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ABSTRACT

Malicious attacks against data are unavoidable in the interconnected, open and shared Energy Internet (EI),
Intrusion tolerant techniques are critical to the data security of EI. Existing intrusion tolerant techniques suffered
from problems such as low adaptability, policy lag, and difficulty in determining the degree of tolerance. To
address these issues, we propose a novel adaptive intrusion tolerance model based on game theory that enjoys
two-fold ideas: 1) it constructs an improved replica of the intrusion tolerance model of the dynamic equation
evolution game to induce incentive weights; and 2) it combines a tournament competition model with incentive
weights to obtain optimal strategies for each stage of the game process. Extensive experiments are conducted in
the IEEE 39-bus system, whose results demonstrate the feasibility of the incentive weights, confirm the proposed
strategy strengthens the system’s ability to tolerate aggression, and improves the dynamic adaptability and response
efficiency of the aggression-tolerant system in the case of limited resources.
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1 Introduction

The cross-fertilisation of the Internet and energy sector has given rise to a new form of industry-
Energy Internet [1]. This complex network of interconnected energy systems, such as electricity, solar
energy, natural gas, etc., integrates a variety of devices and systems for energy production, conversion,
transmission, distribution and consumption. While this new form has great potential and value, it also
poses unprecedented challenges, particularly regarding data protection [2].

In Energy Internet, data generation is extensive and complex. A plethora of information, including
equipment status, consumer behavior patterns, and operational metrics, continuously traverses the
network. Protecting this data, including its storage, transmission, and computational processing,
requires a robust framework of security protocols [3]. In addition, the inherent complexity of the
Energy Internet’s architecture presents formidable data security challenges. The complex web of inter-
connected devices, communication protocols, and software systems makes it difficult to implement
effective security measures. Compounding this complexity, energy systems serve as vital components
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of national infrastructure, making them prime targets for malicious actors due to their strategic
importance. Beyond traditional concerns such as data breaches and sabotage, these systems face
heightened vulnerabilities to sophisticated cyber threats, including denial-of-service (DoS) attacks,
network worms, ransomware, and other forms of digital aggression.

Data security is critical in the Energy Internet environment, where multiple actors are involved,
including energy providers, consumers, operators, and regulators. These entities have different objec-
tives, strategic preferences, and resources, and their decision-making behaviors regarding data man-
agement, sharing and protection are interdependent and influence each other. As a result, game
theory provides a structured approach [4] to examining and optimizing data security strategies and
mechanisms within the Energy Internet, helping to improve system security and the ability to adapt
to evolving threats.

Existing methods for protecting energy Internet data security are mainly in the areas of encryption
technology [5], access control [6], intrusion detection systems [7], and blockchain [8]. Encryption is an
essential safeguard for the confidentiality, integrity, and availability of data. However, if encryption
keys are misplaced or illegally obtained, data is at risk of becoming irretrievably inaccessible or
compromised by unauthorized parties; access control prevents unauthorized users from accessing
data through user authentication and rights management. Although access control improves security,
it does not completely prevent all attacks, such as phishing attacks, social engineering attacks, etc.;
IDSs require significant computing resources to process and analyze network traffic, which can impact
network performance, especially when dealing with large volumes of traffic; Blockchain’s immutability
prevents data from being maliciously altered, but blockchain has limited performance and capacity,
which may limit its application in large-scale energy Internet environments. Therefore, the existing
solutions cannot fully satisfy the data security protection in the energy Internet environment. Facing
the problem of data security protection in the energy Internet, there is an urgent need for an adaptive
intrusion tolerance model. There were three major challenges in constructing the model, as shown in
Fig. 1.

Figure 1: The framework of our model
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In summary, the main contributions of this paper are summarized as follows:

• We propose an improved intrusion-tolerance model based on replicator dynamics in evolution-
ary game theory, which establishes incentive weights through strategies of varying intensity,
thereby deriving the optimal intrusion-tolerant strategy for different time periods based on the
strength of each strategy.

• By using optimal intrusion-tolerant strategies from different periods, we established a model
based on competition between attackers and intrusion-tolerant entities, and numerically simu-
lated the evolution of the intrusion-tolerant system.

• By performing data simulation in the IEEE 39-bus system, the analysis of the initial and final
node voltage values verifies the feasibility and effectiveness of the proposed data intrusion
tolerance model (AITGM).

The rest of this paper is organized as follows. Section 2 introduces the related work. Section 3
establishes a model of attackers and intrusion-tolerant parties based on an improved evolutionary
game theory (AT-IEG). Section 4 constructs a model of racial competition between attackers and
intrusion-tolerant parties based on power distribution network attack scenarios (RACIT-PDN).
Section 5 conducts data simulation in the IEEE 39-bus system. And, the conclusions are shown in
Section 6.

2 Related Work

In this section, we first introduce the state of the art of research on evolutionary games and
tolerating intrusions; then, we outline the existing techniques for data tolerating intrusions. Finally,
we discuss and present our solution accordingly.

2.1 Evolutionary Game

Evolutionary game theory, first proposed in 1973 by John Maynard Smith and George R. Price [9]
is an approach for analyzing and understanding the behavior of individuals with adaptive and strategic
interactions. Currently, this theory is widely used in the fields of ecological and environmental sciences,
economics, engineering, and network information security.

In recent years, the application of evolutionary game theory in the field of network information
security has received widespread attention. Researchers use evolutionary game theory to study the
dynamic evolutionary process of network attack and defense confrontation, their research can provide
a theoretical basis for the formulation of network security defense strategies. Gothawal et al. [10] con-
structed a reliable and efficient anomaly based intrusion detection system model by using stochastic
and evolutionary game models. Zhang et al. [11] constructed a model that combines an attack detection
evolutionary game model and a Kalman filter algorithm to provide an optimized detection method
by analyzing the evolution of equilibrium points. Jin et al. [12] constructed a network attack and
defense evolution game decision model based on the RM algorithm; their decision model improves
the convergence speed of the optimal defense strategy by optimizing the strategy learning mechanism
through the RM algorithm. By using a case study of ransomware, Hu et al. [13] created a stochastic
evolutionary game model to simulate the dynamics of network attack and defense, selected the
optimal defense strategy and obtained the maximum defense benefit. Xu et al. [14] constructed a
stochastic evolutionary game model based on stochastic differential equations for network attack and
defense; their model achieves steady-state and optimal defense strategies under random perturbations.
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Liu et al. [15] incorporated a learning mechanism for the limited rationality and interaction range of
players, which in turn created a more realistic offensive and defensive evolutionary game model.

Remark: The above researchers all propose new algorithmic models combined with evolutionary
games to search for optimal game strategies from different perspectives. However, they do not consider
the dependence between strategies in the same group, and there are not only incentives but also
inhibitory relationships between the various strategies. Therefore, in this paper, we analyze the internal
relationships between the aggressive and tolerant sides separately; moreover, we propose incentive
weight coefficients.

2.2 Intrusion Tolerance

The concept of intrusion tolerance was first introduced by Fraga et al. [16]. The basic idea is that
even if a system is partially infiltrated or a service is partially corrupted, the main functions of the
system are guaranteed to operate normally. The intrusion tolerance includes network, application and
data layers.

Network intrusion tolerance is a security policy that ensures that a system continues running
services while under attack. di Giandomenico et al. [17] proposed a redundancy scheme for enhanced
intrusion tolerance that improves the defense of the system against cyber attacks. Sanoussi et al. [18]
used game theory to quantify cyberattacks and defense based on intrusion-tolerant systems to support
the development of more effective cybersecurity strategies. Zhao et al. [19] proposed an adaptive
neural network fault-tolerant control scheme for effective boundary control of flexible strings with
uncertainties. Mehmood et al. [20] presented an energy-efficient fault-tolerant scheme for wireless
LANs with improved reliability through cooperative communication and network coding. Application
intrusion tolerance is used to maintain critical functionality for applications in the face of security
threats through resilient design. Jadhav et al. [21] proposed an accuracy-based fault-tolerant two-phase
intrusion detection system (TP-IDS) that improves the timeliness and fault-tolerance of malicious
node identification. Flora [22] introduced an intrusion-tolerant microservice design approach that
enhances the trustworthiness and resilience of IDSs. Zheng et al. [23] developed a quantitative
security evaluation method for VM-based intrusion tolerance systems by using security downtime.
Wang et al. [24] proposed an intrusion-tolerant scheduling algorithm to improve the security of cloud-
based scientific workflows; their approach improves the success rate and efficiency through task
replication and voting mechanisms.

Data intrusion tolerance is the maintenance of data integrity, availability and confidentiality in
the event of unauthorized access or destruction. Hong et al. [25] presented a distributed fault-tolerant
intrusion detection system to address the problems of a single point of failure and insufficient data
processing of traditional IDSs. Kasu et al. [26] proposed a fault-tolerant framework for big data with
parallel file transfers; they improved data transfer rates and managed failures in distributed environ-
ments. Khan et al. [27] developed a Byzantine fault-tolerant system designed to provide “as-a-service”
intrusion tolerance that ensures local data confidentiality. Jarosz et al. [28] proposed a decentralized
data management solution for institutional data autonomy by enhancing data availability and fault
tolerance through peer sets and consensus mechanisms. Zhu et al. [29] presented a fault-tolerant PDP
protocol for cloud storage that detects and repairs data by using cuckoo filters and Reed-Solomon
codes to ensure security and utility. Li et al. [30] proposed closed-form equations based on the Weibull
distribution to analyze and to optimize the reliability of active fault-tolerant cloud storage systems.

Remark: There have been some important advances in recent intrusion tolerance technology.
However, there are still some shortcomings and challenges with current ITS technology. It is difficult
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for existing ITS techniques to adapt to evolving attack methods and diverse attack environments.
Second, while intrusion-tolerant scheduling algorithms may improve task success and efficiency, their
implementation can be hindered by complex system design challenges. In practice, correctly assessing
the threats and vulnerabilities facing a system and developing an effective security strategy remain
major challenges. Therefore, the intrusion tolerance system proposed in this paper addresses the above
problems in depth.

2.3 Remarks and Our Thoughts

Given the intrinsic complexities of the Energy Internet, characterized by an extensive array
of devices, intricate system architectures, and voluminous data, the requisite intrusion tolerance
system for this domain demands exceptional accuracy and real-time responsiveness [31]. Existing
methodologies may not adequately account for this multifaceted nature, which potentially falls short
of offering effective protection. Moreover, as attack vectors evolve and become more sophisticated,
recent intrusion detection and defense technologies may struggle to adapt promptly. Consequently,
there is a risk that these technologies may fail to deliver enduring and efficient protection against such
dynamic threats.

To address the above issues, in this paper, we address the shortcomings of existing approaches by
synthesizing and analyzing real-time strategies for intrusion tolerance models:

• We introduce tailored incentive weights for both the attacker and the intruder-tolerant entities
to encourage strategic interactions.

• We perform a thorough analysis and optimize the strategy in real time to ensure dynamic
adaptability.

• We utilize numerical analysis to simulate the evolution of the tolerant intrusion system model.

3 The Design of AT-IEG

The majority of recent research on data security has been focused on preemptive defense strategies
that are implemented before an attack scenario. However, such measures cannot guarantee absolute
system security. Therefore, systems must be designed with resilience in mind to maintain critical
functionality and to avoid total incapacitation in the event of a breach. Existing game-theoretic
models that represent the interactions between attackers and tolerant defenders tend to be biased
in favor of one party over the other. This bias makes it difficult to accurately represent the interplay
and the influence of each party’s internal strategies. Thus, these models often lack comprehensive
gameplay and produce difficulties when attempting to apply them to real-world scenarios. In this
section, we present the introduction of incentive weighting coefficients that articulate the strategic
interdependence between attackers and defenders in the context of network attack scenarios. These
coefficients are incorporated into attacker-defender tolerance models to refine replicator dynamic
equations. The improved equations facilitate the determination of optimal strategies for both parties
at each successive point in time.

3.1 Construction of the Evolutionary Game Model

The cyber-attacker and the intrusion-tolerant game model can be represented as a six-tuple
ATEGM = (N, S, ∂, θ , U, T).
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1. N = (NA, NT) is the total set of aggressors and aggressor-tolerant parties in the evolutionary
game, where NA is the attacking party and NT is the tolerant party, both of which have multiple
decision makers.

2. S = (SA, ST) is the set of strategies of the attacker and the tolerant aggressor. Where SA =
{A1, A2, . . . , An} denotes the set of optional attacker strategies, ST = {T1, T2, . . . , Tm} denotes
the set of optional aggressor strategies, and n and m denote the number of attackers and
aggressors, respectively.

3. ∂ = (P, Q) is the set of beliefs of the attacker and the tolerant aggressor, where pi ∈ P is the
probability that the attacker chooses strategy Ai, and qj ∈ Q is the probability that the tolerant
aggressor chooses strategy Tj.

4. θ = (α, β) is the set of attacker and aggressor gains, where α denotes the incentive relationship
between the strategies of the attacker and β denotes the incentive relationship between the
strategies of the tolerant aggressor.

5. U = (UA, UT) is the set of attacker and aggressor gains, where UA is the attacker’s gain and UT

is the aggressor’s gain.
6. T is the evolutionary game time. The attacker and aggressor game can be decomposed into

several temporal subgame processes.

During the decision-making process of attacking and tolerating aggression, the attacker and the
intrusion-tolerant party adjust and improve their curricula in real time according to their interests.
This produces changes over time in the number of decision-makers choosing different strategies. As
a result, the attack strategy set and the tolerance strategy set are constructed separately. Fig. 2 shows
the game tree of the attacker and the intrusion-tolerant party.

Figure 2: The game tree of attackers and intrusion-tolerant parties

Table 1 shows the payoff matrix for attackers and intrusion-tolerant parties, Where V represents
the original benefits derived from the information possessed by the intrusion-tolerant party itself. AC

denotes the attack cost required by the attacker to adopt a certain attack strategy. TC denotes the
tolerance cost required by the tolerant party to select a certain tolerance policy. AG denotes the gain
from the attack. AGij represents the payoff obtained by the attacker choosing strategy SAi and the
intrusion-tolerant party choosing strategy STj.
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Table 1: Attacker and intrusion-tolerant party payoff matrix

Strategy Strong attack SA1 Weak attack SA2

Strong tolerance ST1

V − TC1 − AG11 V − TC1 − AG12

AG11 − AC1 AG12 − AC2

Weak tolerance ST2

V − TC2 − AG21 V − TC2 − AG22

AG21 − AC1 AG22 − AC2

If the attackers choose a weak attack strategy and the intrusion-tolerant parties choose a strong
intrusion-tolerant strategy, the resulting payoff for the attackers is denoted AG12, and AG12 < AG11;
When the attackers select a weak attack strategy and the intrusion-tolerant parties adopt a weak
intrusion-tolerant strategy, the payoff obtained from the attack is denoted AG22 with AG22 < AG21.

Based on the payoff matrix for attackers and intrusion-tolerant parties, the payoff UAi for different
attack strategies and the average payoff UA are calculated.

UA1 = q1 (AG11 − AC1) + q2 (AG21 − AC1) (1)

UA2 = q1 (AG12 − AC2) + q2 (AG22 − AC2) (2)

UA = p1UA1 + p2UA2 = p1 [q1 (AG11 − AC1) + q2 (AG21 − AC1)] + p2 [q1 (AG12 − AC2) + q2 (AG22 − AC2)]

(3)

Fp = dp (t)
dt

= p1 (1 − p1)
(
UA1 − UA

)
(4)

Similarly, the gains UTi and the average gains UT for the different defensive strategies of the
intrusion-tolerant party against the attacks can be calculated.

UT1 = p1 (V − TC1 − AG11) + p2 (V − TC1 − AG12) (5)

UT2 = p1 (V − TC2 − AG21) + p2 (V − TC2 − AG22) (6)

UT = q1UT1 + q2UT2 == q1 [p1 (V − TC1 − AG11) + p2 (V − TC1 − AG12)] + q2 [p1 (V − TC2 − AG21)

+ p2 (V − TC2 − AG22)] (7)

Fq = dq (t)
dt

= q1 (1 − q1)
(
UT1 − UT

)
(8)

p1 + p2 = 1

q1 + q2 = 1 (9)

Due to the complex network environment of the power distribution system in actual power
system attacks, the practical strategies of the attacker and the intruder-tolerant party can change,
especially considering the dependency relationships between strategies within the attacker group and
the intruder-tolerant party. Therefore, it is necessary to introduce incentive weights in the replication
dynamic equations; this approach improves the accuracy of the replication dynamic rate. Then, we can
obtain the optimal strategies for the attacker and the tolerant aggressor for each period.
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3.2 Improved Replication Dynamic Build Strategy

The evolutionary game model of the attacker and the intrusion-tolerant part is established. We
consider that there is a certain dependency between the attack strategy SAi and the defense strategy
STj. The influence coefficients ϕi and γi are introduced for the attack strategy and the defense strategy
respectively. ϕi represents the magnitude of the attacker’s strategy influence and is directly proportional
to the attack payoff. Different strategies have different influence coefficients; a larger coefficient
indicates stronger strategy intensity, while smaller coefficients indicate weaker strategy intensity.
Similarly, γi represents the magnitude of the intrusion tolerant party’s strategy strength.

Let αij = ϕi

ϕj

. We define αij as the incentive weight between attack strategies SAi and SAj. When

αij < 1, strategy SAi has positive incentives for SAj; if αij > 1, strategy SAi has positive incentives for SAj.
Similarly, We define βij = γi

γj
as the incentive weight between the tolerant aggression strategies STi and

STj. Combining Eqs. (4) and (8) further yields the improved replication dynamics equation.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F ′
p = dp (t)

dt
= ϕ1p1 (1 − p1) {AG21 − AC1 − α (AG22 − AC2) + q1 [AG11 − AG21 + α(AG22 − AG12)]}

F ′
q = dq (t)

dt
= γ1q1 (1 − q1) {V − TC1 − AG12 − β (V − TC2 − AG22) + p1 [AG12 − AG11 + β (AG21 − AG22)]}

(10)

Letting Eq. (10) equal 0, the following five sets of equilibrium points can be obtained:

1)

{
p1 = 0
q1 = 0; 2)

{
p1 = 1
q1 = 0; 3)

{
p1 = 0
q1 = 1; 4)

{
p1 = 1
q1 = 1; 5)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p1 = TC1 + AG12 − V + β (V − TC2 − AG22)

AG12 − AG11 + β (AG21 − AG22)

q1 = AC1 − AG21 + α (AG22 − AC2)

AG11 − AG21 + α (AG22 − AG12)

3.3 Improved Replication Dynamic Build Strategy

For the improved replicated dynamic equations, the stability of the equilibrium points is analyzed
based on the above five evolutionary game equilibrium points via local analysis. The Jacobi matrix of
the improved replicated dynamics equations is obtained as follows:

Y =
[
∂F ′

P/∂p ∂F ′
P/∂q

∂F ′
q/∂p ∂F ′

q/∂q

]
(11)

In Eq. (11), ∂F ′
P/∂p = γ (1 − 2q1) {V − TC1 − AG12 − β (V − TC2 − AG22) + p1[AG12 −

AG11 + β (AG21 − AG22)]}; ∂F ′
P/∂q = γ1q1 (1 − q1) [AG12 − AG11 + β (AG21 − AG22)]; ∂F ′

q/∂p =
ϕ1p1 (1 − p1) [AG11 − AG21 + α (AG22 − AG12)]; ∂F ′

q/∂q = ϕ1 (1 − 2p1) {AG21 −AC1 −α (AG22 − AC2)+
q1 [AG11 − AG21 + α (AG22 − AG12)]}.

According to Table 2:

Det J(0,0) = γ1ϕ1 [V − TC1 − AG12 − β (V − TC2 − AG22)] [AG21 − AC1 − α (AG22 − AC2)]

Tr J(0,0) = γ1 [V − TC1 − AG12 − β (V − TC2 − AG22)] + ϕ1 [AG21 − AC1 − α (AG22 − AC2)] (12)
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Det J(0,1) = −γ1ϕ1 [V − TC1 − AG11 − β (V − TC2 − AG21)] [AG21 − AC1 − α (AG22 − AC2)]

Tr J(0,1) = γ1 [V − TC1 − AG11 − β (V − TC2 − AG21)] − ϕ1 [AG21 − AC1 − α (AG22 − AC2)] (13)

Det J(1,0) = −γ1ϕ1 [V − TC1 − AG12 − β (V − TC2 − AG22)] [AG11 − AC1 − α (AG12 − AC2)]

Tr J(1,0) = −γ1 [V − TC1 − AG12 − β (V − TC2 − AG22)] + ϕ1 [AG11 − AC1 − α (AG12 − AC2)] (14)

Det J(1,1) = γ1ϕ1 [V − TC1 − AG11 − β (V − TC2 − AG21)] [AG11 − AC1 − α (AG12 − AC2)]

Det J(1,1) = −γ1 [V − TC1 − AG11 − β (V − TC2 − AG21)] − ϕ1 [AG11 − AC1 − α (AG12 − AC2)] (15)

Table 2: The value of the determinant and trace of each equilibrium point

Equilibrium point Det J Symbol Tr J Symbol

A (0, 0) Det J(0,0) +or− Tr J(0,0) +or−
B (0, 1) Det J(0,1) +or− Tr J(0,1) +or−
C (1, 0) Det J(1,0) +or− Tr J(1,0) +or−
D (1, 1) Det J(1,1) +or− Tr J(1,1) +or−

The numerical expression for the stabilization point is shown. Let m = V − TC1 − AG11 −
β (V − TC2 − AG21), n = AG11 − AC1 − α (AG12 − AC2), We break it into the following four cases:

• m < 0, n < 0, Point A (0, 0) behaves as an ESS equilibrium point, indicating that both
the attacker and the intrusion tolerant party choose weak attack and weak intrusion tolerant
strategies; B (0, 1) and C (1, 0) are saddle points and D (1, 1) is unstable.

• m < 0, n > 0, Point B (0, 1) represents an ESS equilibrium point, indicating that the attacker
and the intrusion-tolerant party choose a weak attack strategy and a strong intrusion tolerant
strategy, respectively. Points A (0, 0) and D (1, 1) are saddle points, and C (1, 0) is an unstable
point.

• m > 0, n < 0, Point C (1, 0) acts as an ESS equilibrium point, indicating that the attacker
and the intrusion-tolerant party choose a strong attack strategy and a weak intrusion tolerant
strategy, respectively. Points A (0, 0) and D (1, 1) are saddle points, and B (0, 1) is an unstable
point

• m > 0, n > 0, Point D (1, 1) acts as an ESS equilibrium point, indicating that both the attacker
and the intrusion-tolerant party choose strong attack strategies and strong intrusion-tolerant
strategies, respectively. B (0, 1) and C (1, 0) are saddle points, and A (0, 0) is an unstable point.

4 The RACIT-PDN Model

In this section, we combine the game processes of the attacker and the intrusion-tolerant party
with a model of racial competition to construct a dynamic model that describes the behavior of the
game between the attacker and the intrusion-tolerant party. The goal of an attacker is to destabilize
the power system by consuming or by controlling critical resources through various means. A tolerant
party implements a strategy to protect these resources as much as possible while tolerating the
attacker’s attacks and maintaining the normal operation of the system.
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The model places resource competition at the center of the dispute between the two parties,
simulating the allocation and the occupation of key resources such as bandwidth, processing power,
and power supply in the network. The adaptive strategy of the intrusion-tolerant party mirrors the
evolutionary mechanism of the biological species, which responds to the evolution of the means of
attack by constantly updating and by improving security measures. The dynamic equilibrium between
the attacker and the intrusion-tolerant party is achieved through the iterative evolution of the strategies
of both parties.

For the attacking and tolerating parties in the power system, the process of the game can be
specifically simulated by the racial competition model. With the attacking and tolerating parties as
the two populations, Eq. (16) is obtained by assuming that the change in quantity in the normal state
of both parties conforms to a logistic law:

dP
dt

= μ1P
(

1 − P
M

)

dQ
dt

= μ2Q
(

1 − Q
N

)
(16)

where P denotes the number of attacking parties, Q denotes the number of tolerating parties, μ1 and
μ2 denote the diffusion rate of attacking parties and the repair rate of tolerating parties, respectively,
and t denotes the time of the game. However, when attackers and intrusion-tolerant parties compete,
the deterrent effect of attackers on the growth of tolerant aggressors is proportional to the number of
attackers. Similarly, intrusion-tolerant parties have the same deterrent effect on attackers. This leads
to Eq. (17):

dP
dt

= μ1P
(

1 − P
M

− Si

Q
N

)

dQ
dt

= μ2Q
(

1 − Q
N

− Di

P
M

)
(17)

In Eq. (17), Si and Di denote the strength of the attacker’s strategy and the strength of the
intrusion-tolerant party’s strategy, respectively, with smaller values indicating greater strength. This
is further combined with the incentive weights to obtain α = Si

Sj
and β = Di

Dj
.

5 Experimental Analysis

In this section, experimental simulations and analyses of the game process between the attacking
party and the aggressor-tolerant party under cyber attacks based on the IEEE 39-bus system are
conducted to demonstrate the validity and the feasibility of the method proposed in this paper. First,
the experimental environment and the parameter settings are presented; second, the feasibility of
improving the incentive weights of the replicated dynamic equations is verified and analyzed. Finally,
experimental simulations and analyses are conducted based on the voltage values on the IEEE 39-bus
system for the attacker and the intrusion-tolerant party race competition models.

5.1 Experimental Setting

This paper is implemented in MATLAB 2019a, the experimental simulation is conducted with the
IEEE 39-bus system, and the network topology is shown in Fig. 3. The relevant parameters are shown
in Table 3.
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Figure 3: IEEE 39-bus system topology diagram

Table 3: Parameters of IEEE 39-bus system

Bus Parameters

The number
of generation

The number of node The number
of branch

Total load of
generation

Total load of node

39 10 39 46 6297.87 6254.23

First, 39 nodes with 46 branches were analyzed and divided into 39 nodes based on the correlation
between the nodes: Minor nodes, comparatively important nodes, moderate nodes, important nodes,
and very important nodes. There are 12 minor nodes, 10 more important nodes, 13 moderately
important nodes, 3 important nodes, and 1 very important node.

The more connected the nodes are, the greater the importance level of the node. A node with a
high importance level indicates that the node is in the core part of the system, and it must adopt the
strategy of incremental strength of tolerance intrusion in the game model to ensure that the function
of the node is complete. In contrast, nodes with lower importance levels use a strategy of decreasing
the strength of tolerance intrusion to ensure that the nodes can perform the most basic functions.
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5.2 Feasibility Analysis of the Incentive Weights

In this section, feasibility simulation experiments are conducted on the incentive weights proposed
in the network attacker and intrusion-tolerant party model based on the evolutionary game model. By
varying the values of the incentive weights, the simulation explores the impact of different strategies
between the attacker and the intrusion-tolerant party on the changes in the evolutionary model.

Due to the particularity of the intrusion tolerant party, the costs and the benefits of weak intrusion
tolerance strategies and weak attack strategies are much lower than those of strong intrusion tolerance
strategies and strong attack strategies. Therefore, we set V = 12, TC1 = 1, TC2 = 1, AC1 = 1, AC2 = 0.1,
AG11 = 11, AG12 = 0.1, AG21 = 9, AG22 = 0.1, ϕ1 = 1, and γ1 = 1. The initial states of the attacker
and the intrusion-tolerant party are set to (p1, q1) = (0.6, 0.2) and (p1, q1) = (0.8, 0.4), respectively.
Based on this fact, the incentive weights for the attacker and the intrusion-tolerant party are assigned
values for simulation to obtain the game evolution process under different incentive weights.

• Set α21 = 1, β21 = 1. At this point, there is no incentive relationship between strategy ST1 and
strategy ST2 of the intrusion-tolerant party. This is consistent with the traditional replicator
dynamics equation. As shown in Fig. 4, when the initial state is (p1, q1) = (0.6, 0.2), the strong
aggressive strategy reaches a steady state after 1.25-time units of simulation, and the strong
intrusion tolerant strategy reaches a steady state after 2.7-time units of simulation, When the
initial state is (p1, q1) = (0.8, 0.4), the strong attack strategy reaches stability after 1.35-time
units of simulation, and the strong intrusion tolerant strategy reaches stability after 3-time units
of simulation.

• Set α21 = 2, β21 = 2. This time, the attacker’s strategy SA2 has an inhibitory effect on strategy
SA1, and the strategy ST2 of the intrusion tolerant party has a facilitating effect on strategy ST1.
Compared to scenario 1, scenario 2 slowed the convergence speed of the attacker and accelerated
the convergence speed of the intrusion-tolerant party. As shown in Fig. 4, when the initial state
is (p1, q1) = (0.6, 0.2), the strong attack strategy reaches a steady state after 1.31-time units of
simulation, and the strong intrusion tolerance strategy reaches a steady state after 1.08-time
units of simulation. When the initial state is (p1, q1) = (0.8, 0.4), the strong attack strategy
reaches stability after 1.46-time units of simulation, and the strong intrusion tolerance strategy
reaches stability after 1.35-time units of simulation.

• Set α21 = 0.5, β21 = 0.5. At this point, the attacker’s strategy SA2 promotes strategy SA1, while
the intrusion-tolerant party’s strategy ST2 inhibits strategy ST1. Facilitates the convergence of
the attacking side and slows the convergence of the intrusion tolerant-party compared to that
of case 1. As shown in Fig. 4, when the initial state is (p1, q1) = (0.6, 0.2), the strong attack
strategy reaches a steady state after 0.94-time units of simulation, and the strong intrusion
tolerance strategy reaches a steady state after 4.3-time units of simulation; When the initial
state is (p1, q1) = (0.8, 0.4), the strong attack strategy reaches stability after 1.25-time units of
simulation, and the strong intrusion tolerance strategy reaches stability after 4.8-time units of
simulation.

In summary, after simulation for the given parameter values, the attacker and the intrusion-
tolerant party reach a steady state after many evaluations to calculate their respective optimal
strategies. For the intrusion-tolerant party, convergence is faster when the incentive weights are larger
and when the strategy is more favorable to the intrusion-tolerant party. However, for the attacker,
convergence is faster when the incentive weights are smaller. The faster the convergence rate is, the
more favorable the strategy is for the attacker at this point. The simulation results of the experiment
are consistent with the theoretical part described in this paper. The results verify the feasibility of the
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incentive weights of the improved replicated dynamic equations, and they provide strategy support for
the experiments of the game model based on racial competition in the next section.

Figure 4: Evolutionary trend of the attacker and the intrusion tolerant party

5.3 Nodal Voltage Influence Experiment

For the attacker’s strategy set SA, we divide the attacker’s strategy into five categories based on the
attack strength SA = {A1, A2, A3, A4, A5}, where the smaller value represents a higher strategy strength,
i.e., a higher attack threat level, specifically as shown in Table 4.

Table 4: Classification of attack strategies

Categorisation Definition Intensity

A1 Advanced persistent threats (APT) (0, 0.2]
A2 Distributed denial of service attack (DDoS) (0.2, 0.4]
A3 Attacks against data (data leakage, SQL injection, etc.) (0.4, 0.6]
A4 Malware (viruses, worms, trojans, etc.) (0.6, 0.8]
A5 Physical attacks (equipment theft, physical damage, environmental

controls, etc.)
(0.8, 1.0)

For the strategy set ST of the intrusion-tolerant party, we divide the strategies of the intrusion
tolerant party into five categories ST = {T1, T2, T3, T4, T5} according to the aggression tolerance
strength, where a smaller value represents greater strategy strength, i.e., greater intrusion tolerance
strength. The details are shown in Table 5.

In this paper, we divide the racial competition game process between the attacker and the
intrusion-tolerant party into five stages. In each stage, the optimal strategies of both sides are derived
according to the current situation. Simulation experiments are conducted based on the current
strategies at each node voltage of the IEEE 39-bus system. The feasibility and the usability of the
presented model are analyzed through the final voltage of each node. The specific strategy strength is
shown in Table 6.

• As shown in Table 6, it is assumed that the attacker achieves greater gains by attacking the
nodes with lower strategy strengths during the attack process; this increases the attack strength
on the nodes with lower strategy strengths and weakens the attack strength on the nodes with
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lower gains in the next phase. Similarly, when the intrusion-tolerant party receives an attack, it
adopts different intrusion tolerance strategies according to the importance of different nodes.
The more important nodes adopt higher strength intrusion tolerance strategies to ensure that
such nodes can complete the required functions; less important nodes adopt lower strength
intrusion tolerance strategies to ensure that such nodes can complete the most basic functions.

• In the first phase, since the attacker and the intrusion-tolerant party do not know each other’s
policy strengths, the intrusion-tolerant party chooses a policy strength of 0.2 for all nodes.
The attacker chooses a policy strength of 0.5. In the second phase, the attacker adjusts the
policy strength to 0.4 after gaining the attack gain; then, the intrusion-tolerant party adjusts
the tolerance policy after being compromised by the attacker by adopting policy strengths of
0.25, 0.22, 0.2, 0.18, and 0.15 for nodes of different importance. Phase III and so on continue
with different strengths of attack and intrusion tolerance strategies in real time.

• The residual voltage of each node is finally obtained, and the secondary node can fulfill the
most basic function if it reaches 30% of the starting voltage. The comparatively important
nodes can fulfill the required function if they reach 40% of the starting voltage. Moderately
important nodes can perform the required function if they reach 60% of the starting voltage.
Important nodes can complete the step-down function if they reach 80% of the starting voltage.
Very important nodes are the core of the system, and the integrity of the function of this node
must be ensured. This requires that the residual voltage reaches 90% of the starting voltage.

Table 5: Classification of tolerance strategies

Categorisation Definition Intensity

T1 Set up backup systems deploy advanced network monitoring (0, 0.2]
T2 Intrusion detection systems (IDS) automated intrusion prevention

systems (IPS)
(0.2, 0.4]

T3 Role-based access control (RBAC) multi-factor authentication (0.4, 0.6]
T4 Data encryption security training (0.6, 0.8]
T5 Password management, access vulnerability assessment, penetration

testing
(0.8, 1.0)

Table 6: Attacker and the intrusion tolerant party phase strategy strengths

Level Phase I Phase II Phase III Phase IV Phase V

Attack Tolerance Attack Tolerance Attack Tolerance Attack Tolerance Attack Tolerance

Minor 0.5 0.2 0.4 0.25 0.3 0.3 0.2 0.4 0.1 0.5
Comparatively 0.5 0.2 0.4 0.22 0.35 0.25 0.3 0.3 0.2 0.4
Moderate 0.5 0.2 0.4 0.2 0.4 0.18 0.5 0.16 0.6 0.15
Important 0.5 0.2 0.4 0.18 0.6 0.15 0.7 0.12 0.8 0.1
Very important 0.5 0.2 0.4 0.15 0.7 0.1 0.8 0.05 0.9 0.01

Based on Table 6, the attacker and the intrusion-tolerant party adopted different policy strengths
for the IEEE 39-bus system. Fig. 5 shows the voltage values of the minor, comparatively important,
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moderately important, important and critical nodes at the initial moment, the first stage and the final
moment.

• Figs. 5a and 5b show that less voltage is lost after the first phase. The strength of the tolerant
intrusion strategy chosen by the minor and comparatively important nodes in the first phase is
0.2.

• Fig. 5c shows that the moderately important nodes adopted an incremental strategy intensity
of the intrusion-tolerant party from the first stage onward. At this point, since the attacker
achieves less attack gain on the medium important nodes compared to that of the secondary
and more important nodes, the attacker chooses a decreasing strategy strength. Eventually, the
moderately important nodes maintain most of the tension.

• Fig. 5d shows the voltage variations at important and critical nodes. Important and very
important nodes are the core of the whole system. Most of the work must be done by these
two types of nodes. When the attacker is detected by the intrusion-tolerant party, the strategy
is adjusted after the first phase, and the intrusion-tolerant party adopts an increasing strategy
strength; then, the attacker wins fewer attacks on these two types of nodes and adjusts to a
decreasing strategy strength. Finally, important and very important nodes lose the least tension.

Figure 5: Voltage variation of IEEE 39-bus
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For the IEEE 39-bus system, the same level of node voltage change is not obvious. To simplify the
analysis, in the experiments, the most obvious nodes at different levels are selected for comparison.
For minor nodes, comparatively important nodes, moderately important nodes, important nodes and
very important nodes, nodes 30, 9, 17, 2, and 16, respectively, were selected. as shown in Fig. 6.

Figure 6: Voltage variation of IEEE 39-bus

In a normal attack scenario, the attacker randomly and indiscriminately attacks all nodes. This
can result in the paralysis of critical nodes and the inability of the required functions of the system
to be performed. Therefore, the AITGM is used to protect nodes of high importance as much as
possible by adopting an intrusion-tolerant strategy at certain nodes that cannot withstand the strength
of the attack. To ensure the proper operation of the entire system, it is necessary to maintain only the
minimum voltage for each node to perform its required function.

• As shown in Fig. 6, the voltage of node 30 in the minor nodes decreases from 1.05 to
0.378 V after five stages of the strategy. As such, nodes are required to perform only the most
basic functions in the system, a voltage of 30 percent of the starting voltage is sufficient. The
comparatively important node 9 goes from an initial value of 1.038 to 0.447 V, reaching 40
percent of the starting voltage. Moderately important node 17 went from 1.034 to 0.699 V,
reaching 60 percent of the starting voltage. Important and very important nodes, which are
the core part of the whole system, have higher voltage requirements than do other classes of
nodes. Important node 2 went from 1.048 to 0.844 V, meeting 80% of the requirement, and
very important node 16 went from 1.033 to 0.932 V, meeting 90% of the residual voltage to the
starting voltage.

• We consider, for example, minor nodes and very important nodes. In the first stage, the attack
intensity and intrusion tolerance for minor nodes and very important nodes are 0.5 and 0.2,
respectively. In this stage α15 = S1

S5
= 1, β15 = D1

D5
= 1. There is no incentive relationship between

intrusion strategies for minor nodes and highly important nodes, likewise, there is no incentive
relationship between attack strategies.

• Due to the system detecting an attack, in the second stage, the system adjusts the strategy
intensities for each node. The attack intensity and intrusion tolerance for minor nodes are
adjusted to 0.4 and 0.25, respectively, while for very important nodes, the attack intensity
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and intrusion tolerance are adjusted to 0.4 and 0.15, respectively. In this stage α15 = S1
S5

= 1,

β15 = D1
D5

= 1.6. Therefore, there is no incentive relationship between attack strategies for minor
nodes and very important nodes. The intrusion tolerance strategy of minor nodes promotes
the intrusion tolerance strategy of very important nodes. As a result, minor nodes endure more
attacks compared to very important nodes, thereby safeguarding the very important nodes.

• In the third stage, to safeguard nodes of very important levels, the attack intensity and intrusion
tolerance for minor nodes are adjusted to 0.3 each, while for very important nodes, the
attack intensity and intrusion tolerance are adjusted to 0.7 and 0.1, respectively. In this stage
α15 = S1

S5
= 0.428, β15 = D1

D5
= 3. Minor nodes’ intrusion tolerance strategy promotes the

intrusion tolerance strategy of very important nodes. However, attackers gain more benefits
from attacking minor nodes compared to very important nodes, which leads to an increase in
the attack intensity on minor nodes and a decrease in the attack intensity on highly important
nodes. At the same time, the intrusion side further intensifies its intrusion tolerance strategy
against very important nodes while reducing the intrusion tolerance intensity against minor
nodes. Following this pattern, similar methods are employed in subsequent stages to achieve
the protection of nodes with higher importance levels while ensuring that nodes with lower
levels can maintain the voltage required to perform basic functions.

Through the experimental simulation, all five types of nodes satisfy the required voltage for the
normal operation of the system, which again verifies the feasibility of the incentive weights and proves
the effectiveness of the AITGM proposed in this paper. The core idea is to reduce the voltage of nodes
with low importance levels, while preserving the voltage of nodes with higher importance levels as
much as possible, ensuring that each node can still perform its required functions even when under
attack, ultimately guaranteeing the normal operation of the entire system in network attack scenarios.

6 Conclusions

This paper proposes an Adaptive Intrusion Tolerance Game Model for network attacks. Firstly,
a tolerant intrusion model with improved replication of the dynamic equation evolution game is
constructed to elicit the incentive weights. Secondly combining incentive weights to model the attacker
and the intrusion tolerant party based on racial competition. Finally, the incentive weights are verified
by experimental simulation to motivate the strategies in the game between the attacker and the
intrusion tolerant party, and the residual voltages of the nodes with different importance levels are
obtained by simulating the game process between the attacker and the intrusion tolerant party at
the IEEE 39-bus system. Experiments demonstrate the feasibility and effectiveness of the Adaptive
Tolerance Intrusion Game Model proposed in this paper. In the future, based on the research in this
paper, the dynamic adaptability and tolerance level accuracy of the model will be further optimized
by considering factors such as the actual operating mode of the power equipment, multiple nodes or
branches.
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