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ABSTRACT

In the realm of low-level vision tasks, such as image deraining and dehazing, restoring images distorted by adverse
weather conditions remains a significant challenge. The emergence of abundant computational resources has
driven the dominance of deep Convolutional Neural Networks (CNNs), supplanting traditional methods reliant
on prior knowledge. However, the evolution of CNN architectures has tended towards increasing complexity,
utilizing intricate structures to enhance performance, often at the expense of computational efficiency. In response,
we propose the Selective Kernel Dense Residual M-shaped Network (SKDRMNet), a flexible solution adept
at balancing computational efficiency with network accuracy. A key innovation is the incorporation of an M-
shaped hierarchical structure, derived from the U-Net framework as M-Network (M-Net), within which the
Selective Kernel Dense Residual Module (SDRM) is introduced to reinforce multi-scale semantic feature maps.
Our methodology employs two sampling techniques-bilinear and pixel unshuftled and utilizes a multi-scale feature
fusion approach to distil more robust spatial feature map information. During the reconstruction phase, feature
maps of varying resolutions are seamlessly integrated, and the extracted features are effectively merged using
the Selective Kernel Fusion Module (SKFM). Empirical results demonstrate the comprehensive superiority of
SKDRMNet across both synthetic and real rain and haze datasets.
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SKFM Selective Kernel Fusion Module

SKDRMNet Selective Kernel Dense Residual M-shaped Network
PSNR Peak Signal to Noise Ratio

SSIM Structural Similarity Index

LPIPS Learned Perceptual Image Patch Similarity

FSIM Feature Similarity Index Metric

AMBE Absolute Mean Brightness Error

BRISQUE Blind/Referenceless Image Spatial Quality Evaluator
NIQE Natural Image Quality Evaluator

1 Introduction

Image restoration, a foundational task in low-level Computer Vision (CV), has attracted signif-
icant research interest in recent years. In practical outdoor scenarios, environmental factors such as
rain, raindrops, and haze inevitably degrade the quality of captured images. This degradation has
a ripple effect on the accuracy of subsequent high-level CV tasks like object detection [1-3]. Thus,
our primary objective is to develop a network capable of producing noise-free images from degraded
inputs. This network serves as a critical pre-processing stage for various downstream high-level CV
applications. The image restoration process targets the removal of noise pixels from images captured
by highway or airport cameras on rainy or hazy days. These images are represented as ‘O’, consisting of
clean background (‘B’) and noise patterns (‘N’), where O = B 4+ N. While many restoration networks
effectively eliminate noise, some encounter difficulties in extracting rain or haze features. Moreover,
prolonged transmission processes can lead to the loss of crucial features, thereby impacting overall
performance.

In the realm of single image deraining and dehazing networks, three primary categories have
emerged: Filter-based, prior-knowledge-based, and CNN-based networks. Filter-based networks,
demonstrated in references [4-0], exploit the low and high-frequency characteristics of image data
to eliminate noise. However, they often lack discrimination, applying the same operation uniformly to
both rain streaks (or haze) and intricate image features, potentially leading to loss of detail. Networks
falling within the prior-knowledge category, as exemplified by references [7—10], leverage sparsity,
randomness, and low-rank properties inherent in the data during image restoration. While effective
in removing rain streaks or haze, these networks may inadvertently introduce colour distortion
in the restored image. The third category harnesses CNNs, showcased in architectures [11-15], to
address these challenges with data-driven approaches, leveraging the network’s ability to learn intricate
patterns and features from large datasets.

CNN-based networks, often heralded as state-of-the-art (SOTA) solutions, frequently incorporate
a variety of sophisticated structures aimed at enhancing performance in deraining or dehazing tasks.
These structures encompass a range of techniques, including residual learning [16,17] attention mecha-
nisms [18,19] dense connections [20,21] channel attention modules [22,23] residual dense modules [24]
and hierarchical architecture styles [25-27]. The integration of these advanced CNN-based structures
signifies a prevailing trend toward harnessing complex neural network architectures to bolster noise
removal and image restoration capabilities.

Existing networks predominantly concentrate on either image deraining or dehazing tasks and
commonly grapple with issues such as limited diverse receptive fields and weak supervision signals.
Moreover, SOTA approaches frequently confront challenges like sluggish convergence, excessive
parameterization, high computational costs, and prolonged inference times. These difficulties arise
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from the necessity of a substantial number of parameters, resulting in intricate and complex network
structures. Furthermore, striking a balanced trade-off between noise removal and preservation of
essential image details remains a critical challenge.

This study aims to achieve a harmonious balance between computational efficiency and accuracy
within our network, while also addressing multiple low-level vision tasks. Our approach begins by
adapting the Residual Dense Module (RDM) into the Selective Dense Residual Module (SDRM) and
introducing a selective residual M-hierarchy architecture. Additionally, we incorporate two distinct
sampling techniques, bilinear and pixel un-shuffled [16] along with a multi-scale feature fusion strategy.
At the critical reconstruction stage, we depart from traditional concatenation methods, opting instead
for the Selective Kernel Fusion Module (SKFM) [27] to seamlessly combine the extracted feature maps
at multi-scales. This strategic adjustment is specifically designed to efficiently yield refined features,
thereby contributing to a more effective trade-off between computational efficiency and the network’s
overall accuracy.

This work presents several significant contributions:

1. We introduce the Selective Dense Residual Module (SDRM), a highly efficient feature extrac-
tion module tailored specifically for low-level CV tasks.

2. A novel M-Net hierarchy architecture is proposed to effectively address the challenges posed
by heavy rain streaks, raindrops, and haze in noisy images.

3. Through extensive experimentation, we demonstrate that our SKDRMNet achieves compa-
rable performance in both quantitative and qualitative assessments. Notably, it operates with
reduced inference time and requires fewer parameters compared to other SOTA networks.

4. The superiority of our network is further validated across various low-level haze removal tasks,
as well as high-level CV tasks such as object detection. This showcases the versatility and
enhanced performance of our approach in diverse scenarios.

2 Related Work

This section offers an overview of the research endeavours undertaken in the realm of image
deraining and dehazing over the past decade. While video-deraining networks [28—30] demonstrate
promising results in deraining tasks; they often encounter efficiency challenges when faced with heavy
rain streaks or haze, primarily due to the absence of temporal information between adjacent frames.
This limitation has prompted a notable shift in focus among researchers towards the domain of image
restoration.

2.1 Single Image Deraining Networks

Researchers have extensively explored various deep learning methodologies to tackle the removal
of both light and heavy rain streaks. The classification of single image deraining networks hinges on
whether the network derives all the rain model information, resulting in two distinct categories: White-
box architectures and black-box architectures.

2.1.1 White-Box Architectures

A network tasked with deriving all the rainfall model information falls under the category of
white-box network architecture [20,21]. However, it is important to note that these networks typically
necessitate either ground truth data or prior knowledge for effective operation. In response to this,
Zhang et al. [21] proposed a density-aware densely connected CNN. Their approach considers the
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shape and distinct scale properties of rain streaks, integrating this knowledge into a multi-stream deep
CNN tailored specifically for rain streak removal. Additionally, to address the challenging nature of
the image deraining problem, a novel network called the Conditional General Adversarial Network
(CGAN) was introduced [31]. Furthermore, in [32], Wang et al. developed a rain information model
by accounting for the alignment structures of vapours and rain streaks.

In an effort to bridge the divide between synthetic and real-world image deraining challenges,
a dual-stage neural network was introduced [33,34]. This innovative approach aimed to mitigate the
disparities between synthetic and real images by integrating physical properties of the environment,
such as atmospheric light, rain streaks, and transmission, into the image deraining process. However, it
is recognized that while many of these networks demonstrate proficiency in removing rain streaks with

specific shapes, they may encounter difficulties when confronted with rain streaks of varying shapes.

2.1.2 Black-Box Architectures

In contrast to white-box architectures, black-box architectures [35-37] eschew explicit learning
of the entire rain model information, instead harnessing the black-box capabilities of deep CNNs
during training for robust fitting. Li et al. [7] introduced the Deep Detail Network (DDN), drawing
inspiration from ResNet [16,38] to effectively remove rain streaks using deep learning techniques. Their
approach involved designing a deep detail CNN tailored to reconstruct noise-free images, showcasing
the potential of black-box architectures in addressing image deraining challenges.

Lee et al. [39] introduced the K-NN Image Transformer (KiT), pioneering a novel attention mech-
anism for image restoration. These advancements exemplify innovative strategies within deraining
networks, effectively tackling various challenges in rain removal and image restoration. In response
to the limitations of convolution models in capturing long-range dependencies and removing complex
rainy artifacts, an efficient transformer-based network was proposed [40]. This approach introduces
locality and hierarchy into the network architecture, resulting in superior deraining outcomes, albeit at
the expense of consuming more parameters to generate a clean image. Addressing the relative indepen-
dence between background and rain streak features often overlooked by existing SOTA networks in the
feature domain; the Pyramid Feature Decoupling Network (PFDN) [41] was introduced. This network
aims to remove noise from rain images while preserving detailed background image information.
Additionally, Liu et al. [42] presented the Context-Aware Recurrent Multi-stage Network (ReCMN)
for removing heavy rain streaks and producing noise-free images. Leveraging a multi-stage strategy,
this network effectively models contextual relationships among features. However, it should be noted
that this network requires more runtime to generate a derained image.

2.2 Single Image Dehazing Networks

The single-image dehazing (SID) task presents a significant challenge as it is inherently ill-
posed, primarily due to the limited information available to establish the haze model. Compounding
this challenge is the non-linear nature of the haze model, which amplifies sensitivity to noise and
adds further complexity to the problem. In response to these inherent difficulties, researchers have
proposed various strategies aimed at addressing these challenges and improving the efficacy of
dehazing algorithms over time. Various approaches have been introduced by researchers to tackle the
challenge of SID. For instance, a GridNet [22], based on CNNs, was proposed to remove artifacts from
hazy images. In another study, an attention-based CNN network was developed to directly restore
haze-free images by integrating feature-attention modules, a local residual learning mechanism, and
attention-based feature fusion mechanisms [43]. Additionally, Wu et al. [44] employed a contrastive
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learning-based auto-encoder framework to leverage both clear and hazy images, aiming to reduce
memory storage and enhance the network’s performance. However, it is worth noting that this network
may struggle to remove dense haze from certain hazy images.

In their work detailed in [45], researchers combined transformer and CNN architectures for image
dehazing, aiming to address the inconsistency between the two by employing a learning modulation
technique to modulate CNN features. Another approach, proposed by Wu et al. [46], introduced a
real dehazing network utilizing codebook priors rather than relying solely on a physical scattering
model. In a separate study [47], a recurrent structure-based CNN dehazing network was designed
with the goal of restoring haze-free images. Additionally, Wang et al. [48] presented a dual-stage
image dehazing network that also takes into account low-frequency haze characteristics. To enhance
texture details and edges in the image, they devised a frequency stream-based CNN attention octave
network. However, it should be noted that this approach overlooks the low similarity between noise
and noise-free haze components. In a recent study [49], a novel recurrent feedback structure was
introduced to enhance dehazing performance. This approach leverages deep feature dependencies
across various stages, aiming to effectively mitigate haze effects. Additionally, a pioneering end-to-
end self-regularization triple unfolding framework was proposed [50]. This framework strategically
capitalizes on the distinct characteristics of different haze and clear components. By doing so, it ensures
that the extracted features possess superior generalization capabilities.

Our approach is designed to address multiple low-level CV tasks, ultimately aiming to improve
the detection accuracy of subsequent high-level vision tasks. Prioritizing simplicity and efficiency, our
network endeavours to strike a balance between performance and computational resource utilization.
By doing so, we aim to enhance the effectiveness and generalization capability of low-vision tasks.

3 Proposed Methodology

This section focuses primarily on the proposed SKDRMNet architecture, providing a detailed
explanation of the various components utilized in our network.

3.1 Proposed Architecture

Fig. 1 depicts the proposed SKDRMNet architecture, designed for the highly effective restoration
of noise-free images. The process initiates with the input rainy image ¥ € R"™"*“ where a 3 x 3 weight-
sharing convolution extracts low-level features, followed by bilinear down sampling of the original
input. Selective Dense Residual Modules (SDRM) then extract high-level semantic feature maps from
each layer, incorporating the pixel-unshuffled technique for down-sampling at the end of SDRM,
resulting in multi-scale feature maps.

To enhance the capture of semantic information across cascaded features, our network integrates
two down-sampling variants: Bilinear and pixel-unshuffled methods. Shallow features extracted from
the previous stage, obtained through bilinear down-sampling, are subsequently concatenated with
feature maps in line with the U-Net process. This strategic integration ensures the preservation
and incorporation of valuable information at different scales throughout the network architecture.
Subsequently, in the reconstruction phase aimed at generating a noise-free image, multi-scale feature
maps are seamlessly integrated using the SKFM. A 3 x 3 convolution is applied, yielding a residual

image R € R"™W"*, The final restored image is obtained through the equation ¥ = Y + R. Importantly,
the post-convolution maintains a fixed number of 72 input channels, contributing to the network’s
efficiency and overall effectiveness in image restoration.
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Figure 1: Selective kernel dense residual M-shaped network (SKDRMNet) architecture

Our SKDRMNet is optimized in an end-to-end manner, and for all low-level CV tasks, we utilize
the Charbonnier loss function to restore noise-free images. The formulation is as follows:

2

. + g2 (1)

A

Lchar = Y-Y

where Y, Y € R™W<B denotes restored images and ground-truth images. H, W, C & B represents
height of image, width of image, feature channels count and batch size during network training. In
Eq. (1) the constant & was empirically set to 0.001. Now we provide in-detail information of various
sub-components used in our network.

We introduce Residual Resize Module (RRM) to perform bilinear down-sampling and pixel-
unshuffled operations while maintaining the residual nature in our network. To resize the input images
Y € R™W¢ (Y is the same as Eq. (1)); we apply bilinear down-sampling. Likewise, to resize shallow
features following convolution, we employ the pixel-unshuffled technique. This ensures that while
the size of the original image is downscaled by two, the dimensions of input and output feature
channels remain consistent. An observation reveals that the lower layer feature map encompasses
both pixel-unshuffled and bilinear features. However, it is noted that the quality of bilinear features
is comparatively inferior to that of pixel-unshuffled features, leading to an imbalance in the feature
map. To rectify this imbalance, these feature maps undergo processing through the SDRM, which
amplifies the weights of bilinear features. This adjustment effectively mitigates the unbalanced feature
map problem, thereby enhancing the overall quality and balance of the feature representation.

3.1.1 M-Network (M-Net)

Traditional U-Net architectures encounter challenges in effectively enriching contextual feature
map information across varying image resolutions and addressing spatial loss induced by down-
sampling in encoder stages. Given that low-level CV tasks are inherently pixel-wise vision tasks, the
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utilization of max-pooling for down-sampling in encoder stages proves inappropriate as it results in a
significant loss of spatial feature map information. To overcome these limitations, M-Net architecture
offers a solution by integrating additional gatepost feature paths in both encoder and decoder stages.
Originally devised for medical image segmentation [51], M-Net has since been successfully adapted for
image denoising [25,26], super-resolution [52] demonstrating its efficacy in mitigating these drawbacks
and enhancing the performance of low-level CV tasks.

To enhance M-Net for image restoration, we introduced two improvements and incorporated them
into our SKDRMNet. Firstly, we aimed to increase the diversity of multi-scale cascading features. In
the original implementation [51], both gatepost and U-Net paths utilized 2 x 2 max pooling, resulting
in combined feature maps. In SKDRMNet, we adopted bilinear down-sampling in the gatepost path
and pixel un-shuffle down-sampling in the U-Net path, thereby enhancing diversity in the cascaded
features. Secondly, we addressed the challenge of summarizing information in decoders, particularly
concerning high-dimensional cascading features in shallow layers. While the original M-Net [51]
employed techniques such as changing input image size, batch normalization, and reducing input
feature map dimensions, these methods often increased parameters and computational complexity.
To mitigate these drawbacks, SKDRMNet utilizes the SKFM [27] to aggregate weighted features
instead of concatenating each feature map separately during the reconstruction process. These design
modifications contribute to the generation of clean images, enhancing generalization capability across
different environmental conditions and ultimately improving the detection accuracy of object detectors
[3]. This adaptation renders M-Net suitable for image restoration, offering improved efficiency and
performance.

3.1.2 Selective Dense Residual Module (SDRM )

In our network, the improved Residual Dense Module (RDM) [52] has been enhanced and is now
referred to as the Selective Dense Residual Module (SDRM). The architectures of both the SKFM and
SDRM are depicted in Figs. 2a and 2b, respectively. The SDRM incorporates dynamic adjustments
through two key operations: Fuse and select. The fuse operator functions by combining information
from dual streams, thereby generating global feature descriptors. Subsequently, the select operator
utilizes these descriptors to recalibrate feature maps, followed by their aggregation. These operations
play a crucial role in enhancing the adaptability and effectiveness of the SDRM in capturing and
integrating multi-scale feature information for improved image restoration performance.

In our SDRM structure, we use 3 residual modules and each residual module takes two input
features f,,, f,,, € R™WY“ representing residual and mainstream features, respectively. One pathway
employs a conventional 3 x 3 convolution kernel to extract features, while the other pathway employs
varying kernel sizes (such as 5 x 5 and 7 x 7) to acquire a larger receptive field. Initially, element-
wise addition is used to combine two multi-scale features, followed by Global Average Pooling (GAP)
across spatial dimensions to compute channel-wise statisticss € R"'*“. Next, a channel downscaling
convolution is applied to generate a compact feature map representation z € R, where r = 0.125
C. Finally, the feature vector (z) passes through two parallel channel up-scaling convolution layers,
providing corresponding feature descriptors v, v, € R"™"¢. Select: The select operator applies the
Softmax function to v, and v, feature descriptors, yielding attention activations s, and s, that are used
to adaptively recalibrate multi-scale channel weighted feature maps f,,, f.,, respectively. The overall

A

feature recalibration and aggregation of every residual module is defined as fo = s1. A + $2foms After

<J ms

three residual modules, a 3 x 3 convolution is applied, and a long-skip connection along witha 1 x 1
convolution is inserted between the input and output to reconstruct a noise-free image.
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Figure 2: (a) Selective Kernel Fusion Module (SKFM) (b) Selective Dense Residual Module (SDRM)

4 Experimental Results

This section offers a comprehensive overview of several synthetic and real-world benchmark
datasets utilized for various low-level CV tasks. Additionally, we provide detailed implementation
procedures and present experimental results for both deraining and dehazing.

4.1 Datasets

In the real world, capturing both noisy and noise-free image pairs simultaneously is not feasible.
Therefore, we trained and tested SKDRMNet using synthetic rain, raindrop, and haze benchmark
datasets. Table 1 summarizes the synthetic and real-world datasets utilized in our network, specifically
tailored for rain, raindrop and haze tasks. We also verified the effectiveness of SKDRMNet on other
low-level vision tasks such as image dehazing.

Table 1: Summary of used datasets in our network

Datasets Train images  Test images Renamed test set
Rainl2 [7] 12 0 NC

Rain14000 [17] 11200 2800 Test2800
Rain100L [20] 0 100 Rain100L
Rain100H [20] 0 100 Rain100H
Rain1800 [20] 1800 0 NC

Rain1200 [30] 0 1200 Test1200
Rain800 [31] 700 100 Test100
RealRain200* 0 200 RR200

(Continued)
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Table 1 (continued)

Datasets Train images  Test images Renamed test set
RIS [53] 0 2400 NC

RESIDE [54] 5000 1000 RESIDE6K
Dense-Haze [55] 50 5 NC

NH-HAZE [56] 45 5 NC

Note: *- we collected real-rain images from internet.

4.2 Implementation Details

The proposed network underwent training on Google Colab Pro+ with a single Tesla V100
GPU, utilizing PyTorch 1.8.0 for implementation. To bolster the robustness of the network, various
data augmentation techniques such as vertical, rotation, and horizontal flips were applied. Training
commenced from scratch in an end-to-end manner, employing hyperparameters including a patch size
of 256 x 256, Adam optimizer, batch size of 8, weight decay set at 0.0005, momentum at 0.9, and a
variable learning rate ranging from 0.0002 to 0.00001 and trained for 200 epochs.

4.3 Image Deraining

4.3.1 Quantitative Evaluation

We conducted thorough experiments to systematically evaluate the deraining performance of
our network across multiple benchmark synthetic rain datasets. Our experimental analysis involved
comparing the results obtained from our network with those of 13 mainstream SOTA networks,
including RESCAN [11], MPRNet [12], DIDMDN [21], SEMI [24], PReNet [37] among others. To
quantitatively assess deraining performance, we computed the Peak Signal to Noise Ratio (PSNR) and
Structural Similarity Index (SSIM) scores on the recovered images, with higher PSNR and SSIM scores
indicating superior performance. Table 2 provides a comprehensive overview of the quantitative results
obtained by various existing SOTA networks on standard synthetic rain datasets. The comparative
analysis reveals that our network consistently achieved improved PSNR and SSIM scores when
compared to current mainstream networks, highlighting its effectiveness in image deraining task.

Table 2: Comparative analysis of mainstream SOTA networks on synthetic rain datasets

Datasets Test2800 [17] Rainl00L [20]  Rainl00H [20]  Test1200 [30] Test100 [31] Avg. PSNR/

Networks/Metrics PSNR/SSIM4  PSNR/SSIM{ PSNR/SSIM4 PSNR/SSIMt PSNR/SSIM{  Avg. SSIM4

RESCAN [11] 31.29/0.90 29.80/0.88 26.36/0.78 30.51/0.88 25.01/0.83 28.59/0.85
MPRNet [12] 31.64/0.93 36.69/0.97 27.65/0.87 31.73/0.91 27.86/0.85 30.98/0.90
SAPNet [13] 31.18/0.93 34.77/0.97 29.46/0.89 32.46/0.91 29.13/0.88 31.60/0.91
DGUNet [14] 31.68/0.93 37.42/0.96 30.40/0.89 33.11/0.92 30.32/0.90 32.98/0.92
DIDMDN [21] 28.13/0.86 25.23/0.74 17.35/0.52 29.65/0.90 22.56/0.82 24.58/0.77
SEMI [24] 24.38/0.73 22.25/0.84 18.08/0.57 23.91/0.71 20.72/0.68 21.87/0.70
ECNet [34] 31.42/0.93 33.42/0.95 27.91/0.86 30.05/0.90 27.55/0.88 30.27/0.90
MSPNet [35] 31.82/0.93 32.44/0.95 28.66/0.86 32.39/0.91 27.50/0.87 30.76/0.74
PReNet [37] 31.75/0.91 32.44/0.95 26.77/0.85 31.36/0.91 24.81/0.85 29.42/0.89
KiT [39] 31.25/0.94 36.56/0.97 30.46/0.89 32.81/0.92 30.26/0.90 32.79/0.92

(Continued)
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Table 2 (continued)

Datasets Test2800[17]  Rainl00L[20] Rainl00H [20] Test1200[30]  Testl00[31]  Avg. PSNR/
Networks/Metrics PSNR/SSIM4 PSNR/SSIMf PSNR/SSIM{ PSNR/SSIM4  PSNR/SSIMt  Avg. SSIM4
IDT [40] 31.38/0.93 37.01/0.97 29.95/0.90 31.38/0.91 29.69/0.90 32.28/0.92
PFDN [41] 32.63/0.93 37.10/0.98 30.13/0.89 33.74/0.93 31.88/0.91 33.09/0.92
ReCMN [42] 32.46/0.93 37.64/0.98 30.51/0.89 32.85/0.93 31.97/0.91 33.08/0.93
Proposed 32.88/0.94 39.63/0.98 30.56/0.90 33.7810.93 32.36/0.92 33.84/0.93

4.3.2 Qualitative Evaluation

Fig. 3 visually demonstrates the efficacy of our network in effectively removing heavy rain streaks,
showcasing its robustness and generalizability in image deraining tasks. The images utilized for this
visual comparison were sourced from the Rain100H [20] synthetic dataset. In Fig. 3, specific regions
within the testing images are selected and magnified to provide a closer inspection of the deraining
results. This visual representation allows for a clear and intuitive assessment of the performance of
our network in mitigating the adverse effects of heavy rain streaks, thereby reinforcing the quantitative
findings presented in the previous section.
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Figure 3: Visual results of existing SOTA networks and our network on Rain100H dataset

Upon closer scrutiny of the magnified local area, it becomes evident that PReNet [37] demon-
strates limited effectiveness in generating a rain-free image, despite achieving a low PSNR score on the
Rain100H dataset. Conversely, networks such as MPRNet [12], SAPNet [13], DGUNet [14], ECNet
[34] and PFDN [41] exhibit successful removal of heavy rain streaks, albeit with potential drawbacks
such as introducing varying degrees of blur in the background and deficiencies in retaining background
details in the restored image. Our network surpasses other mainstream networks in terms of both
PSNR and SSIM scores, particularly excelling in completely eliminating complex heavy rain streaks.
Additional visual results obtained from comparisons on the Rain100L [20] dataset with existing SOTA
networks are presented in Fig. 4. This visual analysis offers further insight into the performance of our
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network relative to other competing methods, reinforcing its efficacy in tackling challenging deraining
tasks.
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Figure 4: Visual results of existing SOTA networks and our network on Rain100L dataset

Fig. 5illustrates our network’s capability to generate more natural-looking images when compared
to other existing mainstream networks on real-world rain datasets. For this purpose, we collected 200
real rain images from the internet and designated them as RealRain200. Upon closer examination
of zoomed-in local details, it becomes apparent that other SOTA networks struggle to produce
clean images, resulting in partial texture distortion and blurred backgrounds. Even MPRNet [12],
despite its prominence, generates images with noticeable blurring and colour distortion. Through
visual comparisons on real-world rain datasets conducted in this study, our network demonstrates
its superiority in recovering rain streaks while retaining more texture details. Furthermore, Table 3
provides a comparison of SOTA networks with other non-reference evaluation metrics such as
BRISQUE and NIQUE on the RealRain200 dataset, offering further insights into the performance
of our network in real-world rain image deraining task.

Table 3: Comparison of SOTA networks on RealRain200 dataset

Networks/ Rainy RESCAN MPRNet SAPNet ECNet PReNet IDT PFDN ReCMN Proposed

Metrics images [11] [12] [13] [34] [37] [40] [41] [42]
BRISQUE, 2843 28.29 28.31 27.43 27.69 26.82 27.78 27.64  28.16 26.04
NIQE| 5.12 4.67 4.77 4.92 4.74 4.69 481 483 4.78 4.65

4.4 Image Dehazing

4.4.1 Quantitative Evaluation

To assess the effectiveness of our network, we conducted a comprehensive performance compari-
son with 10 mainstream SOTA dehazing networks, employing both quantitative and qualitative eval-
uations. Tables 4 and 5 present the qualitative comparison of our network with these counterparts on
hazy images, assessing their performance across three key metrics: PSNR, SSIM (distortion metrics),
Feature Similarity Index Metric (FSIM), Learned Perceptual Image Patch Similarity (LPIPS), and
Absolute Mean Brightness Error (AMBE) (perceptual metrics).
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Figure 5: Visual deraining results of RealRain200 dataset and comparison with other networks

Table 4: Comparison of qualitative results of several existing SOTA dehazing networks

Dataset RESIDE6K [54]
Networks/Metrics PSNR+4  SSIM4  FSIM4  LPIPS| AMBE]
GridNet [22] 17.524 0.849 0.873 0.623 30.89
FFA-Net [23] 19.182 0.864 0.912 0.487 21.46
AECR-Net [44] 20.237 0.885 0.951 0.464 19.42
IDHT [45] 21.949 0.906 0.948 0.451 16.13
FSDGN [406] 21.745 0.898 0.957 0.446 12.24
RIDCP [47] 23.816 0.901 0.849 0.478 14.57
FCDSNet [48] 23.351 0.904 0.896 0.347 8.46
FSADNet [49] 24.073 0.923 0.921 0.392 10.89
TSURNet [50] 23.426 0.917 0.957 0.305 7.83
Proposed 25.294 0.926 0.966 0.238 5.42

The results indicate that our network consistently outperforms existing SOTA networks in terms
of both distortion and perceptual metrics on RESIDE6K [54], Dense-Haze [55], and NH-HAZE
[56] test datasets. These experimental findings underscore the efficacy of SKDRMNet in effectively
handling these challenging datasets, reaffirming its superiority in dehazing tasks.
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Table 5: Comparison of qualitative results of several existing SOTA dehazing networks

Dataset Dense-Haze [55] NH-HAZE [56]
Networks/Metrics PSNR+4  SSIM4  LPIPS|, PSNR4 SSIM4t  LPIPS|
GridNet [22] 13.24 0.359 0.512 13.64 0.526 0.303
FFA-Net [23] 14.27 0.451 0.496 19.75 0.681 0.364
AECR-Net [44] 15.73 0.458 0.527 19.77 0.702 0.269
IDHT [45] 16.57 0.546 0.469 20.18 0.673 0.225
FSDGN [46] 16.82 0.578 0.425 19.84 0.705 0.221
RIDCP [47] 8.16 0.406 0.542 12.12 0.497 0.346
FCDSNet [48] 17.24 0.743 0.404 18.97 0.695 0.214
FSADNet [49] 15.79 0.567 0.426 18.63 0.639 0.232
TSURNet [50] 17.86 0.797 0.376 20.85 0.717 0.183
Proposed 19.13 0.93 0.315 22.17 0.741 0.164

4.4.2 Qualitative Evaluation

Visual comparisons between our proposed network and several mainstream SOTA networks were
conducted on the Dense-Haze [55] and NH-HAZE [56] datasets, yielding insightful observations. In
Figs. 6 and 7, it becomes evident that many existing mainstream networks encounter challenges in
effectively removing non-homogeneous and dense haze. These techniques often suffer from significant
information loss in image contents and colour fidelity. In contrast, our network demonstrates superior
performance by effectively eliminating nearly all haze, preserving intricate background details in the
restored image, and generating higher fidelity dehazed results. Furthermore, our network consistently
produces outcomes that closely resemble the ground truth image, showcasing its ability to faithfully
reconstruct the dehazed images. These visual comparisons serve to underscore the effectiveness and
reliability of our proposed network in addressing complex haze removal tasks.
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Figure 6: Visual results of several mainstream SOTA networks on Dense-Haze dataset
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Figure 7: Visual results of several mainstream SOTA networks on NH-HAZE dataset

4.5 Resource Efficient

In our comparison with the latest SOTA networks on the Rainl100L [20] dataset, our network
emerges as the top performer, achieving a superior PSNR score while demanding fewer computational
resources. This efficiency is evidenced by factors such as reduced Floating Point Operations per
Second (FLOPS), parameters, and run-time requirements. Table 6 provides a detailed computational
complexity comparison with various SOTA networks. By outperforming these networks in terms of
PSNR while maintaining lower computational demands, our network demonstrates its effectiveness
in image deraining tasks without compromising efficiency. This highlights the practical utility and
superiority of our proposed approach in real-world applications where computational resources are
often constrained.

Table 6: Comparison of computational complexity in terms of PSNR, FLOPS, parameters, and
runtime (milliseconds) of several networks on 512 x 512 images

Networks/Metrics PSNR  FLOPS (G) Parameters  Runtime (ms)

MPRNet [12] 36.69 572.77 36,37,303 128.66
SAPNet [13] 34.77 36.25 27,49,214 200.04
ECNet [34] 33.42 212.59 8,93,56,24 271
MSPNet [35] 32.44 708.44 35,64,216 212.84
IDT [40] 37.01 61.8 16,44,68,59 283
PFDN [41] 37.1 246.3 24,46,72,36 212
ReCMN [42] 37.64 209.7 13,68,43,84 104
Proposed 39.63 185.26 3,66,527 70.19

Our network imposes a computational burden of 185.26 GFLOPs, learns 0.366 million param-
eters, and produces a derained image within a swift 70.19 milliseconds (ms). Compared to PFDN
[41], SKDRMNet boasts 0.75 fewer FLOPs. Additionally, our network achieves a notable +1.99 dB
higher PSNR score than ReCMN [42], while demanding approximately 37 times fewer parameters
and running ~1.5 times faster. Notably, our network exhibits lower runtimes compared to existing
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SOTA networks, performing approximately three times faster than PFDN [41], four times faster than
IDT [40], and ~2.8 times faster than SAPNet [!3]. Furthermore, our network excels in eliminating
unnecessary noise, yielding rain-free images that closely resemble the ground truth. This outcome
underscores the efficiency of our network, which demonstrates the least computational complexity
among existing SOTA networks while delivering superior deraining performance.

4.6 Application in High-Level CV Task

Single image deraining stands as a pivotal low-level CV task aimed at improving the precision
of subsequent high-level CV tasks. When autonomous vehicles capture images under adverse weather
conditions, such as heavy rain or haze, they often struggle to accurately locate and detect objects amidst
these challenging environments. Factors like fluctuating lighting conditions, variations in viewpoint,
scale discrepancies of objects, and inherent noise in captured images collectively diminish the accuracy
of existing object detectors. As a result, addressing image deraining becomes imperative for enhancing
the overall effectiveness of object detection systems in complex scenarios.

In our final evaluation, we gauge the performance of SKDRMNet concerning a high-level vision
task, specifically object detection, employing SSAD [1]and YOLOVS [2] as our chosen object detectors.
The detection accuracy (YomAP@0.5) of state-of-the-art (SOTA) image deraining networks, when
paired with SSAD [1] and YOLOVS [2] on the RIS [53] dataset, is presented in Table 7. The individual
detection accuracies of SSAD and YOLOvVS stand at 27.84% and 31.42%, respectively, indicating
suboptimal performance due to the presence of rainy artifacts in the testing images. However, when
combined with SKDRMNet, the detection accuracy improves to 28.92% for SSAD and 32.56%
for YOLOVS. This enhancement of 1.08% and 1.14%, respectively, signifies the effectiveness of
SKDRMNet in facilitating more accurate object detection. Consequently, SKDRMNet serves as a
valuable pre-processing stage for existing object detectors, significantly enhancing their capability to
detect objects accurately amidst adverse weather conditions.

Table 7: Detection results (mAP@0.5) of several SOTA networks on RIS [53] dataset

Networks Rainy RESCAN MPRNet SAPNet ECNet PReNet IDT PFDN ReCMN Proposed
images [t [12] [13] [34] [37] [40] [41] [42]

SSAD [1] 27.84 23.92 24.51 25.36 24.67 24.18 26.6  27.03 27.14 28.92

YOLOvS [2] 31.42 26.73 28.13 28.9 28.51 28.06 289 30.83 31.07 32.56

4.7 Limitations

While our network outperforms existing SOTA networks, it faces limitations in scenarios where
images exhibit a combination of rain and haze, low-light conditions with rain, and dense haze. These
scenarios pose challenges as our network lacks the capability to effectively address such complex
environmental conditions. Particularly, it struggles to adequately remove haze from real rainy images,
leading to derained outputs that remain unclear. This limitation stems from the absence of training
data containing a mixture of rain and haze, underscoring a significant constraint of our current
network architecture. Addressing this challenge requires exploring avenues for collecting real-world
datasets that encompass both rain and haze, facilitating the development of more resilient models
capable of handling diverse environmental conditions.
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4.8 Ablation Study

The comprehensive evaluation of each component within our network architecture is conducted
through meticulous ablation studies, focusing on the Rainl00L dataset [20]. The robustness of
our network is meticulously assessed and presented in Table 8. Notably, the significance of skip
connections is highlighted by the results, demonstrating a notable decrease in the PSNR score upon
their removal. Skip connections play a pivotal role in facilitating rapid convergence and mitigating
larger training errors, thereby contributing significantly to the network’s performance. Moreover,
the incorporation of the SKFM at the higher end proves beneficial, facilitating effective informa-
tion transfer among parallel convolution streams and leading to enhanced performance outcomes.
Furthermore, the replacement of the U-Net architecture with our refined M-Net structure yields a
substantial improvement in the PSNR score, demonstrating a notable increase from 34.39 to 35.48 dB.
This enhancement underscores the efficacy of integrating our modified M-Net architecture into the
network design, further validating its effectiveness.

Table 8: Impact of each component on our network

Skip connections N Y N N Y Y Y Y
Bilinear down-sampling Y N Y Y N N N Y
SKFM intermediate Y N N Y Y Y N N
SKFM final N Y Y N N N Y Y
SDRM N Y N Y N N Y Y
Pixel unshuffled N N Y N Y Y Y Y
M-Net N Y Y N Y Y Y Y
Residual resize module Y N Y Y Y Y Y Y
PSNR (dB) 3439 3548 36.25 37.06 37.69 38.14 38.57 39.63

In our comparative analysis presented in Table 9, the efficacy of our SKFM is evident, showcasing
superior performance when compared to other methods. Notably, SKFM achieves this superior per-
formance while utilizing ~6x fewer parameters compared to concatenation operations, highlighting
its efficiency and resource-effectiveness. This demonstrates the robustness and practicality of SKFM
as a critical component within our network.

Table 9: Feature aggregation strategy. SKFM uses ~6x lesser parameters than concatenation

Method Summation Concatenation SKFM
PSNR 37.42 38.49 39.63
Parameters 0 12,188 2048

5 Conclusion

In this study, we introduce SKDRMNet as a versatile solution that not only achieves SOTA
results in image deraining and dehazing but also addresses the crucial balance between computational
efficiency and network accuracy. At the core of SKDRMNet lies the M-shaped network architecture,
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a pivotal component that significantly enhances feature enrichment by integrating multi-resolutions,
surpassing traditional RDM’s in efficacy. Our comprehensive experiments underscore the network’s
proficiency across various low-level vision tasks, highlighting its potential to make significant contri-
butions to the broader field of CV. Nevertheless, challenges persist, particularly in optimizing PSNR
and SSIM scores for images with substantial rain. Real-world scenarios, such as images with dense
rain or a combination of rain and haze, continue to present on-going challenges that necessitate further
exploration and refinement. Looking ahead, the exploration of additional low-level vision tasks, such
as desnowing and deblurring, remains an area of interest for future research endeavours.
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