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ABSTRACT

The proposed robust reversible watermarking algorithm addresses the compatibility challenges between robustness
and reversibility in existing video watermarking techniques by leveraging scene smoothness for frame grouping
videos. Grounded in the H.264 video coding standard, the algorithm first employs traditional robust watermark
stitching technology to embed watermark information in the low-frequency coefficient domain of the U channel.
Subsequently, it utilizes histogram migration techniques in the high-frequency coefficient domain of the U channel
to embed auxiliary information, enabling successful watermark extraction and lossless recovery of the original video
content. Experimental results demonstrate the algorithm’s strong imperceptibility, with each embedded frame in
the experimental videos achieving a mean peak signal-to-noise ratio of 49.3830 dB and a mean structural similarity
of 0.9996. Compared with the three comparison algorithms, the performance of the two experimental indexes is
improved by 7.59% and 0.4% on average. At the same time, the proposed algorithm has strong robustness to both
offline and online attacks: In the face of offline attacks, the average normalized correlation coefficient between
the extracted watermark and the original watermark is 0.9989, and the average bit error rate is 0.0089. In the
face of online attacks, the normalized correlation coefficient between the extracted watermark and the original
watermark is 0.8840, and the mean bit error rate is 0.2269. Compared with the three comparison algorithms,
the performance of the two experimental indexes is improved by 1.27% and 18.16% on average, highlighting
the algorithm’s robustness. Furthermore, the algorithm exhibits low computational complexity, with the mean
encoding and the mean decoding time differentials during experimental video processing being 3.934 and 2.273 s,
respectively, underscoring its practical utility.
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1 Introduction

With the rapid advancement of computer technology, the Internet is witnessing an escalating
demand for multimedia watermarking solutions, particularly in safeguarding the ownership and
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copyright of the vast repository of freely available images and videos online [1]. To address these
challenges, the field of information hiding has emerged as a pivotal area of research.

1.1 Major Technology

Within the realm of information security, Cryptography [2], Steganography [3], and Watermarking
[4] stand out as significant research directions. Cryptography focuses on ensuring the confidentiality
and integrity of data by employing encryption algorithms and robust key management practices
to prevent unauthorized access, thereby emphasizing data security. In contrast, Steganography is a
method that conceals confidential information within a cover medium to maintain its secrecy.

Watermarking technology, on the other hand, involves embedding imperceptible watermark
information within digital media to safeguard intellectual property rights and uphold content integrity.
Cryptography secures data through encryption techniques like Advanced Encryption Standard (AES)
and Rivest-Shamir-Adleman (RSA), safeguarding information from illicit access [5]. Steganography
conceals secret data within a carrier medium using techniques such as Least Significant Bit (LSB)
replacement and frequency domain manipulation, commonly applied in image, audio, and video
domains [6]. Watermarking, meanwhile, utilizes digital watermark embedding in media content to
authenticate and preserve intellectual property rights [7].

The collective research efforts in these domains offer diverse solutions for information conceal-
ment, catering to varied security requisites and application contexts. Ongoing research endeavors are
poised to further enhance these technologies, fortifying information security and fortifying intellectual
property rights.

1.2 Research Status

Distinct from cryptographic methods, Digital watermarking technology serves as a vital tool
for protecting multimedia data copyrights, traceability, and integrity authentication of digital media,
like image [8–10] and video [11–13], by embedding watermark information within digital carriers.
Nevertheless, traditional digital watermarking techniques, whether robust or fragile/semi-fragile, often
lead to permanent distortion of the embedded image. In some specific applications such as medical
and military image processing, even this loss of quality is unacceptable. While embedding information
into digital carriers can lead to irreversible distortion, reversible watermarking (RW) techniques [14–
17] have been developed to enable non-destructive carrier recovery post-watermark extraction. In
algorithm design, the primary objectives typically involve minimizing embedding distortion, ensuring
reversibility after information extraction, and maintaining a specified embedding capacity [16].
However, robustness considerations are often secondary, and even minor distortions can result in
erroneous extraction of watermark information [17–19]. To enhance this aspect, the concept of robust
reversible watermarking (RRW) was introduced [20,21]. In scenarios where there is no attack, the
decoder is responsible for both watermark extraction and carrier recovery. However, if the carrier
undergoes an attack, the reversibility feature may be compromised, but the robust watermark can still
be accurately extracted, indicating potential tampering with the carrier [22–25].

Several RRW algorithms for digital images are introduced in the paper: Coltuc et al. [20,21] intro-
duced the foundational framework for RRW, achieving both robustness and reversibility by sequen-
tially embedding watermark information and auxiliary data. Building upon this work, Wang et al. [22]
proposed a two-stage image RRW framework based on the concept of Independent Embedding
Domains (IED), an extension of Coltuc’s watermarking algorithm. This innovative approach involves
decomposing the original carrier into high and low frequency components using the Haar wavelet
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transform, enabling independent embedding processes based on two distinct IEDs. By employing
this methodology, the framework successfully circumvents issues associated with robust and reversible
embedding operations within the same domain, thereby preventing interference between the two types
of watermarks. At present, video-oriented RRW algorithms are rare. Most of the video watermarking
algorithms are robust watermarking algorithms for digital video: Hazim et al. [26] employed a two-
dimensional wavelet transform to partition the image into four sub-bands. Chen et al. [27] organized
frames into groups, segmented embedded frames into non-overlapping blocks, decomposed these
blocks using singular value analysis, computed Zernike moments, and embedded the watermark
accordingly. Fan et al. [28] integrated non-zero quantization coefficients and energy factors to
select suitable chrominance subblocks, proposing an optimized modulation technique for embedding
watermarks in DCT quantization coefficients to minimize subblock modifications. Takale et al. [29]
enhanced watermarking flexibility by combining discrete wavelet transform (DWT) with principal
component analysis (PCA). Farri et al. [30] utilized a combination of contourlet transform (CT) and
singular value decomposition (SVD) to embed watermarks in low-frequency video sub-bands. The
above robust watermarking algorithms for digital video do not have the ability to restore the original
video. Although the RRW framework is effective, current applications are focused on protecting digital
images.

1.3 Background and Structure Erection

The rapid growth of short video culture has elevated its status as a crucial medium for information
dissemination, underscoring the pressing need for effective copyright protection and anti-tampering
measures [31,32]. It is of great practical value to develop a video-oriented digital watermarking
algorithm with both robustness and reversibility in this context. The H.264/Advanced Video Coding
(AVC) video coding standard stands as the predominant video compression standard [33], renowned
for its compression efficiency, compatibility, and widespread adoption in short video data transmission
[34]. Notably, the coding standard for “TikTok” short videos aligns with AVC (H.264). Leveraging
the multiple independent redundant domains inherent in this coding standard, this study refines the
RRW framework proposed in [22] and introduces a novel video dual-domain watermarking algorithm
centered on hidden frame selection. To facilitate this, video frames are organized into groups using
a scene smoothness grouping mechanism, with robust watermarks embedded into the low-frequency
quantization Discrete Cosine Transform (QDCT) coefficient domain, i.e., the Direct Current (DC)
coefficient domain, through the selection of hidden frames. Concurrently, the high-frequency QDCT
coefficient domain, i.e., the Alternating Current (AC) coefficient domain, serves as the embedding
domain for reversible watermarking, ensuring both robustness of the watermark and lossless recovery
of the original video content. The contributions of the proposed algorithm can be listed as follows:

1. Introducing a scene smoothness grouping mechanism and hidden frame selector for enhanced
video fidelity across various sizes with low computational complexity and easy application to existing
videos.

2. Optimization of the image-oriented RRW framework for effective copyright protection of MP4
videos, enabling original video restoration while preserving MP4 video copyrights.

3. Integration of robust watermark splicing and Reed-Solomon error correction coding technolo-
gies in the algorithm to ensure robust security against malicious attacks, with controlled embedding
strength for a balance between invisibility and robustness. Leveraging Histogram Shifting watermark
embedding technology allows for lossless extraction of reversible watermarks, facilitating seamless
original video recovery.
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The relevant contents of this paper and the arrangement of subsequent chapters are as fol-
lows: Section 1 outlines the theoretical underpinnings of the algorithm, Section 2 presents the algo-
rithm framework, Section 3 details watermark embedding, extraction, and carrier recovery processes,
Section 4 offers a comparative analysis of experimental results against other advanced robust water-
marking algorithms, and finally, Section 5 provides a summary of the thesis.

2 Theoretical Basis
2.1 RRW Framework

The fundamental concept underpinning the RRW framework, as introduced by Wang et al. [22],
revolves around the concept of Independent Embedding Domains (IED). In essence, the original
carrier undergoes a transformation into two distinct IEDs, one designated for robust embedding and
the other for reversible embedding. Through this independent transformation process, the quality of
the intermediate IED resulting from the initial stage remains uncompromised by reversible embedding,
thereby preserving the robustness of the watermark.

The original carrier is transformed into two embedding domains (EDs) X ro and X re through a
frequency domain transformation denoted as F, i.e., F = (X ro, X re). These two embedding domains are
independent of each other and serve the purposes of embedding robust watermarking and reversible
watermarking, respectively. It is important to note that the frequency domain transformation F is
invertible, ensuring the integrity of the transformation process.

The embedding process consists of two stages, as illustrated in the Fig. 1. Initially, Y ro is generated
by embedding the watermark W into X ro using a robust embedding method. In this scenario, X re

remains constant, leading to Y re being set equal to X re. Subsequently, in the second stage, the
scalar information resulting from the robust watermark embedding is combined to create auxiliary
information M. The reversible embedding method is then applied to embed M into Y re, resulting
in the generation of Zre. Given that Y ro remains unchanged in this process, Zro is set to be equal to
Y ro. Finally, the label carrier Z is obtained by applying the inverse transformation of F , denoted as
Z = F−1(Zro, Zre).

Figure 1: WANG’s RRW framework

In the decoding process, the carrier Z can be retrieved, allowing for the extraction of watermark
information without distortion. Initially, the labeled carrier Z is separated into two EDs by F , denoted
as Zro and Zre. Subsequently, M and Y re are obtained through the process of reversible watermark
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extraction, enabling the restoration of the original carrier. During this phase, Y ro is equivalent to Zro,
facilitating the extraction of the robust watermark W from Y ro. The restoration of Y ro to X ro is achieved
through M. Finally, the original carrier reverts to X using the inverse transformation of F , expressed
as X = F−1(X ro, X re).

If the encoded carrier Z undergoes distortion, the robust watermark W can still be directly
extracted from the distorted Z. This paper is grounded on the concept of IED within this framework
and applies it to safeguarding the copyright of compressed video content. Detailed explanations of
these applications will be provided in Sections 2 and 3.

2.2 Watermark Error Correction Coding Techniques

Reed-Solomon code (RS) is a class of error-correcting codes proposed by Reed et al. in 1960
[35]. RS code is a linear error correction code known for its powerful error correction ability, which
can correct multiple random errors and burst errors at the same time. In order to improve the fault-
tolerance of watermarking, the methods outlined in this study include applying lossless RS coding
(Reed-Solomon Code) to robust watermarking and reversible watermarking before embedding the
watermark. The coding principle of RS code is shown in Eqs. (1) to (4).

m (x) = mk−1xn−1 + . . . + m1x2t+1 + m0x2t + 0 · x2t−1 + 0 · x + 0 (1)

g (x) =
∏2t−1

j=0
(x − aj) (2)

m (x) %g (x) = p2t−1x2t−1 + p1x + p · 0 (3)

c (x) = m (x) + m (x) %g (x) (4)

In the given scenario, m(x) denotes the watermark information polynomial with 8-bit symbols,
while g(x) represents the primitive generation polynomial. The encoding of watermark information
polynomial is denoted by c(x), with 2t representing the error correction bit length, indicating the
error correction capability of the code. Here, k signifies the number of symbols in the watermark
information, n denotes the symbols in the encoding sequence, and a = 2. The number of bit errors in
a symbol is considered independent of the total number of bit errors. All RS codes are categorized
as symbol errors, exhibiting a high fault tolerance rate, and proving effective in addressing burst
errors. In order to balance the comprehensive error correction ability and computational efficiency,
the algorithm in this paper adopts 64-bit RS coding, in which 52 bits of valid watermarking bits are
allowed, and 12 bits of error correction code are adopted, namely RS (52,40). The experimental results
show that this setting can balance the error correction performance and calculation efficiency well.

3 Development and Evaluation of Algorithm Framework

In this section, we present the algorithm framework and introduce a scene smoothness grouping
mechanism along with a frame selector. Frame selection plays a crucial role in the algorithm, especially
considering the sensitivity of the watermark information. Embedding the watermark in every frame
may expose the information to unauthorized users and significantly increase the video’s bit rate.
Therefore, it is essential to carefully choose frames with hidden embedding positions. Leveraging the
IED framework and recognizing that human eyes are more responsive to brightness than chroma [36],
the algorithm groups video frames and selects smooth frames within each group as the hidden frames,
determining the embedding positions of the watermark.
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3.1 Algorithm Framework

The algorithm in this paper is structured into three main stages, as illustrated in Fig. 2. The
Hidden Frames Selecting Stage involves hidden frame selection, where frames from the cover video
are grouped using a scene detection mechanism. Frames meeting the hidden frame selection criteria
form the hidden frame set X , while those not meeting the criteria are temporarily set aside.

Figure 2: The proposed algorithmic framework overview

The Second Stage, known as the Embedding Stage, begins by obtaining two embedding domains
in X through H.264 encoding: the low-frequency QDCT coefficient X L and the high-frequency
QDCT coefficient X H of the U channel. These two domains are used independently to embed robust
watermarking W and reversible watermarking M. The Embedding Stage consists of two sub-stages.

In the first sub-stage, Y L is generated by embedding the robust watermark W into X L using a
robust splicing method, while X H remains unchanged, with Y H = X H . In the second sub-stage, the
reversible watermark M is used to restore Y L to X L, and then embedded into Y H to produce ZH .
Here, Y L remains unchanged, with ZL = Y L. The watermark mark frame Z is created through H.264
decoding.

The Extraction and Recovery Stage involves the extraction and recovery process, where Z is
combined with the frames initially set aside in the first stage to produce the tagged video. If the
marked video is undistorted, the reverse process of the second stage can be executed: encoding the
marked video with H.264 to obtain two embedding domains ZL and ZH , extracting M and Y H through
reversible watermarking, and retrieving the robust watermark W from Y L (ZL) to restore Y L to X L.

If the marked video is distorted, the robust watermark W can be directly extracted from the
distorted video. In this scenario, the robust watermark remains unaffected by distortion in the second
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sub-embedding stage. The subsequent subsection will conduct a robustness analysis of the independent
embedding domain framework proposed in this algorithm.

3.2 Analysis of Noise

In traditional video robust watermarking algorithms within the compressed domain, a common
approach involves utilizing a single embedding domain [37–41]. In scenarios where the marked video
undergoes distortion from an attack, the resulting distorted marked video can be denoted as Z̃ = Z +
An, where An represents a noisy signal. To recover the original video, it becomes imperative to address
the distortion introduced by the robust watermark using reversible embedding auxiliary information.
However, given the delicate nature of reversible embedding, the robust watermark W must be directly
extracted from the distorted marked video.

During this process, the noise affecting the transitional video frame Y can be defined as follows:
Z̃ − Y = Z − Y + An = Are + An, where Are = Z − Y signifies the embedding noise originating from
reversibly embedded information within the video. It is reasonable to posit that these two distinct noise
signals are independent of each other, thereby presenting the total noise as Eq. (5).

Var (Are + An) = Var (Are) + Var (An) (5)

The variance function Var() is utilized to analyze the noise affecting the robust watermark W . In
the context of our algorithm’s independent embedding domain framework, the distortion attack An

introduces distortion effects on both IEDs, denoted as
(
Z̃L, Z̃H

) = 2D_DCT
(

Z̃
)

= 2D_DCT(Z+An).

Consequently, the distortion noise impacting the robust watermark W is defined as An
L = Z̃L−ZL. It is

important to highlight that the IED framework employed in this algorithm ensures that the distortion
noise affecting W is solely due to An

L, and is not influenced by the embedding noise from the reversible
watermarking M. Therefore, the distortion of the robust watermark in this algorithm is characterized
by Var(An

L
), and the QDCT coefficient of the attacked U channel can be expressed as:

ỹL = z̃L = X L
i + n ≈ X L

i + nL (6)

In the context of the noise affecting the embedding coefficient X L
i, the application of 2D_DCT()

ensures that n ≈ nL = An
L. Consequently, the final distortion can be calculated as Eq. (7).

Var
(
An

L
) ≈ aVar(An) (7)

In the context of the H.264 encoding standard, where a ∈ (0, 1), the specific value of a is dependent
on this standard. Upon comparison, it becomes apparent that Var

(
An

L
) ≤ Var (Are) + Var (An).

Consequently, the robustness of the compressed video watermarking algorithm utilizing a single
embedded domain will inevitably experience a reduction due to the presence of double noise. However,
it is important to note that this reduction does not compromise the robust extraction of the watermark.

3.3 Design of Scene Smoothness Grouping Mechanism and Hidden Frame Selector

Utilizing the Scene Smoothness Grouping Mechanism (SSGM), a Hidden Frame Selector (HFS)
is devised to effectively group frames and select appropriate frames for embedding. The distinction
between frames plays a crucial role in determining whether they belong to the same group or different
groups, as illustrated in Fig. 3.
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Figure 3: Development of scene smoothness grouping mechanism and hidden frame selector algorithm

Taking the video “Foreman” as a case study, the initial step involves dividing the video into
individual frames. Subsequently, the differences between adjacent bits of the eight-bit effective bit
plane of the Y channel and U channel within each frame are computed. Simultaneously, a threshold is
determined, and the comparison between the difference and the threshold aids in grouping the video
“Foreman” based on scene smoothness criteria. These frame variances can be represented in the form
of histogram differences. The equation for histogram differences is presented in Eq. (8).

FDn
Y =

∑L

l=1
HVn

Y
(l) − HVn

Y
(l + 1)

FDn
U =

∑L

l=1
HVn

U
(l) − HVn

U
(l + 1) (8)

where FDn
Y represents the histogram difference of the Y channel of the Nth frame, HVn

Y denotes
the histogram value of the Y channel of the L-layer of the Nth frame, FDn

U signifies the histogram
difference of the U channel of the L-layer of the Nth frame, and HVn

U indicates the histogram value
of the U channel of the L-layer of the Nth frame, with l set to 7. The SSGM operates by grouping
frames based on scene smoothness and analyzing the difference in the two-channel histograms. This is
achieved by establishing a decision threshold to quantify abrupt changes in frame texture. The equation
for the decision threshold is presented in Eq. (9).

Nn
Y = μn

Y + αn
Yσn

Y

Nn
U = μn

U + αn
Uσn

U (9)

where Nn
Y represents the threshold of the Y channel of the Nth frame, Nn

U denotes the threshold
of the U channel of the Nth frame, μn

Y and σn
Y stand for the mean and standard deviation of

the Y channel component of the Nth frame, and μn
U and σn

U represent the mean and standard
deviation of the U channel component of the Nth frame. The parameter α is determined based
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on the characteristics of the video scene. The comparison between the frame difference and the
decision threshold can indicate the texture change within the scene. Moreover, the frame difference
itself can serve as an indicator of whether the frame is suitable for embedding as a hidden frame
to some extent. This is because the difference between bit planes reflects the extent of pixel value
changes in the frame, with a smaller bit plane difference indicating minimal changes between
adjacent pixels. Frames with smoother and more consistent details enhance the concealment of
embedded watermark information. The criteria for grouping frames are based on FDn and Nn, If
the internal values of both

{∣∣FDn
Y − Nn

Y
∣∣ ,

∣∣FDn+1
Y − Nn

Y
∣∣ ,

∣∣FDn+2
Y − Nn

Y
∣∣ , . . . ,

∣∣FDn+t
Y − Nn

Y
∣∣} and{∣∣FDn

U − Nn
U
∣∣ ,

∣∣FDn+1
U − Nn

U
∣∣ ,

∣∣FDn+2
U − Nn

U
∣∣ , . . . ,

∣∣FDn+t
U − Nn

U
∣∣} fall within a similar range, it

indicates that the Nth frame to the (N + t)th frame belong to the same scene, with similar texture and
slow changes, thus forming the same group. In the event of a fault occurring at (N + t)th frame, a new
scene commences at (N + t)th frame, and the thresholds are updated to Nn+t

Y and Nn+t
U . The HFS

chooses the frame with the smallest difference between the Y channel and U channel within the same
scene as the hidden frame for embedding, denoted as FDn = FDn

Y + FDn
U .

It is postulated that the Nth frame is the frame within a group exhibiting the smallest difference,
with FDn representing the cumulative difference between the Y channel histogram and the U channel
histogram of the Nth frame. The total histogram difference of each frame is compared across the
grouped frames, and the frame displaying the minimal histogram difference is designated as the
embedded frame X for the robust watermark W and the reversible watermark M.

3.4 Principles Analysis Underlying HFS

In each frame group, the HFS chooses the frame with the smallest difference between adjacent
bit planes in the Y channel and U channel as the output. The underlying principle guiding HFS will
be elucidated below. To begin, considering the Y channel, the Y channel of a frame is depicted as a
matrix, where each element of the matrix corresponds to the Y channel value of a pixel, as illustrated
below:

I (i, j) = b7 (i, j) b6 (i, j) b5 (i, j) b4 (i, j) b3 (i, j) b2 (i, j) b1 (i, j) b0 (i, j) (10)

where b7 to b0 represent bits 7 to 0, respectively. To compute the frame difference FDn
Y , a difference

matrix D is defined. For each pixel, the Y channel difference can be calculated as:

D (i, j) = |b7 (i, j) − b6 (i, j)| + |b6 (i, j) − b5 (i, j)| + |b5 (i, j) − b4 (i, j)| + |b4 (i, j) − b3 (i, j)|
+ |b3 (i, j) − b2 (i, j)| + |b2 (i, j) − b1 (i, j)| + |b1 (i, j) − b0 (i, j)| (11)

where D(i, j) represents the difference of pixels in row i and column j of the difference matrix. Following
the definition of geometric interval [42], the difference matrix D is interpreted as the geometric distance
and denoted as the normalized value D′, representing the distance from the sample point in the feature
space to the hyperplane. The normalization equation is expressed as follows:

D′ = D
‖D‖ (12)

where ‖D‖ represents the norm of D. The normalized value D′ is denoted as follows:

D′ = wTX + B
‖w‖ (13)

where w is the weight vector, X is the eigenvector, and B is a bias term. In HFS, pixels with D′ > 0 are
classified into positive classes, while pixels with D′ < 0 are classified into negative classes. In practical
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classification scenarios, the model’s prediction accuracy is crucial, with closer proximity to the actual
result indicating better classification. This proximity is reflected in the accuracy of classifying positive
and negative classes and the shorter distance of each sample point to the hyperplane [42]. A smaller
sum of differences between adjacent bit planes in the Y and U channels signifies a closer prediction
to the actual result, indicating a more concentrated Y channel value distribution and smoother image
appearance. The same principle applies to the U channel. In conclusion, frames with smaller sums
of differences between adjacent bit planes in the Y and U channels within the same group result in
smoother frames and are selected by the HFS mechanism.

4 Developing Two-Domain RRW Algorithm for Frame Grouping in Compressed Videos via Scene
Smoothness Analysis

In this section, we propose a novel approach for embedding and extracting robust and reversible
watermarks based on the algorithm framework presented in this paper, as well as the subsequent
restoration of the original video. Considering the perceptual impact on the human eye, which is
more sensitive to changes in brightness rather than chromaticity, our algorithm leverages the H.264
video encoding framework to efficiently utilize a large number of QDCT coefficients. Through the
application of traditional robust watermark splicing techniques (such as those proposed by WANG),
the robust watermark is embedded in the low-frequency QDCT domain X L of the U channel, while
the reversible watermark is embedded in the high-frequency QDCT domain Y H of the U channel.

4.1 Robust Watermark Embedding: Enhancing Security and Integrity

At this stage, the robust watermark W is embedded in the low-frequency DC QDCT domain X L

of the U channel within the HFS outcome.

In Fig. 4, exemplified by the video “Foreman,” the hidden frame is divided into m non-overlapping
macroblocks following H.264 encoding.

Figure 4: Robust watermark embedding in foreman video using traditional splicing technology

For the macroblocks {X L
1, X L

2, . . . , X L
m}, a random map φ : {1, 2, . . . , m} �⇒ {β (1) , β (2) , . . . ,

β (m)} is defined to embed the watermark w ∈ {0, 1} into the U channel low-frequency QDCT
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coefficient X L of a macroblock by means of the mapping φ. In the case where m is even, m is denoted
as 2f , as described below:

Y L
β(i) =

⎧⎪⎪⎨⎪⎪⎩
X L

β(i) + (2w − 1)

(
T − dv

2

)
, if 1 ≤ i ≤ f

X L
β(i) − (2w − 1)

(
T + dv

2

)
, if f + 1 ≤ i ≤ 2f

(14)

If m is an odd number, a macroblock X L
i is selected at random to serve as a stationary block,

while the remaining even number of macroblocks participate in the mapping φ and the embedding
of the watermark W . Where T represents the threshold for controlling robustness, and dv denotes
the difference between the two sets of QDCT coefficients. With the increase of threshold T , the
watermark embedding strength increases, and the watermark robustness of the proposed algorithm
is enhanced. This is because the amount of modification increases with the increase of the threshold
T , and the greater the amount of modification, the less vulnerable to external attacks. On the contrary,
its robustness will weaken. However, in order to evaluate whether a watermarking algorithm is good
enough and can be applied to practical work, it needs to be both invisible and robust. The algorithm
in this paper controls the embedding intensity of robust watermarking by threshold T , and a lot of
experiments are needed to find the most suitable threshold.

dv =
∑f

i=1 X L
β(i) − ∑2f

i=f +1 X L
β(i)

f
(15)

At the same time the difference dv is modified to:

dvw =
∑f

i=1 Y L
β(i) − ∑2f

i=f +1 Y L
β(i)

f
=

{
T , if w = 1
−T , if w = 0

(16)

It is important to highlight those adjustments to the threshold T may lead to an overflow
or underflow issue, resulting in QDCT coefficient values exceeding 511 or falling below −512. In
cases where abnormal macroblocks are encountered, maintaining the original value unchanged and
recording the position based on the embedding order are essential to prevent errors during watermark
extraction. Notably, a practical observation of the proposed algorithm reveals that certain video
scenes exhibit slow and minimal transformations, leading to a reduced number of HFS outcomes
and insufficient hidden frame embedding capacity for accommodating the watermark W . To address
this challenge, the algorithm introduces a compensation mechanism: if the hidden frame’s embedding
capacity falls short of accommodating W , a sub-hidden frame is introduced to compensate for the
capacity shortfall. The selection criterion for the sub-hidden frame is determined by the sum of the
minimum differences between the Y channel and the U channel within the same scene.

4.2 Reversible Watermark Embedding: Techniques and Considerations

In the reversible embedding phase, the reversible watermark M intended for the inversion robust
embedding phase is inserted into the U channel high-frequency AC QDCT domain Y H of the HFS
selection outcome. At the decoder end, leveraging the lossless attributes of the reversible watermarking
algorithm allows for the lossless extraction of the reversible watermark, thereby eliminating any
distortion introduced by the robust watermark embedding process, ultimately facilitating the recovery
of X L. The reversible watermark M is composed of the threshold T , the difference dv, and the
macroblock position P from the robust watermark embedding phase. To mitigate the distortion arising



5154 CMC, 2024, vol.79, no.3

from the robust watermark embedding phase, the information is transmitted to the decoder for the
restoration of the original video.

M = T ⊕ DV ⊕ P (17)

where DV represents the original differences between two sets of QDCT coefficients, the reversible
watermarking M is integrated into the high-frequency QDCT domain Y H of the U channel using one-
dimensional histogram translation technology (HS), as illustrated in the accompanying figure. The
specific embedding procedure is outlined as follows:

zH =

⎧⎪⎨⎪⎩
2yH + m, if yH ∈ [θL, θR]
yH + θR + 1, if yH > θR

yH + θL, if yH < θL

(18)

where yH and zH represent the QDCT coefficients of Y H and ZH , respectively, and m ∈ {0, 1} denotes
a reversible watermark, θL and θR serve as thresholds governing the HS embedding capacity. Notably,
when θL is specified, a larger separation between θR results in increased embedding capacity. Given
the limited embedding capacity and emphasis on reversibility in this paper’s reversible watermarking
algorithm, only conventional HS technology is employed for embedding the reversible watermark.
The challenge of overflow and underflow is addressed for θL and θR, with the algorithm utilizing
location map technology to manage overflow concerns. In contrast to the macroblock position P
generated in robust watermark embedding, the location map is losslessly compressed and subsequently
embedded into the unused coefficient values using HS translation technology. Detailed information on
the location mapping process can be referenced in traditional HS techniques [43] and is not reiterated
in this article.

4.3 Extraction of Watermark and Carrier Recovery in Two Domains

The algorithm in this study delineates the extraction and recovery stages into two scenarios:

(1) In the event that Z is transmitted to the decoding endpoint without distortion, the initial step
involves extracting the reversible watermark through the following operations:

m = mod
(

zH

2

)
, if zH ∈ [

2θL, 2θR + 1
]

(19)

According to the inverse translation technique of HS, Y H is lossless restored according to Eq. (20).

Y H =

⎧⎪⎪⎨⎪⎪⎩
⌊

zH − m
2

⌋
, if zH ∈ [2θL, 2θR + 1]

zH − θR − 1, if zH > 2θR + 1
zH − θL, if zH < 2θL

(20)

According to Eq. (14), the robust watermark extraction operation is as follows:

w =
{

1, if dvw > 0
0, if dvw ≤ 0

(21)

The distortion introduced by robust watermarking is mitigated through the reversible watermark
M, facilitating the restoration of the original X L as follows:
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X L
β(i) =

⎧⎪⎪⎨⎪⎪⎩
Y L

β(i) − (2w − 1)

(
T − dv

2

)
, if 1 ≤ i ≤ f

Y L
β(i) + (2w − 1)

(
T + dv

2

)
, if f + 1 ≤ i ≤ 2f

(22)

When Z is transformed into Z̃, successful recovery of the original video becomes unfeasible.
The distorted version Z̃L is obtained directly through H.264 video encoding, following the Eq. (21).
Subsequent to this, the robust watermarking W is extracted directly. The correct extraction of the
robust watermark W is ensured as long as the threshold T provides a sufficiently robust level of
resilience.

4.4 Algorithm Step

This subsection provides a detailed overview of the algorithmic steps employed in this study for
watermark embedding and extraction. The watermark embedding process is delineated as follows:

Step 1 (Selection of Hidden Frames): The hidden frame set X = {F1, F2, . . . , Fj} is chosen
for embedding in the original video using double-domain watermarking, based on the criteria of
minimizing the difference between adjacent bit planes of the U channel.

Step 2 (H.264 Video Encoding): The hidden frame set X is encoded using H.264, and the
embedding domains X L and X H within the hidden frame set F are determined.

Step 3 (Robust Watermark Embedding): The macroblocks in F are organized into a set
{X L

1, X L
2, . . . , X L

2f }, and the error-corrected encoded W is embedded into the low-frequency QDCT
coefficients of each U channel in the set, resulting in Y L, as per Eq. (11). Positions of macroblocks
causing overflows or underflows are recorded as P. During this phase, X H remains unchanged, with
Y H = X H .

Step 4 (Reversible Watermark Embedding): A reversible watermark M is generated using Eq. (17),
and the watermark bit is embedded into the high-frequency QDCT coefficients of the U channel,
resulting in Y H and ZH , following Eq. (18). Y L remains unchanged, with ZL = Y L.

Step 5 (H.264 Video Decoding): ZH and ZL are combined through H.264 decoding to produce the
video Z with a two-domain watermark.

The critical aspect of the video watermarking algorithm lies in ensuring efficient copyright
protection, facilitating successful watermark extraction and video recovery. The process of watermark
extraction and video recovery is outlined as follows:

Step 1 (H.264 Video Encoding): The two-domain watermarking video is encoded using H.264,
resulting in ZL and ZH .

Step 2 (Reversible Watermark Extraction and Recovery): The reversible watermark M is extracted
based on the position indication within set F and Eq. (19), resulting in ZH and Y H . During this phase,
ZL remains unchanged, with Y L = ZL.

Step 3 (Robust Watermark Extraction and Recovery): The robust watermark W is extracted
following Eq. (21), and the distortion caused by the robust watermark is restored using M as per
Eq. (22), resulting in Y L and X L. YH remains unchanged, with X H = Y H .

Step 4 (Original Video Recovery): The original video is recovered by merging X H with X L through
H.264 decoding. It is essential to note that Step 4 can only be executed if the two-domain watermarking
video has not been compromised by an attack. In cases where the reversible embedding method fails
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in Step 2, direct extraction of the robust watermark W from the distorted Z̃L is necessary in Step 3 due
to the fragile nature of the reversible embedding method.

5 Simulation Study and Experimental Findings in Video Watermarking

In this section, the performance evaluation of the proposed algorithm is conducted through
a comparative analysis with three existing video watermarking algorithms [28,44,45] in terms of
perceptual quality and robustness. Each of the three video watermarking algorithms employs distinct
strategies for selecting embedding locations within video frames or blocks.

Fan et al. [28] utilize a combination of non-zero quantization coefficient and energy factor to
identify suitable chrominance subblocks for watermark embedding. They further introduce an optimal
modulation technique to embed the watermark within the QDCT coefficient of the selected subblocks.

Singh et al. [44] employ a histogram difference method to extract color moving frames and still
frames from the original video. A first-level linear wavelet transform is applied to the chroma channel
of moving frames, with the low-frequency sub-band LL chosen for watermark embedding.

Sharma et al. [45] propose a frame selection mechanism based on scene change detection.
They group video frames according to scene transitions and introduce a hybrid approach involving
graph-based transformation, singular value decomposition, and chaotic encryption for watermark
embedding.

In the embedding capacity assessment conducted in this study, a 256-bit watermark sequence
is utilized. Notably, the algorithm presented in this paper and Fan et al.’s method leverage H.264
video coding, enabling a watermark payload of 256 bits. On the other hand, Singh et al. and
Sharma et al. focus on image watermarking. For these methods, the watermark bit string is trans-
formed into a grayscale image following Zig-Zag scanning, serving as the input for watermark
embedding.

The experimental setup involves the MatlabR2021a platform running on an i5 processor, con-
nected to x.264 via the MEX interface for simulation execution. The experimental video dataset
comprises three segments of 176 × 144 traditional YUV video sequences in QCIF format: “Fore-
man”, “Carphone”, “Mobile”, “Tennis”, “City”, “Soccer” (https://media.xiph.org/video, accessed:
Feb. 20, 2023.) and three short video sequences of 720 × 1080 resolution in MP4 format (“Tree”,
“Street”, “Food”). The proposed algorithm’s invisibility and robustness are assessed across these video
sequences.

5.1 Evaluation of Invisibility in Video Watermarking Algorithms

In the H.264 video standard, the largest macroblock is 16 × 16 block. Since most of the scenes
in the video is smooth scenes, 16 × 16 macroblocks are also the largest number of macroblocks in
most videos. In the invisibility analysis, we block the stego-frame of each experimental video into 16
× 16 blocks. According to the embedding method of robust splicing technology, 1 robust watermark
bit is embedded in the DC coefficient of each macroblock. Finally, for the experimental video with
a resolution of 176 × 144, the robust embedding capacity of a single hidden frame remains at 99
robust watermark bits; for the experimental video with a resolution of 720 × 1080, except for the
16 × 16 block Except for pixels, the remaining pixels are not considered for embedding bits, and the
robust embedding capacity of a single hidden frame remains at 3015 robust watermark bits. The size of
the reversible watermark bits generated after embedding the robust watermark changes with different
experimental videos.

https://media.xiph.org/video
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At the subjective evaluation stage, the experimental videos were visually inspected before and
after the watermark embedding process by human observers. Fig. 5 illustrates one of the original
video frames of each experimental video alongside the corresponding frames post-embedding. Despite
conducting comparisons across the experimental population, conclusive determinations regarding the
presence of watermarks within the video frames could not be ascertained at the subjective level.

Figure 5: Comparison of original video frames with corresponding post-embedding frames in experi-
mental videos
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At the objective evaluation stage, the algorithm proposed in this study is assessed through
the computation of the mean peak signal-to-noise ratio (MPSNR) and mean structural similarity
(MSSIM) metrics between the original video frame and the concealed video frame, as defined in
Eqs. (23) and (24).

MPSNR(F , F ′) = 1
N

∑F

j=1
PSNRj (23)

MSSIM(F , F ′) = 1
N

∑F

j=1
SSIMj (24)

where F represents the hidden frame, F ′ denotes the embedded hidden frame, and N signifies the total
number of hidden frames. Figs. 6 and 7 present the Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index (SSIM) values of the first 150 frames of traditional and short videos after embedding
watermarks W and M, with the legend indicating the experimental video names. Additionally, Tables 1
and 2 display the Mean PSNR (MPSNR) and Mean SSIM (MSSIM) results following the embedding
of watermarks and messages in the initial 150 frames of traditional and short videos, respectively.

Figure 6: Comparative analysis of PSNR performance for the initial 150 frames in traditional and
short videos embedded with watermark W and M

Figure 7: Comparative analysis of SSIM performance for the initial 150 frames in traditional and short
videos embedded with watermark W and M
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Table 1: Mean PSNR and Mean SSIM results for watermark information W and auxiliary message
M embedding in the initial 150 frames of traditional videos

Traditional video Carphone Foreman Mobile Tennis City Soccer

MPSNR/dB 49.3157 49.1410 48.5933 50.0257 49.8875 48.9504
MSSIM 0.9998 0.9995 0.9992 0.9999 0.9995 0.9993

Table 2: Mean PSNR and Mean SSIM results for watermark W and M embedding in the initial 150
frames of short videos

Short video Tree Street Food

MPSNR/dB 50.0733 49.5533 48.9067
MSSIM 0.9999 0.9998 0.9993

Note that the hidden frame after embedding the watermark in Fig. 5, and all the data in Figs. 6, 7
and Tables 1 and 2 are completed at the same embedding strength. Specifically, we calculate the PSNR
and SSIM for the first 150 frames of each experimental video at the threshold T = 1 (Eq. (11)), and the
MPSNR and MSSIM corresponding to the two metrics. A large number of watermarking embedded
video experiments show that the comprehensive invisibility of experimental video is the best at this
time. The X value in Fig. 6 is the video frame number of the experimental video, and the Y value is
the PSNR between each original video frame and the video frame embedded with the watermark. The
X value in Fig. 7 is the same as that in Fig. 6, and the Y value is the SSIM between each original
video frame and the video frame after embedding the watermark. Tables 1 and 2 correspond to the
mean values of experimental indicators in Figs. 6 and 7, respectively. The same embedding strength will
be used in subsequent residual invisibility comparative analysis experiments and robustness analysis
experiments.

Based on the data from Figs. 6, 7, Tables 1, and 2, the Mean Peak PSNR (MPSNR) values for the
six traditional videos in QCIF format after embedding watermarks W and M are 49.3157, 49.1410,
48.5933, 50.0257, 49.8875, and 48.9504 dB, with corresponding Mean SSIM (MSSIM) values of
0.9998, 0.9995, 0.9992, 0.9999, 0.9995, and 0.9993, respectively. For the three short videos in MP4
format after embedding W and M, the MPSNR values are 50.0733, 49.5533, and 48.9067 dB, with
MSSIM values of 0.9999, 0.9998, and 0.9993, respectively. These results suggest that the proposed
algorithm has minimal impact on the video quality both before and after information embedding.

It is important to note that the algorithm discussed in this study focuses on a watermarking
technique specifically designed for H.264 compressed videos. Analysis of the experimental data reveals
that the PSNR and SSIM of traditional QCIF videos post-information embedding fall within a
specific range. As QCIF videos undergo transformation into MP4 format following compression
by the H.264 standard, each frame experiences information loss compared to the original frame.
Consequently, frames not designated as hidden frames may exhibit variations compared to the original
uncompressed video frames. Nonetheless, the minimum PSNR of the hidden frame post-information
embedding remains above 30 dB, with the lowest SSIM exceeding 0.95. Additionally, the PSNR and
SSIM values for video frames not selected as hidden frames in short MP4 videos are infinite and 1,
indicating the algorithm’s independent embedding process, ensuring that the embedding of hidden
frames does not impact other frames. The minimum PSNR and SSIM values for hidden frames
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after information embedding are maintained above 32 dB and 0.94, respectively. In conclusion, the
algorithm demonstrates good invisibility characteristics.

Table 3 presents the MPSNR and MSSIM values for each video in accordance with the com-
parison scheme. Analysis of the table reveals that the average MPSNR and MSSIM values for the
proposed method are 49.3830 dB and 0.9996, respectively. These exceptional metrics serve as evidence
of the superiority of the proposed technique over the compared scheme.

Table 3: Mean PSNR and Mean SSIM results for watermark W and M embedding in the initial 150
frames of short videos

Video Fan et al. [28] Singh et al. [44] Sharma et al. [45] Proposed method

MPSNR MSSIM MPSNR MSSIM MPSNR MSSIM MPSNR MSSIM

Carphone 46.6419 0.9993 48.1972 0.9996 48.2718 0.9997 49.3157 0.9998
Foreman 45.5611 0.9992 48.0117 0.9993 48.1267 0.9994 49.1410 0.9995
Mobile 43.4761 0.9991 47.8913 0.9991 47.8992 0.9991 48.5933 0.9992
Tennis 46.7381 0.9993 48.3094 0.9997 48.8301 0.9997 50.0257 0.9999
City 46.0033 0.9993 48.2763 0.9995 48.6937 0.9995 49.8875 0.9995
Soccer 44.0009 0.9992 47.9996 0.9995 48.1006 0.9991 48.9504 0.9993
Tree 47.7559 0.9995 48.4357 0.9997 48.6913 0.9998 50.0733 0.9999
Street 46.8937 0.9992 48.0013 0.9993 48.0947 0.9994 49.5533 0.9998
Food 46.0094 0.9989 47.2787 0.9990 47.6418 0.9992 48.9067 0.9993

Given the limitations in interpreting invisibility solely based on PSNR and SSIM, we conducted
additional experiments to assess the performance of the proposed algorithm in terms of bit-rate
expansion. The results of these experiments are summarized in Table 4.

Table 4: Mean PSNR and Mean SSIM results for watermark W and M embedding in the initial 150
frames of short videos

Video Fan et al. [28] Singh et al. [44] Sharma et al. [45] Proposed method
Bitrate
expansion
(%)

Ratio Bitrate
expansion
(%)

Ratio Bitrate
expansion
(%)

Ratio Bitrate
expansion
(%)

Ratio

Carphone 8.89 1.21 8.66 1.21 8.46 1.23 8.14 1.24
Foreman 12.61 1.14 12.41 1.15 12.33 1.15 11.74 1.17
Mobile 15.37 1.04 15.12 1.05 14.67 1.09 13.89 1.12
Tennis 9.01 1.19 8.83 1.21 8.51 1.21 8.14 1.25
City 10.73 1.20 10.44 1.19 10.10 1.23 9.77 1.17
Soccer 14.95 1.07 14.12 1.10 13.94 1.12 13.29 1.11
Tree 8.17 1.24 7.83 1.25 7.47 1.27 7.01 1.31
Street 11.47 1.18 11.28 1.19 11.09 1.19 10.25 1.20
Food 11.89 1.15 11.64 1.17 11.38 1.18 11.13 1.19
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Bitrate expansion involves increasing the video file size to accommodate embedded information.
Table 4 displays the bit-rate expansion and the ratio of embedded information to video increment for
the proposed algorithm, Fan et al.’s method, Singh et al.’s method, and Sharma et al.’s method. The
Ratio represents the amount of embedded information relative to the video size increase, with the
embedded information comprising W + M. By comparing MPSNR and MSSIM values, it is evident
that the proposed method minimally impacts the original carrier and exhibits superior invisibility
performance.

5.2 Evaluation of Robustness in Video Watermarking Algorithms

In this subsection, we will evaluate the robustness of the proposed algorithm and compare it to the
methods of Fan et al., Singh et al., and Sharma et al., under various video attacks. To comprehensively
evaluate the robustness of the proposed algorithm, we will choose two types of attacks for experiments.

The first type of attack is offline, including Gaussian noise with an average of 0 and variances
of 0.01, 0.05 and 0.1, salt and pepper noise with variances of 0.01, 0.05 and 0.1, Gaussian low-pass
filtering with variances of 0.1, 0.05 and 0.1, and 3 × 3 filters with variances of 0.1, 0.2 and 0.3 (fuzzy
attacks). Frame Dropping (random 10%∼35%), frame average (random 10%∼35%), Frame Swapping
(random 10%∼35%), and then compression (quantization programming QP = 26∼28).

The second type of attack is online attack: collusion attack is a kind of attack that needs to be
mainly guarded against in online attacks, which refers to the cooperation between the attacker and the
information hider to obtain the hidden information or the original carrier. In the field of information
hiding, there are two main categories:

Class I collusion: Embedding the same pseudo-watermark in multiple different carriers. This kind
of collusion obtains the legitimate watermark by removing or estimating the legitimate watermark
embedded in the carrier through a linear average.

Class II collusion: Embedding different pseudo-watermarks in different copies of the same carrier.
This kind of collusion obtains an estimated version of the carrier without legitimate watermarks
through a linear average, compares the estimated version with the current suspected carrier with
legitimate watermarks, and obtains an original carrier without legitimate watermarks.

For video watermarking, attackers aim to illegally infringe the copyright security of videos in
order to obtain videos without robust watermarking. Therefore, in the robustness analysis experiment
of this paper, Class II collusion is used to attack experimental videos to evaluate the robustness of the
proposed algorithm against online attacks. The frames of the same scene in the video are approximately
the same. The specific practice of this experiment is to group each frame obtained according to SSGM
as the video frame of the same scene, and randomly generate multiple bit strings with the same length
as the robust watermark bit string after error correction coding as different pseudo-watermarks.

Finally, we extract watermarks from the hacked hidden frames and evaluate the robustness of the
algorithm by calculating and comparing the mean normalized correlation number (MNC) and mean
bit error rate (MBER) of the original watermarks. The definitions of MNC and MBER are shown in
Eqs. (25) and (26).

MNC = 1
N

∑F

j=1

∑
[(W − μW)(W ′ − μW ′)]

σμW
σμW ′

(25)

MBER = 1
N

∑F

j=1

LE

LW

(26)
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where W and W ′ represent the original watermark and extracted watermark, respectively, μW and
μW ′ denote the average values of the original watermark and extracted watermark, while σμW

and σμW ′
indicate the standard deviations of the original watermark and extracted watermark, respectively, with
a value range of MNC being [−1, 1]. LE and LW refer to the number of error watermark bits and the
number of original watermark bits, N represents the total number of hidden frames, and F denotes
the hidden frame.

5.2.1 Robustness Analysis of Offline Attacks

This subsubsection describes the robustness of the proposed algorithm against offline attacks
by combining six traditional YUV experiment videos and three MP4 experiment videos. The robust
watermark is extracted from the hidden frame after offline attack, and the NC value between the
extracted robust watermark in each hidden frame and the corresponding original robust watermark
is calculated, and the MNC value is taken to evaluate the robustness of the proposed algorithm. The
robustness of the proposed algorithm is compared with three video robust watermarking algorithms.
The results are shown in Figs. 8 to 14 below.

(a) MNC with attack strength 0.01 (b) MNC with attack strength 0.05 (c) MNC with attack strength 0.1

(d) MBERwith attack strength0.01 (e) MBER with attack strength 0.05 (f) MBER with attack strength 0.1

Figure 8: Comparison of MNC and MBER values of the proposed algorithm against three algorithms
under various intensities of gaussian noise attack
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(a) MNC with attack strength 0.01 (b) MNC with attack strength 0.05 (c) MNC with attack strength 0.1

(d) MBER with attack strength 0.01 (e) MBER with attack strength 0.05 (f) MBER with attack strength 0.1

Figure 9: Comparison of MNC and MBER values of the proposed algorithm against three algorithms
under various intensities of salt-and-pepper noise attack

a)( ( (MNC with attack strength [3,3,0.1] b) MNC with attack strength [3,3,0.2] c) MNC with attack strength [3,3,0.3]

d)( (MBER with attack strength [3,3,0.1] e) MBER with attack strength [3,3,0.2] f)( MBER with attack strength [3,3,0.3]

Figure 10: Comparison of MNC and MBER values of the proposed algorithm against three algorithms
under various intensities of fuzzy attack
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a)( ( (MNC with attack strength 10% b) MNC with attack strength 20% c) MNC with attack strength 25%

d)( (MBER with attack strength 10% e) MBER with attack strength 20% f)( MBER with attack strength 25%

Figure 11: Comparison of MNC and MBER values of the proposed algorithm against three algorithms
under various intensities of frame dropping attack

(a) MNC with attack strength 10% (b) MNC with attack strength 20% (c) MNC with attack strength 25%

(d) MBER with attack strength 10% (e) MBER with attack strength 20% (f) MBER with attack strength 25%

Figure 12: Comparison of MNC and MBER values of the proposed algorithm against three algorithms
under various intensities of frame average attack
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a)( MNC with attack strength 10% b)( MNC with attack strength 20% c)( MNC with attack strength 25%

d)( MBER with attack strength 10% e)( MBER with attack strength 20% f)( MBER with attack strength 25%

Figure 13: Comparison of MNC and MBER values of the proposed algorithm against three algorithms
under various intensities of frame swapping attack

a)( MNC with attack strength QP:26 b)( MNC with attack strength QP:27 c)( MNC with attack strength QP:28

d)( MBER with attack strength QP:26 e)( MBER with attack strength QP:27 f)( MBER with attack strength QP:28

Figure 14: Comparison of MNC and MBER values of the proposed algorithm against three algorithms
under various intensities of recompression attack
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Figs. 8 to 14 present the MNC and MBER values of the proposed algorithm and three compar-
ative video watermarking algorithms under various attack scenarios, including Gaussian noise, salt
and pepper noise, blur, Frame Dropping, Frame Averaging, Frame Swapping, and recompression.
The analysis of these tables indicates that the algorithm introduced in this study exhibits superior
performance in withstanding attacks on traditional videos such as Carphone, Foreman, Tennis, and
the short video Tree, characterized by smoother scenes, slower changes, and less content changes. This
superiority is evident in the algorithm’s ability to minimize the decrease in MNC values and limit the
increase in MBER values under adverse conditions, showcasing its robustness in preserving watermark
integrity.

The algorithm under study demonstrates robustness against traditional noise attacks, particularly
Gaussian noise and salt and pepper noise, as evidenced by MNC values consistently exceeding 0.9946
and MBER values remaining below 0.0571. Notably, the algorithm’s resilience diminishes as noise
intensity increases, reflected in the decreasing trend of MNC values and the escalating trend of MBER
values. In the context of fuzzy attacks, the algorithm excels in robustness, achieving a peak MNC value
of 1 and maintaining MBER values below 0.001. This heightened resilience can be attributed to the
algorithm’s ability to mitigate the impact of fuzzy attacks on pixel values within experimental video
frames through frequency domain transformation, enabling accurate watermark extraction despite
alterations in pixel values across different regions.

When confronted with frame attacks in experimental videos, the methods proposed by Fan et al.,
Singh et al., Sharma et al., and our own method all exhibit enhanced resilience compared to traditional
noise attacks. Each of these algorithms serves as a video watermarking technique designed to identify
the most appropriate frame within the video for embedding, showcasing robustness against frame-
based adversarial scenarios. Specifically, the algorithm introduced in this study excels in countering
frame average attacks, achieving MNC values exceeding 0.9994 and MBER values below 0.0016,
thereby demonstrating substantial robustness. Despite the pixel averaging process employed in frame
average attacks, the influence on the watermark post-frequency domain transformation remains
relatively minor, as the errors introduced by the attack fall within the error correction capabilities
of the error correcting code. When faced with escalating Frame Dropping attacks, the algorithm
presented in this study exhibits a noticeable weaken in both MNC and MBER values. Notably, among
the various video types analyzed, the experimental results for traditional videos such as Mobile and
short video Food show a more pronounced weakening effect. This can be attributed to the rapid
scene transformations, lower image smoothness, and closer proximity of hidden frames within these
particular videos. As the number of frames extracted increases, the likelihood of the hidden frame
containing the watermark being compromised rises, consequently elevating the risk of losing the
marked frame. Such occurrences can result in misalignment during subsequent watermark extraction
processes. While errors remain within correctable limits, misalignment can impact extraction accuracy
to some extent, leading to a reduction in MNC values and an increase in MBER values. Nonetheless,
the minimum MNC value remains above 0.9988, and the maximum MBER value stays below 0.0042.
When confronted with varying intensities of Frame Swapping attacks, the algorithm under study
also demonstrates a weakening trend, albeit with a smaller magnitude compared to Frame Dropping
attacks. Frame Dropping attacks result in the loss of hidden frames within the video, leading to
potential misalignment and errors in subsequent watermark extraction processes. Specifically, the loss
of a hidden frame can cause subsequent frames to shift forward, disrupting the embedding order before
and after the missing frame. As the intensity of Frame Dropping attacks escalates, the misalignment
of subsequent hidden frames may occur, impacting the accuracy of watermark extraction. In contrast,
when facing Frame Swapping attacks, the total number of frames remains constant, mitigating the
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risk of losing hidden frames. The algorithm’s robustness against Frame Swapping attacks surpasses
that against Frame Dropping attacks, as the consistent number of frames ensures that hidden frames
are preserved to a certain extent. This results in MNC values above 0.9989 and MBER values below
0.0037, indicating a higher level of resilience against Frame Swapping attacks.

The experimental results demonstrate the robustness of the video watermarking algorithm against
recompression attacks of various QP. Notably, when comparing the recompression effects of QP = 26
and QP = 28, it is observed that the recompression with QP = 26 yields better results due to the lower
quantization steps resulting in less distortion. The final MNC value remains above 0.9996, while the
MBER value stays below 0.0012, indicating the algorithm’s resilience to QP recompression attacks.
Specifically, the original QP of 26 showcases superior performance compared to QP 28, highlighting
the importance of quantization parameters in maintaining watermark integrity during recompression
processes. These findings underscore the algorithm’s effectiveness in preserving watermark robustness
under varying QP settings.

In order to evaluate the performance superiority of the proposed algorithm compared with
the current development, the proposed algorithm was compared with three reference video robust
watermarking algorithms [28,44,45], and the attack intensity and related parameter Settings were
consistent with those in Subsection 5.2. Using the experimental video Carphone as a case study,
Figs. 15 and 16 illustrate the comparative summary of average MNC and MBER values for the
algorithm proposed in this paper and the three comparison algorithms across various attack intensities.
Each numerical column denotes the average MNC and MBER values of the watermarking algorithm
under three distinct attack intensities.

Figure 15: Analysis of average MNC values for the algorithm and three comparison algorithms in
response to varied attack intensities using the experimental video “Carphone” as a case study
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Figure 16: Analysis of average MBER values for the algorithm and three comparison algorithms in
response to varied attack intensities using the experimental video “Carphone” as a case study

The results presented in Figs. 8 to 16 indicate that our proposed algorithm outperforms the
three comparison algorithms in terms of MNC and MBER values under equivalent attack types
and intensities, showcasing superior robustness. Notably, Fan et al.’s method exhibits comparable
robustness against re-compression attacks and outperforms other attack types compared to our
algorithm. This can be attributed to Fan’s approach of selecting sub-blocks for watermark embedding
based on video frequency and watermark characteristics, enhancing robustness, and maintaining
invisibility in video watermarking. The key distinction between our algorithm and Fan et al. lies in
the sub-block selection criteria: Fan’s method is based on chromaticity and modulation, while our
algorithm detects, and groups frame smoothness based on brightness and chromaticity histogram
differences. Ultimately, our algorithm selects the frame with the least disparity in brightness and
chromaticity histograms within the same group for embedding, achieving heightened robustness and
invisibility in video watermarking.

5.2.2 Robustness Analysis of Online Attacks

In order to evaluate the robustness of the proposed algorithm against online attacks, this
subsubsection applies Class II collusion attacks in Subsection 5.2 to nine experimental videos based
on the proposed algorithm. Specific practices are as follows:

1. First, the video frames in the same frame group of the experimental video obtained through
SSGM are obtained and approximate as the carrier and corresponding copy in the Class II collusion
attack. Note that the experimental video at this time has been marked with dual-domain watermarks.

2. Use pseudorandom number generator [46]. Generate pseudo-random bit strings as pseudo-
watermarks in Class II collusion attacks. Note that the number of pseudo-watermarks generated
should be the same as the number of video frames in the experimental video.
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3. Embed the generated watermark into each frame of each frame group one by one to obtain the
damaged video. Note that the embedding method is the same as the robust splicing technique used in
this algorithm.

4. Extract the robust watermark from the distorted video, calculate the NC value and BER
between the extracted robust watermark and the original robust watermark in each hidden frame,
and finally calculate the average NC value and the average BER value of all hidden frames, MNC and
MBER, as standards to evaluate the robustness of the proposed algorithm against Class II collusion
attacks.

The experimental results obtained are shown in Table 5.

Table 5: Under Class II collusion attacks, the MNC and MBER values of the three comparison
algorithms are compared

Video Fan et al. [28] Singh et al. [44] Sharma et al. [45] Proposed method

MNC MBER MNC MBER MNC MBER MNC MBER

Carphone 0.8677 0.1835 0.8784 0.1832 0.8875 0.1784 0.8864 0.1789
Foreman 0.8658 0.2216 0.8761 0.2209 0.8847 0.2168 0.8841 0.2171
Mobile 0.8587 0.2799 0.8717 0.2786 0.8797 0.2755 0.8791 0.2732
Tennis 0.8702 0.1747 0.8817 0.1743 0.8880 0.1703 0.8894 0.1686
City 0.8626 0.2176 0.8735 0.2165 0.8816 0.2132 0.8827 0.2109
Soccer 0.8552 0.2694 0.8670 0.2684 0.8744 0.2624 0.8753 0.2627
Tree 0.8767 0.1997 0.8872 0.1991 0.8952 0.1931 0.8952 0.1922
Street 0.8639 0.2591 0.8743 0.2578 0.8839 0.2527 0.8842 0.2524
Food 0.8604 0.2944 0.8711 0.2927 0.8798 0.2866 0.8799 0.2864

In the face of online attacks, the MNC value between the extracted watermark and the original
watermark is 0.8840, and the MBER value is 0.2269. As can be seen from the data in Table 5,
the weakening of MNC value and MBER value of the proposed algorithm in the face of Class
II collusion attacks is much greater than that of MNC value and MBER value in offline attacks
of Subsection 5.2.1, which is because, a Type II collusion attack targets all video frames in an
experimental video, affecting all initially embedded legal dual-domain watermark bits. In contrast,
offline attacks do not impact all the legal watermarks due to variations in attack strengths. Notably,
the embedding method of pseudo-random watermark bits aligns with that of legal dual-domain
watermarks, leading to the pseudo-random watermark bits overriding the legal ones. Consequently,
Type II collusion attacks prove more effective against legitimate dual-domain watermarks compared
to offline attacks. This maximizes the impact of the watermark, significantly reducing the proposed
algorithm’s robustness against online attacks compared to offline attacks. However, according to the
performance range of NC value and BER value, when NC value is greater than 0.85 and BER value is
less than 0.35, it indicates that the extracted watermark still has strong robustness and can be clearly
identified [47]. Therefore, the proposed algorithm is still robust against Class II collusion attacks. It
is worth noting that the performance of the three compared robust watermarking algorithms is not
bad, because the three comparison algorithms, like the proposed algorithms, are all algorithms that
select video frames for robust watermark embedding. A prerequisite for the successful attack of Class
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II collusion attacks is that the attacked algorithm needs to embed a large number of video frames.
Therefore, the three algorithms are also robust to collusion attacks to a certain extent.

It is worth mentioning that Class II collusion attacks require the following assumptions:

1. Each hidden frame has the same mean and variance.

2. Robust watermarking follows Gaussian distribution, and the mean value is 0.

3. Hidden frame and robust watermark are independent of each other.

From the idea of the proposed algorithm, the robust watermark bits are embedded in the DC
coefficients of all macroblocks in several hidden frames, which will suffer loss after H.264 decoding,
so the assumption of Gaussian distribution will not be satisfied. Therefore, the attacker cannot
theoretically obtain an estimated version of the video that completely removes the robust watermark,
and the premise of “collusion” is lost.

Finally, according to the above analysis, the algorithm proposed in this paper can effectively resist
Class II collusion attacks.

5.3 Computational Complexity Assessment

In assessing the practical efficiency of the proposed algorithm for real-world applications, this
subsection delves into the computational complexity of the algorithm. The complexity analysis
experiment involved measuring the time taken for encoding and decoding both before and after
watermark embedding in seconds. Table 6 presents a comparison of the encoding and decoding times
for the original video and the watermarked video. The results reveal that the encoding time difference
for the experimental video is minimal, at less than 5.462 s, both before and after watermark embedding.
Similarly, the decoding time difference does not exceed 3.758 s, indicating a low level of complexity.

Table 6: Comparison of encoding and decoding times and differences between original and water-
marked videos

Video Original video
encoding time

Watermarked
video
encoding time

Difference Original video
decoding time

Watermarked
video
decoding time

Difference

Carphone 137.714 140.638 2.924 49.363 50.050 0.687
Foreman 139.143 141.832 2.689 51.427 52.096 0.669
Mobile 142.276 144.619 2.343 55.912 57.371 1.459
Tennis 139.372 144.834 5.462 51.411 54.004 2.593
City 140.617 145.921 5.304 52.799 55.378 2.579
Soccer 145.559 149.485 3.926 58.131 60.889 2.758
Tree 238.547 243.396 4.849 115.543 118.252 2.709
Street 240.723 244.189 3.466 118.376 122.134 3.758
Food 243.893 248.337 4.444 122.751 125.994 3.243

6 Conclusion

This article introduces a robust reversible watermarking algorithm tailored for frame-grouped
videos based on scene smoothness. The algorithm preprocesses the watermark and auxiliary
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information and embeds the high-frequency and low-frequency coefficients of the U channel of the
transformation coefficients to achieve robust reversible watermark embedding. By employing separate
embedding stages for low and high frequencies, the algorithm ensures high robustness in the initial
stage while maintaining low distortion in the subsequent stage. This approach enables high error
correction capabilities for watermarks, mitigates the impact of reversible embedding on watermark
robustness, and efficient extraction of robust watermarks even in the presence of attacks. Compared
with the three comparison algorithms, the performance of PSNR and SSIM is improved by 7.59% and
0.4% on average, while the performance of NC and BER is enhanced by 1.27% and 18.16% on average.
The experimental findings demonstrate that the proposed algorithm outperforms several state-of-
the-art keyframe embedding video watermarking algorithms, meeting the requirements of practical
applications, and offering effective copyright protection for videos. A significant advantage lies in the
algorithm’s ability to achieve high fidelity across videos of varying sizes through scene smoothness
grouping, coupled with low computational complexity for convenient and rapid application to existing
videos. Future research directions may explore the design of more sophisticated mechanisms for frame
grouping and embedding selection to enhance robustness further.

In the future work, we will try to design a smoother frame grouping standard and a more
reasonable and accurate embedding frame selection mechanism, and the embedding position is
accurate to the block, further reducing the amount of modifications to the unit frame, and achieving
progress in invisibility. Although robust watermark splicing technology has strong resistance to
aggression, it needs threshold to control the embedding strength, and there is a problem that the
amount of original frame modification per unit watermark bit is large. Therefore, the subsequent
work will also take the improvement of robust watermark embedding technology as another focus
of development and propose a watermark embedding technology with a smaller amount of modi-
fication per unit watermark bit. At the same time, strengthen its robustness, and better balance the
contradiction and balance between invisibility and robustness. At the same time, it is planned to find a
frequency domain transformation with less computational complexity, which can better reduce the
computational complexity and strengthen the development prospect and status of future work in
practical applications.
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