
http://www.eng.alexu.edu.eg/staff/mehussein/public_html/AIA9k/index.html


CMC, 2024, vol.79, no.3 4917

F1 = 2 × Recall × Precision
Recall + Precision

(4)

5.1 VGG Model

Six architectures based on the VGG model were proposed and compared with the baseline models
VGG16 and VGG19. The proposed architectures are VGGA, VGGB, VGGC, VGGD, VGGE, and
VGGF. Table 8 shows that the VGGD architecture achieved the best overall accuracy of evaluated
architectures on all tested datasets. The accuracies for VGGD architecture are 91.54%, 98.01%, and
95.88% for HIJJA, AHCD, and AIA9K, respectively. Table 8 shows the number of parameters (in
millions) used in these architectures. VGGB used the smallest parameters (30.6 M), whereas VGG19
used the largest number of parameters (39 M).

Table 8: The accuracy of the proposed VGG-based CNNs on the three benchmark datasets

ConvNset config. HIJJA (%) AHCD (%) AIA9K (%) # of layers # of parameters

VGG16 90 95.89 94.74 25 33.7 M
VGG19 90.32 96.88 93.67 22 39 M
VGGA 89.9 97.2 94.51 18 33.7 M
VGGB 90.2 97.3 93.98 17 30.6 M
VGGC 90.3 97.32 94.44 20 35.9 M
VGGD 91.54 98.01 95.88 23 32.9 M
VGGE 90 97.65 94.13 20 32.9 M
VGGF 91.0 97.83 94.97 25 35.9 M

5.2 Inception Model

Four architectures based on Inception architecture were proposed and compared with the baseline
architecture of InceptionV3. The proposed architectures are Inception_A, Inception_B, Inception_C,
and Inception_D. The baseline InceptionV3 model includes 159 layers and has several Inception
modules. Table 9 shows that the InceptionV3 has the lowest accuracy among all tested architectures.
In Inception_D, layers are reduced from 159 to 37 including only one Inception module. The
accuracy in Inception_D improved significantly in the three tested datasets compared with the
baseline model. However, in Inception_C, the number of layers was reduced to 27, the Inception
modules were removed, and the filter sizes were modified. Inception_C outperformed all Inception-
based architectures for all datasets. Both Inception_A and Inception_B have 24 layers; however, in
Inception_B, the filterer’s sizes were changed as VGG model filters, and this modification improved
the accuracy as shown in Table 9. The table shows the number of parameters used by each model.
InceptionV3 used 22.3 M, whereas the Inception_A model used only 0.4 M. Using the inception
module significantly increased the number of parameters for the Inception_D Model (9.1 M).

5.3 ResNet Model

Two ResNet-based architectures were derived from the baseline model ResNet50. ResNet50 is
a very deep network with 177 layers. Table 10 shows that the derived architecture ResNet_A and
ResNet_B outperformed the baseline model, and the number of layers and parameters have been



4918 CMC, 2024, vol.79, no.3

reduced significantly. ResNet_B achieved the best accuracy for all test datasets, and the number of
parameters is about 157 thousand, whereas the number of parameters for ResNet50 is 23.6 million.

Table 9: The accuracy of the proposed Incept-based CNNs on three benchmark datasets

ConvNset config. HIJJA (%) AHCD (%) AIA9K (%) # of layers # of parameters

Inception V3 57.7 83.6 82.77 159 22.3 M
Inception_A 90.7 97.47 92.99 24 0.4 M
Inception_B 91.6 97.68 94.05% 24 0.89 M
Inception_C 91.6 97.89 94.51 27 1.2 M
Inception_D 86.85 95.15 92.3 37 9.1 M

Table 10: The accuracy of the proposed ResNet-based CNNs on three benchmark datasets

ConvNset config. HIJJA (%) AHCD (%) AIA9K (%) # of layers # of parameters

ResNet50 85.7 94.76 91.39 177 23.6 M
ResNet_A 83.22 96.4 91.84 20 38,942
ResNet_B 90.76 97.92 93.75 29 157,086

5.4 Data Augmentation

This section evaluates the impact of data augmentation (generating new data) on the datasets.
The augmentation process increases the dataset size to improve model accuracy during the training.
Training models are time-consuming. The four models that achieved the best accuracy are evaluated
after data augmentation: VGGD, Inception_B, Inception_C, and ResNet_B. The volume of the
generated data is three times the volume of the original training data split. Table 11 shows the
augmentation operations that were applied to the datasets. In the first row, generated images randomly
zoom in up to 20% compared with the original images. The values for the augmentation operations
mostly ranged from 0% to 20% representing a slight to moderate transformation in the original images
without extreme distortion. These transformations make the model robust to image variations. The
experiments showed that it is adequate to enhance the accuracy of character recognition.

Table 12 clearly shows that data augmentation improved the recognition rate for all models and
datasets. The VGGD model achieved 91.54 accuracy on the HIJJA dataset. After data augmentation,
the same model accuracy improved to 93.05%. The augmentation process improved the recognition
rate for VGGD by 1.51%, 0.29%, and 1% on HIJJA, AHCD and AIA9K datasets, respectively. The
accuracy of model Inception_B improved by 0.7%, 0.56%, and 1.75% on HIJJA, AHCD, and AIA9K
datasets. Meanwhile, in Inception_C, the improvement was 0.91%, 0.32%, and 0.92% on the HIJJA,
AHCD, and AIA9K datasets. In ResNet_B, the improvement was 1.18%, 0.26%, and 0.46% on the
HIJJA, AHCD, and AIA9K datasets. The best improvement was using Inception_B on the AIA9K
dataset with a 1.75% improvement. The smallest improvement was ResNet_B on the AHCD dataset
with 0.26%.



CMC, 2024, vol.79, no.3 4919

Table 11: The augmentation operations that were applied to the three benchmarks

Operation Value

Zoom 0%–20%
Shift images height 0%–20%
Shift images width 0%–20%
Shear transformations 0%–20%
Flip horizontally True
Rotate 0–40 degrees
Fill in missing pixels after transformations. ‘Nearest’

Table 12: The effect of data augmentation on accuracy

ConvNset config. HIJJA (%) AHCD (%) AIA9K (%)

VGGD 91.54 98.01 95.88
VGGD + AGUM 93.05 98.30 96.88
Inception_B 91.60 97.68 94.05%
Inception_B + AGUM 92.30 98.24 95.80
Inception_C 91.60 97.89 94.51
Inception_C + AGUM 92.51 98.21 95.43
ResNet_B 90.76 97.92 93.75
ResNet_B + AGUM 91.94 98.18 94.21

5.5 Comparison with Existing Approaches

Deep learning models were used and modified in the previous sections to recognise handwritten
Arabic characters. Table 13 summarises the performance of the proposed architectures in terms
of accuracy with other deep learning architectures. It is clear from Table 13 that the proposed
architectures ResNet_B + AGUM, Inception_B + AGUM, and VGGD + AGUM outperformed the
baseline models and other known CNN architectures like GoogLeNet, EfficientNet, ViT, Shi et al.,
and MobileNetV2. VGGD + AGUM achieved the highest accuracy for the three datasets. Table 14
presents the F1-score and precision metrics for the best-proposed architectures on three datasets.
The result is consistent with Table 13, which shows that VGGD + AGUM achieved the best results
followed by Inception_B + AGUM and ResNet_B + AGUM, respectively.

Table 13: The accuracy of handwritten Arabic recognition rates on different deep-learning models

Model HIJJA AHCD AIA9K # of layers # of parameters

GoogLeNet 89.6 97.23 93.25 25 8.4 M
EfficientNet-B0 87.4 97.29 94.28 237 4.0 M
EfficientNet-B7 90.3 97.71 95.96 813 64 M

(Continued)



4920 CMC, 2024, vol.79, no.3

Table 13 (continued)

Model HIJJA AHCD AIA9K # of layers # of parameters

Vision transformer
(ViT)

53.7 67.86 64.02 34 0.3 M

Shi et al. [25] 87.6 96.58 94.21 19 8.7 M
MobileNetV2 82.8 95.42 75.61 158 2.3 M
VGG19 90.32 96.88 93.67 22 39 M
ResNet50 85.7 94.76 91.39 177 23.6 M
InceptionV3 57.7 83.6 82.77 159 22.3 M
ResNet_B + AGUM 91.94 98.18 94.21 29 157,086
Inception_B + AGUM 92.3 98.24 95.80 24 0.89 M
VGGD + AGUM 93.05 98.30 96.88 23 32.9 M

Table 14: The F1-score and precision metrics results for the best-proposed models

ConvNset config. HIJJA AHCD AIA9K

F1 Precision F1 Precision F1 Precision

ResNet_B +
AGUM

91.93 91.94 98.18 98.21 94.18 94.4

Inception_B +
AGUM

92.34 92.37 98.25 98.29 95.80 95.93

VGGD + AGUM 93.04 93.08 98.30 98.33 96.87 96.95

Fig. 6 shows the VGGD model’s confusion matrix with data augmentation on three datasets.
AHCD and AIA9K datasets have almost the same number of samples for each character. HIJJA is
larger than the previous dataset and some classes have fewer samples than others such as Daal(‘ ’),
Dhaal(‘ ’), Raa(‘ ’), Zaay(‘ ’), and Waaw (‘ ’). It is clear from the diagonal line that the model
predicted most of the characters correctly. Due to the similarities between Arabic characters, there
is an error in predicting some of the characters. For example, in the HIJJA dataset, ten pictures of
Daal character (‘ ’) were predicted as Raa (‘ ’), 12 Daal (‘ ’) were predicted as Laam (‘ ’),14 Dhaal
(‘ ’) were indicated as Noon (‘ ’), 13 Ayn (‘ ’) were indicated as Hamza (‘ ’).

Table 15 compares the best accuracy achieved by the proposed VGGD + AGUM model in this
paper and other approaches on HIJJA, AHCD, and AIA9K datasets. The proposed approach achieved
the best results in HIJJA and AIA9K datasets. However, it achieved the second-best accuracy on the
AHCD dataset.



CMC, 2024, vol.79, no.3 4921

Figure 6: Confusion matrix for VGGD + AGUM

Table 15: Comparison between the proposed VGGD + AGUM model and other approaches

AIA9K dataset AHCD dataset HIJJA dataset

Method Year Accuracy Method Year Accuracy Method Year Accuracy

[43] 2021 88.0 [32] 2017 94.90 [45] 2017 94.8
[34] 2021 92.5 [45] 2017 97.60 [44] 2014 94.28
[36] 2022 91.2 [46] 2021 98.21 [47] 2021 93.30
[37] 2022 91.0 [34] 2021 95.4 [48] 2021 95.20
This paper 2024 93.05 [43] 2021 97.00 [39] 2022 92.91

[49] 2022 96.78 [40] 2023 95.00
[36] 2022 98.48 This paper 2024 96.88
[37] 2022 98.00
[38] 2024 95.89
This paper 2024 98.30

6 Conclusion and Future Work

Recognizing Arabic characters is more challenging compared with Latin characters. Arabic
characters are highly similar; the same character has up to four shapes according to its position in
the word. This paper proposed 12 CNN architectures for handwritten Arabic character recognition.
The proposed architectures are based on well-known architectures in the literature such as VGG,
ResNet, and Inception. The experimental results on HIJJA, AHCD, and AIA9K datasets showed
that the proposed architectures achieved superior results compared to the existing Arabic handwritten
character recognition approaches. The accuracy of the models can also be improved by using data
augmentation. Future works include developing new CNN architectures and datasets for recognizing
Arabic words and characters.

Acknowledgement: None.



4922 CMC, 2024, vol.79, no.3

Funding Statement: The author received no specific funding for this study.

Author Contributions: Study conception and design: Salah Alghyaline; analysis and interpretation of
results: Salah Alghyaline; draft manuscript preparation: Salah Alghyaline. The author reviewed the
results and approved the final version of the manuscript.

Availability of Data and Materials: The datasets adopted in the current study are publicly available
online.

Conflicts of Interest: The author declares that he has no conflicts of interest to report regarding the
present study.

References
[1] S. Faizullah, M. S. Ayub, S. Hussain, and M. A. Khan, “A Survey of OCR in Arabic language: Applications,

techniques, and challenges,” Appl. Sci., vol. 13, no. 7, pp. 4584, 2023. doi: 10.3390/app13074584.
[2] P. Batra, N. Phalnikar, D. Kurmi, J. Tembhurne, P. Sahare and T. Diwan, “OCR-MRD: Performance

analysis of different optical character recognition engines for medical report digitization,” Int. J. Inf.
Tecnol., vol. 16, no. 1, pp. 447–455, 2024. doi: 10.1007/s41870-023-01610-2.

[3] A. A. Manjunath et al., “Automated invoice data extraction using image processing,” IAES Int. J. Artif.
Intell., vol. 12, no. 2, pp. 514, 2023. doi: 10.11591/ijai.v12.i2.pp514-521.

[4] H. Liu et al., “Automated player identification and indexing using two-stage deep learning network,” Sci.
Rep., vol. 13, no. 1, pp. 10036, Jun. 2023. doi: 10.1038/s41598-023-36657-5.

[5] M. Bulín, J. Švec, and P. Ircing, “The system for efficient indexing and search in the large archives of scanned
historical documents,” in Eur. Conf. Info. Retrieval., Dublin, Ireland, 2023, pp. 206–210.

[6] P. Kunekar, K. Vayadande, O. Kulkarni, K. Ingale, R. Kadam and S. Inamdar, “OCR based cheque
validation using image processing,” in 5th Biennial Int. Conf. Nascent Technol. Eng. (ICNTE), Navi
Mumbai, India, 2023, pp. 1–5.

[7] K. Simonyan and Z. Andrew, “Automatic imagery bank cheque data extraction based on machine learning
approaches: A comprehensive survey,” Multimed. Tools Appl., vol. 82, no. 20, pp. 30543–30598, 2023. doi:
10.1007/s11042-023-14534-7.

[8] S. Z. M. Maung and N. Aye, “Text region localization and recognition for ID card identification using deep
learning approaches,” in IEEE Conf. Comput. Appl., Yangon, Myanmar, 2023, pp. 411–416.

[9] C. T. Haile, “Customers identity card data detection and recognition using image processing,” Ph.D.
dissertation, Dept. of Computer Science, St. Mary’s Univ., Addis Ababa, Ethiopia, 2023.

[10] N. Chigali, S. R. Bobba, K. Suvarna Vani, and S. Rajeswari, “OCR assisted translator,” in 7th Int. Conf.
Smart Struc. Syst. (ICSSS), Chennai, India, 2020, pp. 1–4.

[11] K. C. Shekar, M. A. Cross, and V. Vasudevan, “Optical character recognition and neural machine
translation using deep learning techniques,” in Innov. Comput. Sci. Eng.: Proc. 8th ICICSE, Singapore,
2021, pp. 277–283.

[12] V. Pomazan, I. Tvoroshenko, and V. Gorokhovatskyi, “Handwritten character recognition models based
on convolutional neural networks,” Int. J. Acad. Eng. Res., vol. 7, no. 9, pp. 64–72, Sep. 2023.

[13] A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, “YOLOv4: Optimal speed and accuracy of object
detection,” arXiv preprint arXiv:2004.10934, Apr. 2020.

[14] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object detection with region
proposal networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, 2017. doi:
10.1109/TPAMI.2016.2577031.

[15] W. Liu et al., “SSD: Single shot MultiBox detector,” in Computer Vision–ECCV 2016, Las Vegas, US, 2016,
pp. 21–37.

https://doi.org/10.3390/app13074584
https://doi.org/10.1007/s41870-023-01610-2
https://doi.org/10.11591/ijai.v12.i2.pp514-521
https://doi.org/10.1038/s41598-023-36657-5
https://doi.org/10.1007/s11042-023-14534-7
https://doi.org/10.1109/TPAMI.2016.2577031


CMC, 2024, vol.79, no.3 4923

[16] K. Simonyan and Z. Andrew, “Very deep convolutional networks for large-scale image recognition,” arXiv
preprint arXiv:1409.1556, 2014.

[17] C. Szegedy, et al., “Going deeper with convolutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Boston, MA, USA, 2015, pp. 1–9.

[18] K. He, X. Zhang, S. Ren, and S. Jian, “Deep residual learning for image recognition,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Las Vegas, NV, USA, 2016, pp. 770–778.

[19] T. Mingxing and V. L. Quoc, “EfficientNet: Rethinking model scaling for convolutional neural networks,”
in Int. Conf. Mach. Learn., 2019, pp. 6105–6114.

[20] A. Dosovitskiy et al., “An image is worth 16×16 words: Transformers for image recognition at scale,” arXiv
preprint arXiv:2010.11929, 2010.

[21] Z. Andrew et al., “MobileNets: Efficient convolutional neural networks for mobile vision applications,”
arXiv preprint arXiv:1704.04861, 2017.

[22] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for
computer vision,” arXiv preprint arXiv:1512.00567, 2015.

[23] A. Krizhevsky, I. Sutskever, and E.H. Geoffrey, “ImageNet classification with deep convolutional neural
networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, 2017. doi: 10.1145/3065386.

[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recogni-
tion,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, 1998. doi: 10.1109/5.726791.

[25] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network for image-based sequence recognition
and its application to scene text recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 11, pp.
2298–2304, 2017. doi: 10.1109/TPAMI.2016.2646371.

[26] The World Bank, “Arab world population,” Accessed: Dec. 24, 2023. [Online]. Available: https://data.
worldbank.org.cn/

[27] S. Alghyaline, “Arabic optical character recognition: A review,” Comput. Model. Eng. Sci., vol. 135, no. 3,
pp. 1825–1861, 2023. doi: 10.32604/cmes.2022.024555.

[28] S. Alghyaline, “A printed arabic optical character recognition system using deep learning,” J. Comput. Sci.,
vol. 18, no. 11, pp. 1038–1050, Nov. 2022. doi: 10.3844/jcssp.2022.1038.1050.

[29] Z. A. Lu, I. Bazzi, A. Kornai, J. Makhoul, P. S. Natarajan and R. Schwartz, “Robust language-independent
OCR system,” in 27th AIPR Workshop: Adv. Compu. Assist. Recognit., 1999, pp. 96–104.

[30] M. A. Alghamdi, I. S. Alkhazi, and W. J. Teahan, “Arabic OCR evaluation tool,” in 7th Int. Conf. Comput.
Sci. Info. Technol. (CSIT), Amman, Jordan, 2016, pp. 1–6.

[31] P. H. Jain, V. Kumar, J. Samuel, S. Singh, A. Mannepalli and R. Anderson, “Artificially intelligent
readers: An adaptive framework for original handwritten numerical digits recognition with OCR methods,”
Information, vol. 14, no. 6, pp. 305, May 2023. doi: 10.3390/info14060305.

[32] H. E. -B. El-Sawy and M. L. Ahmed, “Arabic handwritten characters recognition using convolutional
neural network,” WSEAS Trans. Comput. Res., vol. 5, no. 1, pp. 11–19, 2017.

[33] M. Shams, A. A. Elsonbaty, and W. Z. El Sawy, “Arabic handwritten character recognition based on
convolution neural networks and support vector machine,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no.
8, pp. 144–149, 2020. doi: 10.14569/issn.2156-5570.

[34] J. H. Alkhateeb, “An effective deep learning approach for improving off-line arabic handwrit-
ten character recognition,” Int. J. Soft. Eng. Comput. Syst., vol. 6, no. 2, pp. 53–61, 2021. doi:
10.15282/ijsecs.6.2.2020.7.0076.

[35] H. M. Balaha et al., “Recognizing arabic handwritten characters using deep learning and
genetic algorithms,” Multimed. Tools Appl., vol. 80, no. 21–23, pp. 32473–32509, 2021. doi:
10.1007/s11042-021-11185-4.

[36] N. Wagaa, H. Kallel, and N. Mellouli, “Improved Arabic alphabet characters classification using
convolutional neural networks (CNN),” Comput. Intell. Neurosci., vol. 2022, pp. 1–16, 2022. doi:
10.1155/2022/9965426.

https://doi.org/10.1145/3065386
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/TPAMI.2016.2646371
https://data.worldbank.org.cn/
https://data.worldbank.org.cn/
https://doi.org/10.32604/cmes.2022.024555
https://doi.org/10.3844/jcssp.2022.1038.1050
https://doi.org/10.3390/info14060305
https://doi.org/10.14569/issn.2156-5570
https://doi.org/10.15282/ijsecs.6.2.2020.7.0076
https://doi.org/10.1007/s11042-021-11185-4
https://doi.org/10.1155/2022/9965426


4924 CMC, 2024, vol.79, no.3

[37] A. Rahmatulloh, R. I. Gunawan, I. Darmawan, R. Rizal, and B. Z. Rahmat, “Optimization of hijaiyah
letter handwriting recognition model based on deep learning,” in Int. Conf. Adv. Data Sci., E-learn. Info.
Syst. (ICADEIS), Istanbul, Turkey, 2022, pp. 1–7.

[38] G. Dilar and G. Inci, “Arabic calligraphy image analysis with transfer learning,” Electrica, vol. 24, no. 1,
pp. 209, 2024.

[39] R. Dhief, R. Youssef, and A. Benazza, “An ensemble learning approach using decision fusion for the
recognition of Arabic handwritten characters,” in 11th Int. Conf. Pattern Recognit. Appl. Methods, 2022,
pp. 51–59.

[40] R. S. Khudeyer and N. M. Almoosawi, “Combination of machine learning algorithms and
ResNet50 for Arabic handwritten classification,” Informatica, vol. 46, no. 9, pp. 39–44, 2022. doi:
10.31449/inf.v46i9.4375.

[41] L. Berriche, A. Alqahtani, and S. RekikR, “Hybrid Arabic handwritten character segmentation using
CNN and graph theory algorithm,” J. King Saud Univ.—Comput. Inf. Sci., vol. 36, pp. 101872, 2024. doi:
10.1016/j.jksuci.2023.101872.

[42] M. Abadi et al., “TensorFlow: Large-scale machine learning on heterogeneous distributed systems,” arXiv
preprintarXiv:1603.04467, Mar. 2016.

[43] N. Altwaijry and I. Al-Turaiki, “Arabic handwriting recognition system using convolutional neural net-
work,” Neural Comput. Appl., vol. 33, no. 7, pp. 2249–2261, 2021. doi: 10.1007/s00521-020-05070-8.

[44] M. Torki, M. E. Hussein, A. Elsallamy, M. Fayyaz, and S. Yaser, “Window-based descriptors for
Arabic handwritten alphabet recognition: A comparative study on a novel dataset,” arXiv preprint
arXiv:1411.3519, 2014.

[45] K. Younis and A. Khateeb, “Arabic hand-written character recognition based on deep convolutional neural
networks,” Jordan. J. Comput. Inf. Technol., vol. 3, no. 3, pp. 186, 2017.

[46] A. Alzebdeh, M. Moneb Khaled, M. Lataifeh, and A. Elnagar, “Arabic handwritten recognition based on
deep convolutional neural network,” in 2nd Int. Conf. Distrib. Sens. Intell. Syst., 2021, pp. 271–287.

[47] H. M. Balaha, H. A. Ali, M. Saraya, and M. Badawy, “A new Arabic handwritten character recog-
nition deep learning system,” Neural Comput. Appl., vol. 33, no. 11, pp. 6325–6367, 2021. doi:
10.1007/s00521-020-05397-2.

[48] F. Soumia, G. Djamel, and M. Haddad, “Handwritten Arabic character recognition: Comparison of
conventional machine learning and deep learning approaches,” in Int. Conf. Reliable Info. Comm. Technol.,
Langkawi, Malaysia, 2021, pp. 1127–1138.

[49] Z. Ullah and M. Jamjoom, “An intelligent approach for Arabic handwritten letter recognition using
convolutional neural network,” PeerJ Comput. Sci., vol. 8, pp. e995, May 2022. doi: 10.7717/peerj-cs.995.

https://doi.org/10.31449/inf.v46i9.4375
https://doi.org/10.1016/j.jksuci.2023.101872
https://doi.org/10.1007/s00521-020-05070-8
https://doi.org/10.1007/s00521-020-05397-2
https://doi.org/10.7717/peerj-cs.995

	Optimised CNN Architectures for Handwritten Arabic Character Recognition
	1 Introduction
	2 Related Work
	3 Materials and Methods
	4 Experiment Materials
	5 Results and Discussion
	6 Conclusion and Future Work
	References


