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ABSTRACT

Electric power training is essential for ensuring the safety and reliability of the system. In this study, we introduce
a novel Abnormal Action Recognition (AAR) system that utilizes a Lightweight Pose Estimation Network (LPEN)
to efficiently and effectively detect abnormal fall-down and trespass incidents in electric power training scenarios.
The LPEN network, comprising three stages—MobileNet, Initial Stage, and Refinement Stage—is employed to
swiftly extract image features, detect human key points, and refine them for accurate analysis. Subsequently, a Pose-
aware Action Analysis Module (PAAM) captures the positional coordinates of human skeletal points in each frame.
Finally, an Abnormal Action Inference Module (AAIM) evaluates whether abnormal fall-down or unauthorized
trespass behavior is occurring. For fall-down recognition, three criteria—falling speed, main angles of skeletal
points, and the person’s bounding box—are considered. To identify unauthorized trespass, emphasis is placed on
the position of the ankles. Extensive experiments validate the effectiveness and efficiency of the proposed system
in ensuring the safety and reliability of electric power training.
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1 Introduction

Computer vision is a specialized field within Artificial Intelligence (AI) that focuses on enabling
computers to interpret and extract information from images and videos. It has been applied to various
fields including healthcare, transportation, industrial manufacturing, and electric power systems. The
electric power system is one of the fundamental infrastructures that support the functioning of modern
society. It provides a stable supply of electricity to households, businesses, medical institutions, schools,
and other institutions, supporting various aspects of life and industrial activities. With the growing
demand for electricity in society, higher requirements have been placed on the safety and reliability
of the utilization of electric power energy. The application of computer vision technology to electric
power systems could enhance safety, efficiency, and reliability in various aspects. By using computer
vision technology to monitor power equipment, such as transformers, switchgear, and cables, potential
faults or damages can be detected promptly [1]. Utilizing unmanned aerial vehicles equipped with
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computer vision systems, conducting regular inspections of power lines enables the rapid detection
and pinpointing of potential issues, such as line breaks or foreign object attachments [2]. In the data
centers of the power system, computer vision technology can be exploited to monitor the operational
status, temperature, and energy efficiency of equipment, aiding in enhancing operational efficiency [3].
It is also implemented to monitor the safety conditions of substations including foreign object trespass
detection, fire detection, as well as the real-time surveillance of personnel while manipulating electrical
power equipment.

Electric power training is essential to ensure the safety and reliable operation of the system,
which enables employees to acquire the operational and maintenance skills necessary for electrical
power equipment, playing a pivotal role in ensuring the regular functioning of equipment and timely
maintenance. Electric power training typically includes theoretical knowledge sessions and practical
hands-on training with electrical equipment, often in high-voltage and complex work environments.
Therefore, operational safety is crucial in the electric power training scenario, particularly during the
practical hands-on training part. Virtual Reality (VR) and Augmented Reality (AR) technologies
have been employed in some practical hands-on training processes, where the trainer can undergo
operational training for power equipment in a virtual environment [4], simulating real-world scenarios
to enhance their proficiency and safety in actual work settings. However, some of the practical hands-
on training still needs to be conducted in real-world work environments. Computer vision technology
can be employed to monitor the actions of trainers in real time [5], providing immediate feedback
to maintain order and safety during electric power training Abnormal fall-down is one of the most
serious actions in electrical power training scenarios, particularly when dealing with complex or high-
voltage electrical equipment. For safety training purposes, there are restricted zones where trainers are
not permitted to enter, especially when power equipment is in operation. However, due to a shortage of
teachers compared to trainers, there may be still abnormal trespass during the training process. Thus,
it is of great significance to accurately and effectively detect abnormal falls-down and trespass using
computer vision technology to ensure safety in electrical power training.

To detect abnormal actions of fall-down and trespass in electric power training scenarios, we
provide a novel abnormal action recognition system that utilizes the Lightweight Pose Estimation
Network (LPEN). In specific, video frames are evenly extracted and input into the proposed LPEN
network, which includes MobileNet, Initial Stage, and Refinement Stage for fast extraction image fea-
tures, rapid detection of human key points, and further refinement of human key points, respectively.
Then a Pose-aware Action Analysis Module (PAAM) is used to obtain the positional coordinates
of human skeletal points in the frame. An Abnormal Action Inference Module (AAIM) is next
employed to assess whether there is a current occurrence of abnormal fall-down or unauthorized
trespass behavior. The assessment of abnormal fall-down considers three criteria: Falling speed, main
angles of skeletal points, and the bounding box of humans. For unauthorized trespass, the major focus
is on the position of the ankles. Finally, we experimentally validate the performance of the proposed
Abnormal Action Recognition System (AARS) with respect to real captured video during the scene
of electrical power training.

In summary, the main contributions of this article are as follows:

• We propose an Abnormal Action Recognition (AAR) system equipped with a lightweight pose
estimation network to recognize the fall-down action and trespass action of people in electric
power training scenarios.

• We introduce a new lightweight pose estimation network, named LPEN, to realize effective and
efficient performance in terms of pose estimation.
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• We design an Abnormal Action Inference Module (AAIM) to automatically detect the state of
fall-down, as well as to automatically recognize the trespass action.

The rest of the paper is organized as follows. In Section 2, we briefly introduce the previous works
of 2D pose estimation, along with a short review of OpenPose. Then, the overview of the proposed
approach, including technical details, is described in Section 3. The experimental evaluations and
analysis are presented in Section 4, and finally, we conclude the paper in Section 5.

2 Related Works

In this section, we review related works on pose estimation and abnormal action recognition.

2.1 Pose Estimation

Human pose estimation aims to accurately infer the positions of key joints of the human body
from images or videos, thereby building a representation of the human body [6]. It involves detecting
and locating the positions of key joints such as the head, shoulders, elbows, wrists, knees, and ankles.
The spatial relationships of these key joints are critical for accurate pose estimation. The input data
for human body pose estimation can be either two-dimensional or three-dimensional. Consequently,
pose estimation methods are divided into two-dimensional and three-dimensional categories [7]. Since
this paper focuses on electrical power training scenarios, the images captured by the sensor camera are
in a two-dimensional format. Therefore, this paper primarily discusses two-dimensional human body
pose estimation methods and their subsequent application in human body action recognition.

During the early stages, the predominant approaches of human pose estimation are normally the
combination of manually designed feature images [8] with graph-structured models [9]. Grounding on
this traditional framework, researchers have continuously worked to enhance the accuracy of feature
descriptions and the efficiency of searching for body parts. However, due to the high flexibility of
human poses, challenges arise in performance when faced with real-world scenarios. Simultaneously,
there is a growing demand for more detailed feature descriptions of body parts to improve the
accuracy of human pose estimation. With the development of deep learning technologies, especially
the tremendous success of Convolutional Neural Networks (CNN) [10], a new dawn has emerged for
addressing the aforementioned issues. Pose estimation methods based on deep learning [11] involve
constructing neural network models to fit large amounts of training data, implicitly learning the
mapping relationship from input images to the coordinates of human key points. In comparison
to traditional methods that rely on manually designed representations, deep convolutional neural
networks can automatically learn feature representations from data, thus avoiding the drawbacks
associated with manual features.

Pose estimation in videos can be divided into single-person and multi-person types, depending
on the number of individuals present. The primary objective of single-person pose estimation is to
identify the key points of a specific individual appearing in a captured image. In scenarios where
multiple individuals are present in an image, it becomes necessary to segment the image into patches,
ensuring that each patch contains only one person. This segmentation can be achieved using either
an upper-body detector [12] or a full-body detector [13]. Single-person pose estimation methods can
be categorized into two types based on the training data: Key point regression-based approaches and
heatmap-based approaches [14]. Keypoint regression-based methods, also known as direct regression,
directly capture the locations of key points from feature maps learned by an end-to-end framework.
Toshev et al. [15] proposed a cascaded Deep Neural Network (DNN) regressor known as DeepPose



4982 CMC, 2024, vol.79, no.3

for pose estimation. This model uses a 7-layered generic convolutional DNN to regress the location
of each body joint based on the full image input. DeepPose has shown better performance compared
to traditional methods, paving the way for further advancements in learning-based pose estimation
techniques. However, such methods, where the numerical location regression is directly derived from
the end-to-end regressor, tend to result in a loss of spatial information of key points, which limits
the model’s spatial generalization ability. Subsequently, heatmap-based approaches are proposed to
address this limitation. Tompson et al. [16] introduced a hybrid architecture for heatmap-based
pose estimation, which combines a Deep Convolutional Network with a Markov Random Field.
This method leverages the structural relationships between human key points and optimizes the
prediction results using a Markov Random Field. As a result, it became one of the most advanced
techniques for human pose estimation at the time. By transforming the problem of human pose
estimation from coordinate regression to a detection problem based on heat map regression, this
method maximizes the preservation of spatial information of key point coordinates. Consequently,
it significantly enhances the spatial generalization capability of the learned pose estimation model and
improves its accuracy. Wei et al. [17] proposed Convolutional Pose Machines (CPMs) for the task of
articulated pose estimation by designing a sequential architecture composed of convolutional networks
that directly operate on belief maps from previous stages. CPMs introduce intermediate supervision
periodically through the network, thereby replenishing back-propagated gradients and conditioning
the learning procedure. Newell et al. [18] proposed a Stacked Hourglass Network (SHN) that captures
and consolidates information across different scales of an image. Based on this model, researchers have
further developed methods for pose estimation, with a focus on improving accuracy by considering
the structure of the human body. Chu et al. [19] proposed an end-to-end framework for human pose
estimation that incorporates convolutional neural networks with a multi-context attention mechanism.
SHNs are also adopted to generate attention maps from features at multiple resolutions with various
semantics. Luo et al. [20] developed a technique called Scale-Adaptive Heatmap Regression (SAHR)
to modify the standard deviation for each keypoint. This approach is more tolerant of various
human scales and labeling ambiguities, but it aggravates the imbalance between fore-background
samples. Huang et al. [21] proposed a principled Unbiased Data Processing (UDP) strategy. This
method is equipped with unit length-based measurement and employs a combination of classification
and regression for encoding-decoding processes. Additionally, there has been a focus on developing
lightweight models, which are crucial for the practical implementation of single-person pose estimation
applications [22].

Multi-person pose estimation, which deals with scenes containing several individuals, presents a
more complex challenge than single-person estimation, compromising the top-down approach and
bottom-up approaches [23]. The top-down approach transforms the original multi-person human
pose estimation task into several single-person estimations. It first identifies each human body in the
scene and then estimates the coordinates of key points for each identified individual. Chen et al. [24]
presented a Cascaded Pyramid Network (CPN) for multi-person pose estimation, which includes two
main components: GlobalNet and RefineNet. GlobalNet is responsible for localizing fundamental
key points such as eyes and hands, while RefineNet handles key points that cannot be accurately
estimated by integrating both global and local features. Xiao et al. [25] proposed a simple yet effective
baseline scheme, which employs Faster R-CNN as the body boundary detector and ResNet as the
backbone. Rodrigues et al. [26] presented a pose estimation method utilizing Time of Flight (ToF)
cameras. DeepCut [27] and DeeperCut [28] are the earliest proposed bottom-up approaches for pose
estimation. They initially detect all the key points of the human body from the image. These key points
are then treated as nodes of an undirected graph, with the keypoint correlations serving as the weights
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between graph nodes. Finally, instance discrimination is modeled as an integer linear programming
problem. However, this kind of problem belongs to the NP problems, and implementing integer linear
programming on a complete graph incurs extremely high computational complexity. Newell et al. [29]
introduced the Associative Embedding method, which assigns a token value to each keypoint by
generating a heatmap. This method then uses clustering to group key points with similar token values,
ensuring clear distinction between individuals. Cao et al. [30] developed an open-source real-time
system, called OpenPose, for multi-person 2D pose detection, including body, foot, hand, and facial
key points. OpenPose introduces Part Affinity Fields (PAFs) to achieve fast keypoint connections,
which are a set of 2D vector fields used to encode the position and orientation of limbs in the image
domain. Similarly, Kreiss et al. [31] designed the PifPaf network to predict the Part Intensity Field
(PIF) that represents the positions of body key points, and the Part Association Field that represents
the strength of associations between body key points. Finally, a greedy strategy is employed for
instance matching. In contrast to methods that focus on partitioning and matching key points, some
works are concerned with more accurately predicting instance-independent key points in the image.
Cheng et al. [32] proposed a HigherHRNet network to address the scale variations challenges in multi-
person pose estimation. Wang et al. [33] demonstrated that a high-resolution branch is unnecessary
for a low-computation-region model through a progressive shrinking experiment. They proposed a
fusion deconvolution head to eliminate redundant details and improve the performance of the bottom-
up pose estimation model by utilizing large convolutional kernels. Although the bottom-up approach
is generally faster than the top-down approach, requiring only one pose estimation step, it has its
limitations. Notably, the network in bottom-up methods cannot directly obtain features from the
frames, resulting in a lower average resolution per person during training compared to top-down
methods, when using the same network and GPUs [34].

2.2 Abnormal Action Recognition

The key to identifying abnormal actions is to understand the definition of an exception, which may
vary depending on the monitoring scenario. Additionally, an appropriate anomaly detection method
should be selected by analyzing the characteristics of the data currently obtained, and the detection
results are explained at last. At present, the most used methods for detecting anomalies in distributions
include the deviation-based detection algorithm [35], the distance-based detection algorithm [36], etc.
The deviation-based detection method compares the main features of the data, with a large deviation
if the data in a certain section differs from other data objects. However, this method is not applicable
to complex objects with multiple attributes since the requirement of obtaining the main features of
the data first. The challenge of the distance-based detection algorithm lies in selecting the appropriate
distance function. The basic distance function may not be sufficient for calculating distances of multi-
dimensional features, due to the increase in feature dimension. Therefore, it is important to select
an appropriate distance function based on the actual application scenario. The distribution-based
detection method assumes that the data conforms to a certain probability distribution model and uses
inconsistency to judge whether the data matches to determine the isolated points. The density-based
detection algorithm utilizes the local anomaly factor to represent the anomaly degree of the data,
which primarily relies on genuine anomalies and the correlation of local nearest neighbor densities of
the objects to be detected.

The rapid growth of trajectory data holds significant potential for mining individual behavior
patterns. Compared with the individual movement of a person at a certain moment, the pedestrian’s
trajectory can be represented in time and space. Clustering is an effective method to mine trajectory
patterns. Based on human trajectory clustering, trajectory clusters are obtained, and behavior patterns



4984 CMC, 2024, vol.79, no.3

of specific people are mined. Kang et al. [37] used dynamic hierarchical clustering to describe a certain
type of action pattern by using the central trajectory, and measured the similarity between the detection
trajectory and the central trajectory to determine whether the anomaly was found. Lee et al. [38]
proposed a trajectory segmentation detection framework and the trajectory clustering algorithm
TRACLUS, which introduces the standard MDL (Minimum Description Length) widely adopted
in information compression to extract the velocity feature points of the trajectory. Liu et al. [39]
proposed a density-based Trajectory Outlier Detection method DBTOD (Density-based Trajectory
Outlier Detection) based on TRADO, which can detect more anomaly points.

Some researchers combine the global and segmented difference measurement methods to test the
abnormal trajectory. For instance, Wang et al. [40] reconstructed the trajectory and represented it as a
symbolic sequence. Atluri et al. [41] used clustering to identify spatio-temporal anomalies by checking
time-domain and space-domain information. Ullah et al. [42] proposed an LSTM network based
on an attention mechanism, incorporating Channel Attention and Spatial Attention modules. These
modules enhance the most useful information in videos. Farooq et al. [43] proposed a method based
on motion shapes and deep learning to detect anomalous behaviors in high-density crowds, specifically
focusing on crowd dispersal behaviors. Morris et al. [44] evaluated different similarity measures and
clustering methods to find out their advantages and disadvantages in locus clustering. Current research
indicates that pedestrian movement is often complex. By extracting the inherent features of the moving
target, such as size, color, and posture, and combining them with the motion state information of the
pedestrian’s speed and direction, we can obtain a measurement method that represents richer trajectory
information. This can then be used to identify and track the target, providing significant assistance in
acquiring motion trajectory and constructing a normal trajectory model.

3 The Proposed System

To detect abnormal actions such as fall-down and trespass in electric power training scenarios, we
have developed a new abnormal action recognition system that uses the Lightweight Pose Estimation
Network (LPEN). The overall framework of the proposed technology is shown in Fig. 1. The
framework comprises four main components: Surveillance in an Electric Power Training Scenario for
frame capture; a Lightweight Pose Estimation Network (LPEN) for human body key points detection;
a Pose-aware Action Analysis Module (PAAM) for obtaining the main factors utilized in abnormal
action detection; and an Abnormal Action Inference Module (AAIM) for the detection of abnormal
fall-down and trespass.

3.1 Lightweight Pose Estimation Network

An LPEN (Lightweight Pose Estimation Network) is employed to detect the key points of
the human body. This network is constructed based on the OpenPose framework, with a lighter
MobileNet V1 [45] replacing the VGG-19 backbone. This modification aims to maintain high accuracy
while making the model more lightweight, improving recognition efficiency, and lowering hardware
processing requirements. The proposed LPEN not only replaces its backbone network but also
simplifies the multi-stage structure of OpenPose, including only an Initial Stage and a Refinement
Stage. The architecture of LPEN is shown in Fig. 2.
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Figure 1: The framework of the proposed Abnormal Action Recognition (AAR) system. This frame-
work consists of four modules, namely Surveillance in Electric Power Training Scenario, Lightweight
Pose Estimation Network (LPEN), Pose-aware Action Analysis Module (PAAM), and Abnormal
Action Inference Modules (AAIM)

Figure 2: The architecture of the Lightweight Pose Estimation Network (LPEN). Given the video
sequence within the human action as the input, the proposed LPEN can automatically obtain the
human pose with the 2D skeleton positions

Specifically, color images of size w × h are analyzed by the pre-trained MobileNet V1 network to
produce a set of feature maps F. The set of feature maps is input to the Initial Stage where the network
outputs a set of Part Affinity Fields (PAFs): L1 = φ1(F), where φ1 is the CNNs used for inference
at this stage. In the subsequent Refinement Stage, the initial PAFs predictions L1 and the original
image features F are combined to produce more refined PAFs predictions: L = φ2(F, L1), where φ2 is
the CNNs used in this stage. Iteratively, the above process starts from the latest PAFs prediction to
repeatedly detect confidence maps: S1 = ρ1(F, L) and S2 = ρ2(F, L, S1), where ρt is the CNNs used for
inference at stage t.

As the confidence maps are based on the latest and most refined PAFs predictions, the difference
between stages is minimal. To guide the network to predict PAFs in the first branch and confidence
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maps, a loss function is applied at the end of each stage. Specifically, two loss functions fL
t and fS

t for
the PAFs branch and the confidence map branch at stage t are defined as follows:

f L
t =

∑C

c=1

∑
p
W(p) · ‖Lc

t(p) − Lc
∗(p)‖2

2 (1)

f S
t =

∑J

j=1

∑
p
W(p) · ‖Sj

t(p) − Sj
∗(p)‖2

2 (2)

where J is the number of confidence maps for different body parts, C is the count of vector fields
corresponding to pairs of these parts, Lc

∗ (p) is the ground truth of PAFs, Sj
∗ (p) is the ground truth of

the confidence maps, and W is a binary mask that is zero when pixel p lacks annotation. The final
objective of the whole network is to minimize the sum of loss functions across all layers.

f =
∑T

t=1
f L

t + f S
t (3)

Overall, images captured by the monitoring system are first processed by a pre-trained MobileNet
to extract image features, then rapidly detect key points in the Initial Stage, and further optimized in
the Refinement Stage to achieve more accurate pose estimation.

3.2 Pose-Aware Action Analysis Module

The Pose-Aware Action Analysis Module (PAAM) is used to obtain the positional coordinates
of human skeletal points in the image. Through these obtained coordinates, we could calculate some
critical parameters such as the speed of the body’s center of gravity descent vfall, the angle deviation of
the body trunk from the vertical axis θ, the ratio of the body’s boundary height to width ratio, as well
as the positions of the left and right ankle (xankles, yankles). These parameters contribute to providing a
basis for the judgment of the Abnormal State Inference Module (AAIM) in the subsequent analysis.

3.3 Abnormal Action Inference Module

The Abnormal Action Inference Module (AAIM) consists of two modules: The Fall-down
Inference Module and the Trespass Inference Module. The former is designed to detect abnormal
actions related to fall-down, while the latter is responsible for detecting trespass.

3.3.1 Fall-Down Inference Module

The Fall-down Inference Module aims to determine whether a person has fallen. Fall-down is a
momentary action accompanied by rapid changes in body posture. We utilize the descent speed of the
body’s center of gravity, the angle of deviation between the body trunk and the vertical axis of the
frame, and the height-to-width ratio of the body boundary as key indicators to assess the occurrence
of a falling. Specifically, we represent the body’s center of gravity

(
xcg, ycg

)
using the midpoint between

the left hip
(
xlHip, ylHip

)
and right hip

(
xrHip, yrHip

)
. The formula for calculating the coordinates of this

midpoint is as follows:

xcg = xlHip + xrHip

2
, ycg = ylHip + yrHip

2
(4)

The variation in the position of this midpoint is utilized to estimate the descent speed. This speed
can be instantaneous or the average speed within a specific time window. In this system, we choose the
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latter one to estimate the descent speed. The descent speed vfall can be calculated using the following
formula:

vfall ≈
√

(x2 − x1)2 + (y2 − y1)2

Δt
(5)

where (x1, y1) is the position of body center in the first frame and (x2, y2) is the position of body center
after t seconds (after 5 frames in our work).

The descent speed of the center of gravity is a crucial indicator for determining a fall, as fall-down
action typically involves a rapid increase in the center of gravity’s speed. In addition, we also analyze
the tilt angle of the human body trunk relative to the vertical axis θ. In this work, the line connecting
the neck and the center of gravity represents the human body trunk. Thus θ can be formulated as:

θ = arctan
( |ycg − yNeck|

|xcg − xNeck|
)

(6)

where (xNeck, yNeck) is the position of the neck.

Typically, when the human body trunk deviates from the vertical axis by 15–30 degrees, it may
indicate a risk of falling. Therefore, it is also an important auxiliary condition for determining whether
a fall has occurred. To reduce the possibility of misjudgment in special cases such as bending or
squatting, we have added a third criterion: The height-to-width ratio of the body bounding box:

ratio = h
w

(7)

where h and w are the height and width of the body bounding box, respectively. When a person is
upright, this ratio tends to be relatively high. Conversely, when a person falls, the ratio decreases
due to the more horizontal orientation of the body. Therefore, it can also serve as a measure to
determine a fall. To assess a fall event more accurately, we choose to comprehensively consider three
core parameters. For example, even if someone’s descent speed is not particularly fast, the system can
still identify a fall if there are significant changes in trunk tilt angle or height-to-width ratio. To achieve
this, we assign weights to each indicator based on experimental data and prior experience, ensuring
the influence of each condition in the final decision. We first standardize each parameter:

vnorm = vfall

vmax

, θ norm = θ

θmax

, rationorm = ratio
ratiomax

(8)

where vmax, θmax, ratiomax are the maximum value of each parameter. Thus we would obtain a score to
estimate falling:

S = wv × vnorm + wθ × θnorm + wr × rationorm (9)

Finally, the score obtained above is compared with the predefined threshold Sf . If the score
surpasses this threshold, the system determines that a falling has occurred, recording the timestamp
of the falling. The formula is as follows:

IsFall =
{

1, if S ≥ Sf

0, otherwise
(10)

The analytical approach provides a more holistic and flexible framework for assessing the risk of
fall-down, significantly enhancing its practical value in safety scenarios within the context of power
training.



4988 CMC, 2024, vol.79, no.3

3.3.2 Trespass Inference Module

The Trespass Inference Module (TIM) is utilized to assess whether personnel have entered
prohibited areas. The system continuously tracks the ankle positions of individuals in the video
and compares them with predefined boundaries of restricted zones. A restricted zone is defined
as a polygon or rectangular area P with boundaries determined by a series of coordinate points
{(xi, yi) ∈ boundary(P)}. If the ankle coordinates are within the restricted zone, the system deems it an
abnormal trespass and issues a warning. To reduce false alarms, we consider the temporal variation in
ankle positions Δtpass . A time threshold Δtin is presented to determine whether the ankles have remained
within the restricted zone for a duration exceeding the threshold. For instance, brief contact with
the edge of the restricted zone would not trigger an immediate alert, differentiating between actual
trespass and incidental or unintentional touching the crossings. Meanwhile, to mitigate the impact
on the accuracy of the pose estimation algorithm, we have appropriately expanded the edges of the
restricted zone to eliminate potential jitter issues. Let the expanded region as P′, the width of expansion
as d, and the new restricted zone P′ is computed as follows:

P′ =
{
(x

′
i , y

′
i)|

√(
x′

i − xi

)2 + (
y′

i − yi

)2 ≤ d, ∀(xi, yi) ∈ P
}

(11)

The final judgment formula for the Trespass Inference Module is:

IsPass =
{

1, if (xankles, yankles) ∈ P′ and Δtpass ≥ Δ tin

0, otherwise
(12)

where (xankles, yankles) is the poison of the ankles acquired in the LPEN.

4 Experiments

To well validate the performance of the proposed system, we conduct validation experiments on
the collected data.

4.1 Dataset

We collect 300 original videos from the surveillance in the electric power training scenario,
encompassing a broad spectrum of situational occurrences. First, each video is customized and
sampled as one video clip containing the fall-down, non-fall-down, trespass, and non-trespass motions.
The videos were recorded indoors by eight personnel, varying in age, gender, and body type, to ensure
effective motion recognition across diverse individuals. These video clips were categorized into left and
right viewing angles, with lengths ranging from 19 to 57 s, and a uniform resolution of 1280 × 720.
Second, we employ 10 students to annotate the video clip based on the semantic motion by choosing
one label, namely fall-down, non-fall-down, trespass, or non-trespass. Finally, we obtained 85 video
clips with the label fall-down, 65 video clips with the label of non-fall-down, 80 video clips with the
label of trespass, and 70 video clips with the label of non-trespass. The training and testing set are
divided as 2/3 for training, and 1/3 for testing, which are detailed in Table 1.

4.2 Result and Analysis

To illustrate the superior performance of the proposed method, we compare the proposed system
and the OpenPose-based system. Here, for fair comparison, the OpenPosed-based system is instead of
the proposed LPEN and embedded into the proposed system. The recognition accuracy obtained by
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these two methods on the collected dataset is listed in Table 2. We can see that the proposed method
achieves the highest accuracy on both the recognition tasks of fall-down and trespass. It is noted that
the accuracy of the proposed system in terms of trespass recognition is higher than that in terms of fall-
down recognition. This is because the motion of trespass is more obvious than the motion of fall-down
in the visual space.

Table 1: The statistics of the dataset

Types Category

Fall-down Non-fall-down Trespass Non-trespass

Training set 57 43 53 47
Testing set 28 22 27 23
Dataset 85 65 80 70

Table 2: The comparison of recognition accuracy between the proposed method and the related
method

Method Recognition accuracy (%)

Fall-down Trespass Overall

OpenPose-based system 95.2 97.5 96.35
The proposed system 97.6 98.7 98.15

LPEN aims to estimate the positions of all human skeletons. To validate the estimation accuracy
of the proposed LPEN in terms of the pose estimation, we adopt the PCK (Percentage of Correct Key
points) evaluation to test the performance of LPEN by comparing it with OpenPose. Table 3 lists the
comparison between LPEN and OpenPose. It can be seen that the proposed LPEN achieves the best
estimation accuracy, namely gaining an improvement of 3.724% compared with OpenPose.

Table 3: The accuracy (%) comparison between LPEN and OpenPose

Method Body Mean

Neck Left hip Right hip Left ankle Right ankle

OpenPose 89.021 86.634 89.021 77.326 78.758 84.152
LPEN 94.033 88.544 89.976 83.532 83.293 87.876

As mentioned before, the proposed abnormal action recognition system is not only effective
for recognizing abnormal actions but also is efficient in terms of computation. This belongs to the
proposed lightweight LPEN, as the key module in the proposed abnormal action recognition system.
Thus, we conduct the computation comparison between the proposed LPEN and the OpenPose model
in terms of the GFLOPs, Parameters, Fps, Start-up time, and Memory Consumption. The comparison
results are listed in Table 4. We can see that the proposed LPEN has lower GFLOPs, a smaller number
of parameters, a shorter start-up time, and a lower Memory Consumption, compared with those of
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OpenPose. Meanwhile, for processing the same videos, the proposed LPEN can reach 23.59 Fps, which
is higher than the 20.76 Fps of OpenPose. Overall, through the computation comparison, the proposed
method shows better efficiency than the current representation model, namely OpenPose. In summary,
it is evident that the utilization of our Lightweight Pose Estimation Network (LPEN) is more suitable
for deployment in practical electric power training scenarios.

Table 4: The comparison of computation between the proposed LPEN and the related model. The
notion ↓ denotes the smaller value is better, while the notion ↑ denotes the larger value is better

Type OpenPose LPEN

GFLOPs↓ 136.1 9.0
Parameters (total)↓ 25.94 M 4.1 M
Fps (average) ↑ 20.76 23.59
Start-up time (average)↓ 0.858 s 0.092 s
Memory consumption (average) ↓ 232.5 MB 171.4 MB

Finally, we also conduct a qualitative analysis to illustrate the effectiveness of the proposed system.
We report some results of abnormal action recognition obtained by the proposed system. Fig. 3 shows
the interface of the proposed system. Fig. 4 shows the state of fall-down recognition obtained by the
proposed system. Fig. 5 shows the state of trespass recognition obtained by the proposed system. We
can see that the proposed system can accurately recognize the state of fall-down action and the state
of trespass action.

Figure 3: The interface of the proposed abnormal action recognition system

In addition to the aforementioned successful results, we also report some false results in terms
of fall-down action and trespass action obtained by the proposed system, as shown in Figs. 6 and 7.
The findings indicate that the system exhibits a higher accuracy rate in recognizing actions when the
majority of the monitored individual’s body is within the surveillance area. However, in some cases
where only a minimal portion of the body is exposed to the surveillance field of view, the system may
produce erroneous judgments due to the limitations of the pose estimation algorithm. Although such
occurrences are relatively infrequent, they can be mitigated by deploying multiple cameras throughout
the entire project area, thereby reducing the likelihood of such misjudgments.
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Figure 4: The recognition result of fall-down action obtained by the proposed system

Figure 5: The recognition result of trespass action obtained by the proposed system

Figure 6: The false result of fall-down action obtained by the proposed system
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Figure 7: The false result of trespass action obtained by the proposed system

5 Conclusion

Electric power training is an indispensable component to ensure the safety and reliable operation
of the system. To address the problem of abnormal action recognition in electric power training
scenarios, we present a novel Abnormal Action Recognition (AAR) system embedded with a new
Lightweight Pose Estimation Network (LPEN) for effectively and efficiently recognizing the fall-down
action and the trespass action. The AAR system consists of four modules, namely Surveillance in
Electric Power Training Scenario, Lightweight Pose Estimation Network (LPEN), Pose-aware Action
Analysis Module (PAAM), and Abnormal Action Inference Modules (AAIM). LPEN, which includes
MobileNet, Initial Stage, and Refinement Stage, is designed to capture the skeleton positions of
humans. PAAM aims to acquire the positional coordinates of human skeletal points in the frame.
AAIM aims to assess whether there is a current occurrence of abnormal fall-down or unauthorized
trespass behavior in the current frame. In the assessment of abnormal fall-down, three aspects are
considered as criteria: Falling speed, major angles of the skeletal points, and the bounding box of
the human. For the unauthorized trespass, the position of the ankles is the main focus. Extensive
experiments are conducted to show the effectiveness and efficiency of the proposed system.
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