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ABSTRACT

In the tag recommendation task on academic platforms, existing methods disregard users’ customized preferences
in favor of extracting tags based just on the content of the articles. Besides, it uses co-occurrence techniques and tries
to combine nodes’ textual content for modelling. They still do not, however, directly simulate many interactions
in network learning. In order to address these issues, we present a novel system that more thoroughly integrates
user preferences and citation networks into article labelling recommendations. Specifically, we first employ path
similarity to quantify the degree of similarity between user labelling preferences and articles in the citation network.
Then, the Commuting Matrix for massive node pair paths is used to improve computational performance. Finally,
the two commonalities mentioned above are combined with the interaction paper labels based on the additivity of
Poisson distribution. In addition, we also consider solving the model’s parameters by applying variational inference.
Experimental results demonstrate that our suggested framework agrees and significantly outperforms the state-of-
the-art baseline on two real datasets by efficiently merging the three relational data. Based on the Area Under Curve
(AUC) and Mean Average Precision (MAP) analysis, the performance of the suggested task is evaluated, and it is
demonstrated to have a greater solving efficiency than current techniques.
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1 Introduction

Tag recommendations help to limit the tagging vocabulary, thus improving annotation efficiency.
Users can complete the tag attachment process with just a few clicks using the tag recommendation
system. A tagging system is a crucial tool that helps users organize large quantities of academic
information efficiently. Users can efficiently manage information and locate relevant resources using
a tagging system. Users can tag articles individually in RefWorks (www.refworks.com), Connotea
(www.connotea.org), CiteULike (www.citeulike.org) and Zotero (www.zotero.org). Zotero provides
a free tagging system, as illustrated in Fig. 1. Tags selected by various individuals may be idiosyncratic
and unpredictable. Moreover, different user actions can cause issues with entity recognition [1]. Tag
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recommendations enhance annotation efficiency by restricting the tagging vocabulary. Users can finish
the tag attachment procedure efficiently using the tag recommendation system with minimal effort.

Figure 1: Zotero’s personalized tagging system allows users to customize article tags. Personalized
labelling service is provided on the right side to facilitate literature management

Based on the realized methods, the current label recommendation can be broadly classified into
three categories: Content-based methods, co-occurrence-based methods, and user preference-based
methods. Content-based methods directly utilize item content for label recommendation. Content-
based label recommendation generally does not consider user information but only the association
between content information and item labels, such as term frequency–inverse document frequency
(TF-IDF) [2]. Later on, the industry has developed methods that consider the order of words,
e.g., reference [3] uses a capsule network to encode the intrinsic spatial relationships between the
parts and the whole that make up the viewpoint-invariant knowledge, and another example in [4]
builds a convolutional neural network considering the document topic and global semantics and
inputs textual and word-vector features to predict the most relevant labels for unlabeled or few-
labeled assigned items. The content-based approach is mainly used in the cold-start phase. Co-
occurrence-based methods primarily utilize the co-occurrence of tags between items (i.e., the item-
pagination matrix) for tagging. The fundamentals of co-occurrence-based and user preference-based
approaches are similar to Collaborative Filtering (CF) approaches. As in [5], deep latent embeddings
are learned from different item auxiliary information using a Variational Autoencoder (VAE), and
generative distributions can be formed on each auxiliary information by introducing latent variables
parameterized by a deep neural network. As in [6], correlations between user attribute labels and
concepts extracted from usable parts of scientific papers are defined based on statistical, structural
and semantic aspects.

However, the object of study of tag recommendation is the three subjects of users, items and
tags, as well as the interaction between the subjects. Users may pay attention to items in various
fields and have different paging habits. Therefore, ignoring user preferences will simplify the model,
but at the same time, it will inevitably cause some critical information to be missing, which affects
the recommendation ability of the model, so some studies have begun to consider the interaction
between the three subjects. For example, Huang et al. [7] used a Tag-aware Attentional Graph Neural
Network (TA-GNN) to extract user-label interaction and item-label interaction from the user-label-
item graph structure. Another example is [8], which uses an autoencoder network of learned hidden
representations to encode multiple types of relationships between entities, i.e., between users and
labels, between items and labels, and between labels, and uses a decoder component to reconstruct
the original inputs based on the learned latent representations. Literature [9] uses a metric learning
approach to explore the distance relationships between user × item × label triples and applies existing
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metric learning-based approaches (i.e., latent relational metric learning (LRML), collaborative metric
learning (CML), symmetric metric learning (SML)) to label recommendation.

However, users are accustomed to choosing their preferred labels for academic labelling recom-
mendations, so papers read by similar users may be given the same label. For example, a mathematician
may label the paper “Stochastic Variational Reasoning” [10] as “Statistics”, while a computer scientist
may label the paper as “Machine Learning”. In addition, there is a citation relationship between
articles, and usually, two articles with a citation relationship may be about the same topic, so that
they may have the same label. Therefore, finding an effective way to combine citation networks, paper
labelling and user paper matrices, remains challenging. This paper proposes new approaches to solve
the multi-label recommendation problem for systems that provide closed-label recommendations. The
main contributions of this paper are as follows:

To the best of our knowledge, this is the very first work to study multifactor Poisson factorization
for tag-oriented recommender systems.

By extending the Poisson Factorization model, we propose to exploit the additivity of the gamma
distribution to seamlessly integrate the three networks, namely, the paper labelling matrix, the citation
network, and the user paper interaction matrix, into the same principle model.

Extensive experiments on real-world datasets have shown that the model significantly outperforms
baseline models based on the paper label or user paper matrix. Furthermore, the computational
complexity of the model is low.

Section 2 of this paper describes the related work on tagging recommendation, Poisson factor-
ization recommendation, etc. Section 3 describes our Poisson Decomposition recommendation model
with social regularization. Section 4 describes using the coordinate ascent algorithm to infer the model
parameters. Finally, Section 5 validates the experimental performance of the model on the CiteULike
dataset.

2 Related Works

This section provides an overview of the current research on tag recommendation and the Poisson
factorization-based recommender system closely associated with this work.

2.1 Tag Recommendation

The article emphasizes the importance of tag recommendation systems in academic resources
to alleviate information overload and improve user tagging experience [11]. It outlines three pri-
mary tag recommendation methods: Content-based, co-occurrence-based, and user preference-based
approaches [1].

2.1.1 Content-Based Tag Recommendation

Content-based tag recommendation methods primarily focus on the association between an item’s
content and its labels, often ignoring user information and behaviors patterns [12–14]. Initially, these
methods treated the text as a “Bag of Words” (BoW) [15], using word frequency [16] for feature extrac-
tion and feeding these features into multi-label classifiers. However, this approach did not accurately
capture the importance of each word, leading to the adoption of Term Frequency–Inverse Document
Frequency (TF-IDF) [2] for more effective text representation. Despite advancements, these methods
still overlooked the sequential structure of text, neglecting sentence-level information. To address this,
deep learning techniques, such as capsule networks [3] and convolutional neural networks [4], have
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been employed to consider both word-level and sentence-level information, enhancing the model’s
ability to predict relevant tags [13]. Additionally, external knowledge bases like knowledge graphs [17]
and pre-trained models [18] have been integrated to improve the recognition of new concepts and to
capture richer semantic information. However, these additions can introduce complexity and noise.
Despite these efforts, content-based methods still struggle to reflect personalized user preferences and
group intelligence.

2.1.2 Co-Occurrence-Based Tag Recommendation

Co-occurrence-based methods enhance tag recommendation by exploring correlations between
tags, leveraging conditional probabilities and deep learning techniques like Variational AutoEncoders
(VAE) [5] to learn latent embeddings and predict label recommendations [6]. These methods also
consider tag structures, as seen in [14], which uses graph diffusion mechanisms and hierarchical
tag structures [19] for better performance. Furthermore, label semantic-based approaches, such as
those using Graph Convolutional Networks (GCNs) [20] and pre-trained word vectors like Global
Vectors for Word Representation (GloVe), enrich the semantic information of labels [21], guiding
the content representation for improved classification. To capture the complex interactions in tag
recommendation, Neural Graph for Personalized Tag Recommendation (NGTR) [22] employs graph
neural networks within a tensor decomposition model, integrating neighborhood representations to
enhance the encoding of entity relationships.

2.1.3 Tag Recommendation Based on User Preferences

User preference-based methods in tag recommendation systems address the multi-label classifi-
cation problem by considering the interactions among users, items, and tags. These methods often
combine user and item representations, from user-to-user, user-to-item, and item-to-item interactions,
to capture individual preferences and enhance model accuracy [23]. Techniques such as hierarchical
attention models and graph neural networks integrate collaboration signals and generate richer
entity representations [24]. Additionally, some works explore different vector spaces to learn entity
representations and measure semantic correlations [25], such as using hyperbolic spaces and tangent
space optimization [26]. To directly capture the interactions between users, items, and tags, methods
like the Tag-aware Attentional Graph Neural Network (TA-GNN) [7] and variational self-encoders
[8] have been proposed, which utilize attention mechanisms and metric learning to understand better
and leverage these interactions [9]. This paper contributes to the field by proposing a collaborative
filtering model that integrates tag co-occurrence and user preference, aiming to optimize the utilization
of interaction data in academic tagging.

2.2 Poisson Factorization for Recommendation System

Poisson factorization is a matrix decomposition technique applied in recommender systems,
notably for its effectiveness in handling sparse datasets. It has been utilized in models like Collaborative
Topic Poisson Factorization (CTPF) [27] and Collaborative Topic Regression (CTR) [28] to integrate
topic distributions with item representations and alleviate data sparsity. The multilayer Poisson
decomposition model [29] is introduced to describe the combination of users’ purchase budgets and
preferences for items. The method reduces computational complexity and capitalizes on the value of
long-tail items. Poisson factorization excels in sparsity modelling, diminishing the impact of unvisited
items on predictions, and demonstrates flexibility, scalability, and robustness in the presence of noisy
or missing data. These attributes make Poisson factorization a powerful tool for various applications,
including recommender systems, text mining, and image processing. This paper proposes a novel
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approach that regularizes the Poisson factorization of the paper-tag matrix using citation networks
and user-paper interactions, offering improvements over existing methods that do not consider citation
networks. It can fuse multiple contexts using the additivity property of the Poisson distribution.

3 Problem Description and Preparatory Knowledge

The two tasks closely related to tag recommendation are item recommendation and multi-tag
classification, and part of the tag recommendation also draws on the idea of these two. As shown in
Fig. 2a, the general item recommendation recommends a collection of items I = {i1, i2, · · · , in} for the
current user ui based on the user’s behavior and other information.

Figure 2: Paper recommendation, tag classification for papers and tag recommendation

The multi-tag classification problem generally refers to tagging a set of tags V = {v1, v2, · · · , vm}
for the current item ij based on its content information, as shown in Fig. 2b.

Tag recommendation refers to the process that when the current user ui wants to tag the target item
ij (which often contains content information such as text, images or videos), the system automatically
recommends a tag set V = {v1, v2, · · · , vm} to the user for paper tagging. This tagging process is affected
by the habit of user and project information. The relationship between user ui and project ij, tag vm is
shown in Fig. 2c.

We base our study on the CiteULike dataset, which is collected from the CiteULike website.
CiteULike provides three entities: Users, papers, tags, and their multidimensional relationships. To
describe the formal model of CiteULike, we first give the relevant definitions:

Definition 1. User paper interaction network, the network formed by the user’s clicks, favorites
and evaluation records of papers, can be expressed as an undirected graph structure, denoted as
R = (U , I , S), where U denotes the set of users, I denotes the set of papers, and S denotes the set of
user behaviors such as clicks, favorites, evaluations, etc. The CiteULike does not differentiate between
multiple behaviors, and thus can be taken as R = (U , I).

Definition 2. Citation network, a directed graph network formed by paper-to-paper citation
relationships, denoted as G = (I , E), where I denotes the set of papers and E denotes the set of edges
of citation relationships between papers, i.e., E = {(ik, ij)| ik, ij ∈ I}.

Definition 3. Paper-tag network, an undirected graph network formed by the relations between
papers and tags, it denoted as C = (I , V), where I denotes the set of papers and V denotes the set of
paper tags.
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This paper further gives a heterogeneous data utilization model that fuses the three relationships
of definitions 1∼3. This model can also be generalized to similar industry data.

Gopalan et al. [27] proposed the Bayesian Poisson Factorization (BPF) model. The BPF model
assumes that the user’s responses to items (e.g., clicks, favorites, purchases, follows, ratings, comments,
retweets, etc.), yui, follow a Poisson distribution:

yui ∼ Poisson
(
ηT

u θi

)
(1)

where ηu and θi are K-dimensional non-negative vectors following a Gamma distribution, i.e.,

ηu ∼ Gamma (λua, λub) (2)

θi ∼ Gamma (λia, λib) (3)

where λua, λub is the shape parameter of the Gamma distribution and λia, λib is the scale parameter of the
Gamma distribution. We can infer the values of ηu and θi by Gibbs sampling or variational inference.

4 Joint Modeling of Citation Networks and User Preferences
4.1 Context-Enhanced Poisson Factorization Models

We take advantage of the additivity of the gamma distribution and use the Poisson factorization
model as a general framework, as modelled in the following equation:

yvi|y¬vi ∼ Poisson
(
ηT

v θi +
∑|J|

j=1
δvjsijyji +

∑|W |

w=1
τvws

′
iwywi

)
(4)

where ηv is the hidden feature vector of the tag, θi is the hidden feature vector of the paper, sij is the
user preference-based similarity between paper j and paper i, δvj is the attenuation coefficient of the
user preference-based similarity, s′

iw is the citation network-based similarity between paper w and paper
i, and τvw is the decay coefficient of citation network similarity. yji is the set of papers that have been
labelled i, and ywi is the set of papers that have been labelled i as well. In fact, the two sets are consistent.
However, due to the different semantics of the two summation terms

∑|J|
j=1 δvjsijyji and

∑|W |
w=1 τvws′

iwywi, to
semantically distinguish these two terms, we take the middle variable of these two terms to be different.
The probability plot of the model is shown in Fig. 3. From the above equation, we can see that when the
value of yji or ywi in the matrix is 0, there is no need to calculate

∑|J|
j=1 δvjsijyji or

∑|W |
w=1 τvws′

iwywi. For sparse
matrices, this feature of Poisson factorization can save a large part of the computation. In the massive
paper queue, the model call data is often only a few of them, so for the academic platform-oriented
tagging recommendation, the Poisson factorization algorithm is a very suitable method.

4.2 Article Similarity Metrics Based on User Preferences

This section introduces symmetric metapaths and computes the path similarity of the head and
tail nodes (PathSim). The task can be described as, for example, finding the path similarity in the
meta-path ‘paper → reader → paper’. The formula for path similarity is as follows:

s (x, y) = 2 × ∣∣px→y

∣∣
|px→x| + ∣∣py→y

∣∣ (5)

where s(x, y) is the path similarity between node x and node y.
∣∣px→y

∣∣ represents the number of paths
between node x and node y in the case of a meta-path P. Intuitively, when there are more paths between
nodes, the two nodes are more similar. The denominator in the formula is the number of total paths
of the two nodes back to themselves as a normalization term.
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Figure 3: Probabilistic graphical models

Take the meta-path ‘paper → reader → paper’ as an example. The goal is to find the similarity
of the paper. Suppose there are readers A1, A2, A3, A4, and papers B1, B2, B3, and their interaction
matrices are shown in the following Table 1:

Table 1: Interaction matrices

B1 B2 B3

A1 1 1 0
A2 1 1 1
A3 0 0 1
A4 1 1 0

The data in the table can be represented as a bipartite graph as shown in Fig. 4. From Fig. 4, it can
be easily noticed that B1 has 3 paths to B2, B1 → A1 → B2 and B1 → A2 → B2 and B1 → A4 → B2.
It can be obtained that |pB1→B2| = 3.

B1 has three paths back to B1, B1 → A1 → B1 and B1 → A2 → B1 and B1 → A4 → B1. Then
|pB1→B1| = 3. B2 has 3 paths back to B2 as B2 → A1 → B2, B2 → A2 → B2 and B2 → A4 → B2.
Then |pB2→B2| = 3. Then we can get:

s (B1, B2) = 2 × 3
3 + 3

= 1 (6)
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Figure 4: Bipartite graph for interaction matrices

We use matrices cash skill to speed up the computation. The user-paper matrix is R. We use the
Commuting Matrix (CM) to simplify the calculation process. Commuting Matrix (CM) M = RTR.
Then, the meta-path similarity of the papers in the interaction matrix is:

sij = 2Mij

Mii + Mjj

(7)

where Mij is the element of the corner scale i, j in the commuting matrix. Then the procedure of
adopting matrix for s (B1, B2) is as follows:

M = RTR =
⎡
⎣1 1 0 1

1 1 0 1
0 1 1 0

⎤
⎦

⎡
⎢⎢⎣

1 1 0
1 1 1
0 0 1
1 1 0

⎤
⎥⎥⎦ =

⎡
⎣3 3 1

3 3 1
1 1 2

⎤
⎦ (8)

s12 = 2M12

M11 + M22

= 2 × 3
3 + 3

= 1 (9)

In the specific implementation, the Gamma distribution can fit the decay process well and
can be introduced as a decay factor to learn the representation of user preferences. Take δvj ∼
Gamma

(
γ

shp
vj , γ rte

vj

)
to denote the user’s interest to thesis j decays according to the Gamma distribution.

Then the likelihood of a tag v reaching a new paper i through paper j is:

zvji = δvjsij (10)

Then, the likelihood of a tag v reaching a new paper i through a collection of papers J can be
calculated as follows:

zvji =
∑|J|

j=1
δvjsij (11)

4.3 Spatial Similarity Measures Based on Citation Networks

Even if the papers have significant textual gaps, they may still have intrinsic theoretical similarities
that cannot be obtained by computing textual representation vectors. Given a citation network, it is
necessary to utilize as much of the citation network as possible to obtain a low-dimensional vector
representation of the papers. Utilizing only neighboring nodes may prevent the model from losing
much information about the structure. Once too many layers of network node information are utilized,
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too much noise may be introduced into the model. Therefore, we utilize a node’s neighboring edges
and adjacent nodes as the contextual information of the current node. Intuitively, two nodes are more
similar if two nodes have more neighboring nodes.

Let the meta-path similarity of the paper i and j in the interaction matrix is s′
ij. In the specific

implementation, Gamma is similarly introduced as a decay factor in the representation learning of
citation networks. Take τvw ∼ Gamma

(
γ shp

vw , γ rte
vw

)
. Then, the likelihood of a tagged v pair reaching the

citation network of a new paper i through paper w can be expressed by the following equation:

zvwi = τvws
′
iw (12)

Then, the spatial similarity of the citation network for a user to reach a new paper i node on the
citation network through the cluster of paper set J is described as:

zvwi =
∑|J|

j=1
τvws

′
iw (13)

Figure 5: Citation networks

Table 2: The adjacency matrices G of citation networks

B1 B2 B3 B4 B5 B6 B7 B8 B9

B1 0 0 0 0 0 0 0 0 0
B2 0 0 0 0 0 0 0 0 0
B3 0 0 0 0 0 0 0 0 0
B4 1 1 0 0 0 0 0 0 0
B5 1 1 1 0 0 0 0 0 0
B6 1 0 0 1 0 0 0 1 0
B7 0 1 0 0 0 0 0 0 0
B8 0 0 0 1 1 0 0 0 0
B9 0 0 0 0 0 1 1 1 0

Suppose there are nine papers B1, B2, B3, B4, B5, B6, B7, B8, B9. The citation network is shown
in Fig. 5 and its adjacency matrices is shown in Table 2. As we can see, the adjacency matrix G of the
directed graph is an asymmetric matrix. We take its Commuting Matrix (CM) as:
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M ′ = (G + GT)
(
G + GT

)T
(14)

Let us take the meta-path ‘paper →paper → paper’ as an example. The goal is to find the paper’s
similarity in citation. We simplify the citations network to an undirected graph so their adjacency
matrices became symmetric. We use matrices cash skill to speed up the computation. The adjacency
matrices are G, we take the Commuting Matrix (CM) M ′ = (G + GT)

(
G + GT

)T
, then the meta-path

similarity of the papers in the interaction matrix is:

s
′
ij = 2M ′

ij

M ′
ii + M ′

jj

(15)

where M ′
ij is the element of the corner scale i, j in the commuting matrix.

M ′ = (
G + GT

) (
G + GT

)T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 2 1 1 0 1 0 3 1
2 3 1 0 0 1 0 2 1
1 1 1 0 0 0 0 1 0
1 0 0 4 3 2 1 1 2
0 0 0 3 4 2 1 0 1
1 1 0 2 2 4 1 2 1
0 0 0 1 1 1 2 1 0
3 2 1 1 0 2 1 4 1
1 1 0 2 1 1 0 1 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

s
′
56 = 2M ′

56

M ′
55 + M ′

66

= 2 × 3
4 + 4

= 0.75 (17)

s
′
57 = 2M ′

57

M ′
55 + M ′

77

= 2 × 1
4 + 2

= 0.33 (18)

So paper 5 is more similar to paper 6 than to paper 7.

4.4 Approximate Posterior Inference

We use variational inference to solve the model, and the details of the solution process
are described below. δvj and τvw obey a gamma distribution, δvj ∼ Gamma

(
γ

shp
vj , γ rte

vj

)
, τvw ∼

Gamma
(
γ shp

vw , γ rte
vw

)
, let zM

vik ∼ Poisson
(
ηT

vkθik

)
, zvji ∼ Poisson

(
δvjsijyji

)
, zvwi ∼ Poisson

(
τvws′

iwywi

)
, then

Eq. (13) can be reduced to:

yvi|y¬vi =
∑K

k=1
zM

vik +
∑|J|

j=1
zvji +

∑|W |

w=1
zvwi (19)

Due to the additivity of Poisson distribution, the sum of multiple Poisson distributions yvi still
obeys Poisson distribution. We can obtain the Variational family of the above model as follows:

q
(
zM

vik, zvji, zvwi, δvj, τvw, ηv, θi

) =
∏

v,i,k
zM

vik

∏
v,j,i

zvji

∏
v,w,i

zvwi

∏
v,j

δvj

∏
v,w

τvw

∏
v
ηv

∏
i
θi (20)

According to the conditional conjugate model, each variational parameter equals the expectation
of the other corresponding parameters in the complete condition. Detailed proofs are shown in
Appendix (including Table A1). In summary, the parameters are updated as follows:(
γ

shp
vk , γ rte

vk

) ←
(

λva +
∑

i
yviφ

M
vik, λvb +

∑
i

γ
shp

ik

γ rte
ik

)
(21)
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(
γ

shp
ik , γ rte

ik

) ←
(

λia +
∑

v
yviφ

M
vik, λib +

∑
v

γ
shp

vk

γ rte
vk

)
(22)

(γ shp
vj , γ rte

vj ) ← (λja +
∑

i
yviφvji, λjb +

∑
i
sijyji) (23)

(γ shp
vw , γ rte

vw ) ← (λha +
∑

i
yviφvwi, λhb +

∑
i
s

′
iwywi) (24)

φM
vi ∝ 〈

φM
vi1, . . . , φM

vik, . . . , φM
viK

〉
(25)

We expect the latent variable as following:

φM
vik = Gq

[
ηT

vkθik

] = exp
{
Eq

[
log ηT

vk + log θik

]} = exp
{
	

(
γ

shp
vk

) − log γ rte
vk + 	

(
γ

shp
ik

) − log γ rte
ik

}
(26)

By the same reasoning, it is easy to obtain the following equation:

φvji = exp{	
(
γ shp

vj

)
− log γ rte

vj
+ log sijyji} (27)

φuwi = exp{	 (
γ shp

vw

) − log γ rte
vw

+ log s
′
iwywi} (28)

4.5 Optimization and Complexity Analysis

Algorithm 1 shows the entire optimization of our proposed method. The coordinate ascent
method is more efficient than the batch algorithm. The computational complexity per iteration of
the batch algorithm is O((W + R)K), where R and W are the total number of non-zero observations
in the document-user and document-word matrices, respectively. For the coordinate ascent method,
this is O ((wd + rd ) K), where rd is the number of users who rated the sampled document d and wd is the
number of unique words in it. We assume that only one document is sampled in each iteration. In Fig. 3,
sums involving polynomial parameters can be tracked for efficient memory usage. The constraint
on memory usage is O ((D + V + U) K). As in Table 3, the update algorithm is of the same order
of magnitude of complexity as the Bayesian Personalized Ranking (BPR), which does not introduce
relational contexts. Therefore, on the premise of pre-processing contextual content and not increasing
the arithmetic burden of the online model, the computational complexity of the model proposed in this
paper remains the same as that of the BPR algorithm without fusing content information. Therefore,
it is currently a more advanced algorithm regarding computational efficiency.

Table 3: Time complexity of methods with implicit feedback

Method Time complexity

BPR O (|R| K)

PMF O (MNK)

ALS O
(
(M + N) K3 + |R| K2

)
eALS O

(
(M + N) K2 + |R| K

)
Context-aware-eALS O

(
(M + N) K2 + |R| K

)
OUR METHOD O ((wd + rd ) K)
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Algorithm 1: Optimal coordinate update
Input:
C, paper-tag matrix
G, the adjacency matrix of the citation network
R, user-paper matrix
λ = {λva, λvb, λia, λib, λja, λjb, λha, λhb}, starting value of model parameters
Output:
γ = {γ shp

vk , γ rte
vk , γ shp

ik , γ rte
ik , γ shp

vj , γ rte
vj , γ shp

uw , γ rte
uw }, model parameters

1. Initialize parameters
2. while not converge do
3. For each rating yui do
4. Update φM

vik, φvji, φuwi with Eqs. (26)–(28), respectively,
5. Normalize φui with Eq. (25),
6. End For
7. For each article v do
8. Update γ

shp
vk , γ rte

vk with Eq. (21), respectively,
9. Updateγ shp

vj , γ rte
vj with Eq. (23), respectively,

10. Update γ shp
uw , γ rte

uw with Eq. (24), respectively,
11. End For
12. For each tag i do
13. Update γ

shp
ik , γ rte

ik with Eq. (22), respectively
14. End For
15. While ||γ (θ+1) − γ (θ)|| ≤ 0.001, break
16. Return

5 Experimental Results and Analysis

We examine the algorithm’s efficacy using the citeulike-a and citeulike-t datasets [30]. The two
datasets both contain the tags corresponding to the papers, records of user interactions with the
articles, citation networks, and the bag of words for the articles. The statistical information of the
dataset is shown in Table 4.

Table 4: Datasets

Statistics citeulike-a citeulike-t

Users 5551 7947
Articles 16980 25975
Tags 46391 52946
Citations 44709 32565
User-article pairs 204987 134860
Article-tag pairs 239253 290830

5.1 Evaluation Metric

We use implicit feedback for the computation, where we recommend K tags to papers based on
the ranking of the predicted values and evaluate them based on the articles that users have checked
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in. We use two metrics to evaluate the quality of the sorted list of tags: The Area Under Curve (AUC)
and Mean Average Precision (MAP), which are defined as follows:

AUC =
∑P

i=1 ranki − P (P + 1)

2
P × N

(29)

where ranki denotes the predicted ranking of the ith positive sample, P denotes the number of positive
samples, and N denotes the number of negative samples.

In the actual calculation process, the samples are usually ranked according to the predicted
probability value. Then the ranked samples are taken as positive samples one by one, and the
corresponding ranki values are calculated. Then these values are brought into the AUC calculation
formula to obtain the final AUC value.

MAP = 1
I

∑
i∈I

1
ni

∑N

k=1
P (Rik) (30)

Average precision (AP) is the average of precision values at all ranks where relevant research papers
are found and Mean Average Precision (MAP) given by Eq. (30), is the average of all APs. Where
P (Rik) denotes the precision of returned papers from the top until paper k is reached, N represents the
length of the recommendation list, ni is the number of relevant papers in the recommendation list and
I is the set of papers.

5.2 Baselines

In order to validate the effectiveness of introducing contextual information and optimization
methods, we have chosen the following recommended techniques to compare with our approach:

PF [27]. Poisson Factorization (PF) is a method that estimates the parameters of a variable by
variational inference, using the Poisson distribution as a prior for the variable.

CTR [30]. Collaborative Topic Regression (CTR). Collaborative Topic Regression method that
combines Poisson decomposition and topic distribution can mitigate data sparsity and cold-start
problems of articles.

mostPop [31]. mostPop is a tag-popularity-based ranking method.

userKNN [32]. User-based K-Nearest Neighbors (userKNN) is the user-based near-neighbor
method which calculates the similarity between users based on their reading history using similarity
metrics. Here, the paper is considered a user and the tag is an item.

itemKNN [32]. Item-based K-Nearest Neighbors (itemKNN) is the item-based nearest neighbor
method, based on the reading records of papers, using similarity metrics to calculate the similarity
between items. Here, the paper is considered a user and the tag is an item.

BPR [33]. Bayesian Personalized Ranking (BPR) is the classical ranking learning algorithm
based on the principle that positive samples should be ranked before negative samples, and the
recommendation model is trained by learning the ranking loss function.

CDR [34]. Collaborative Deep Ranking (CDR) is a hierarchical Bayesian deep learning frame-
work combining a deep feature representation of the paper’s content and implicit user preferences to
reduce sparsity.

ALS [35]. Alternating Least Squares (ALS) is an implicit feedback-based matrix decomposition
method that employs negative sample complete sampling.
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We randomly draw 80% of the data from the thesis-tag matrix as training data and the remaining
20% as test data. For a fair comparison, we set the parameters of different algorithms concerning the
corresponding literature or experimental results of the compared algorithms.

5.3 Result

5.3.1 Performance Comparison

The experimental results obtained by baselines on the citeulike-a and citeulike-t datasets are shown
in Fig. 6. We can find following:

1) The algorithm proposed in this paper has greatly improved over the Poisson decomposition
algorithm that does not introduce context, proving that it is feasible to introduce context through the
additivity of the gamma distribution. This finding is consistent with the conclusion of the paper [1].

2) Our method shows more than 3% improvement over the alternating element least square
method, we believe it is because our model uses a more rational approach to compute the trust
strength, and our model successfully combines two contexts to mitigate the data sparsity problem.
The eALS models do not model users’ implicit feedback well due to the extremely sparse data in tag
recommendations.

3) The recommendation performance of the model introducing contextual information is similar
to that of the collaborative filtering-based model, suggesting that introducing contextual information
requires an appropriate approach.

4) The performance of BPR based on negative sample sampling is worse than the ALS method
based on complete negative sample sampling, which suggests that random negative sample sampling
affects the model.

5) the recommendation accuracy of userKNN is higher than itemKNN in memory-based tagging
recommendation algorithms. The reason is that many papers share fewer tagged, which leads to the fact
that item-based paper similarity calculation is less accurate than user-based user similarity calculation.
This observation is consistent with that of literature [36]. ItemKNN has the lowest accuracy and
MAP, and collaborative filtering based solely on paper similarity computation cannot adequately
characterize the reading preference of users.

5.3.2 The Effect of the Dimension of the Latent Vector

For the tag recommendation algorithm proposed in this paper, the dimension Kd of the latent
feature vector is also an important parameter that affects the algorithm’s performance. In incremental
steps, we vary the value of Kd, from 10 to 150 and observe the variation of AUC and MAP on the
citeulike-a dataset.

The experimental results are shown in Fig. 7. It can be observed that the values of AUC and MAP
increase first with the increment of Kd. After reaching the optimal value, AUC and MAP decrease with
the increment of Kd. On the citeulike-t dataset, the effect of parameter Kd on AUC and MAP shows a
similar trend. This observation suggests that over-increasing the value of Kd may introduce some noise
to reduce the accuracy of the recommendation algorithm.
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Figure 6: Performance comparison (Kd = 50)

5.3.3 Ablation Experiments

In this paper, we propose a tag recommendation algorithm that fuses context regularization
through the additivity of the gamma distribution. We implement regularization of the article-tag
interaction model with the citation and user-article networks. In this section, we exclude the citation
and user-article network, respectively, and compare the changes of AUC and MAP with one missing
term and without regularization.

• PF. This model removes items representing user-profiles and citation networks in Eq. (4).
• PF+ citation. This model removes items representing user profiles.
• PF+ profile. This model removes items representing citation networks.
• This is the full context-augmented Poisson factorization model with user profiles and citation

network as context.

Fig. 8 shows the results evaluated on two datasets regarding AUC and MAP. There are several
interesting observations:
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• Jointly training mode is crucial. Compared with the Poisson decomposition without context,
our model improves the AUC by 3.1% and 1.2% and the MAP by 46.1% and 84.0% on the two
datasets, respectively. This demonstrates the effectiveness of gamma distribution additivity for
feature extraction. This mechanism enables our model to capture various features in context for
each tag by dynamically adjusting the feature weights for better tag recommendation.

• Effectiveness of context-sensitive modelling. By comparing PF with citation and PF with
profile, it can be found that the model using citation as context performs relatively better (AUC
improves by about 2.0% on citeulike-a dataset and 0.4% on citeulike-t dataset, MAP improves
by about 19.1% on citeulike-a dataset and 50.4% on citeulike-t dataset). This suggests that
citation network have a larger impact than user preference in labelling recommendations. Fur-
thermore, the model is slightly better in citeulike-a than citeulike-t datasets. This is reasonable
because of the different data sparsity.

Figure 7: Prediction accuracy of four implicit feedback methods vs. Kd
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Figure 8: Ablation tests (Kd = 50)

6 Conclusion and Future Work

With the rapid growth of academic resources, the reading and organizing academic resources
become more and more time-consuming. Tag recommendation is an integral part of the academic
resource platform, which can help users personalize the classification of papers, facilitate users’ finding
papers, and reduce information overload. In order to fully utilize the three kinds of relational data
in tag recommendation, this paper proposes a context-aware tag recommendation model based on
Poisson decomposition. We explicitly integrate user preferences and citation networks into the model
and solve it with gradient climbing method, which significantly reduces the complexity. Experimental
results on two real tagging recommendation datasets show that the method in this paper outperforms
current methods in terms of tag recommendation accuracy and computational efficiency.

However, academic tag recommendation systems may exacerbate the phenomenon of hot and cold
areas or topics of academic research, leading to over-attention to certain areas of research and neglect
of others. This is not conducive to the diversity and balanced development of academic research. We
will look into this issue in our follow-up work.
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Appendix
Details of Variational Inference

The Poisson decomposition employs variational inference as an optimization objective function to
solve for the parameters. A hidden variable factor k is added to the model, and for the observation yvi,
We add k intermediate variables yvik, such that yvik ∼ Poisson(ηT

vkθvi) and yvi = ∑
k yvik, yui is converted

to a polynomial by the transformation
∑

k yvik, while yvi still satisfies the Poisson distribution, due to
the principle of additivity, the sum of multiple Poisson distributions obeys a Poisson distribution.

We use variational inference to solve the model, and the details of the solution process
are described below. δuj and τuw obey a gamma distribution, ηvk ∼ Gamma

(
γ

shp
vk , γ rte

vk

)
, θik ∼

Gamma
(
γ

shp
ik , γ rte

ik

)
, δvj ∼ Gamma

(
γ

shp
vj , γ rte

vj

)
, τvw ∼ Gamma

(
γ shp

vw , γ rte
vw

)
, let zM

vik ∼ Poisson
(
ηT

vkθik

)
,

zvij ∼ Poisson
(
δvjsijyji

)
, zviw ∼ Poisson

(
τvws′

iwywi

)
, then Eq. (19) can be reduced to:

yvi|y¬vi =
∑K

k=1
zM

vik +
∑|J|

j=1
zvij +

∑|W |

w=1
zviw (31)

Due to the additivity of Poisson distribution, the sum of multiple Poisson distributions yvi still
obeys Poisson distribution. We can obtain the Variational family of the above model as follows:

q
(
zM

vik, zvji, zvwi, δvj, τvw, ηv, θi

) =
∏

v,i,k
zM

vik

∏
v,j,i

zvji

∏
v,w,i

zvwi

∏
v,j

δvj

∏
v,w

τvw

∏
v
ηv

∏
i
θi (32)

For Eq. (31), we extracting the portion associated with ηvk yields

p(ηvk|yvi, λva, λvb) ∝ ηλva−1
vk exp(−λvbηvk)

∏
i
[(ηT

vkθik)
yuik exp(−ηT

vkθik)] ∝ η
λva+∑

i yuik−1
vk exp[−(λvb+∑

i
θik)ηvk] = Gamma(λva +

∑
i
yuik, λvb +

∑
i
θik) (33)

For yvik, according to Lagrange’s median theorem, we can get there must exists yvi = ∑
k yvik and∑

k φM
vik = 1, make yvik = yviφ

M
vik. Since θik obeys the Gamma distribution, its expectation is

γ
shp

ik

γ rte
ik

. So the

iterative formula for
(
γ

shp
vk , γ rte

vk

)
can be rewritten as

(
γ

shp
vk , γ rte

vk

) ←
(

λva + ∑
i yviφ

M
vik, λvb + ∑

i

γ
shp

ik

γ rte
ik

)
.

By the same reasoning, it is easy to obtain the following equation:

(
γ

shp
ik , γ rte

ik

) ←
(

λia +
∑

v
yviφ

M
vik, λib +

∑
v

γ
shp

vk

γ rte
vk

)
(34)

(γ shp
vj , γ rte

vj ) ← (λja +
∑

i
yviφvji, λjb

∑
i
sijyji) (35)

(γ shp
vw , γ rte

vw ) ← (λha +
∑

i
yviφvwi, λhb +

∑
i
s

′
iwywi) (36)

φM
vi ∝ 〈

φM
vi1, . . . , φM

vik, . . . , φM
viK

〉
(37)

The variational inference method assumes at this point that there exists a Poisson distribution
q. The iterative method makes the distribution q move closer and closer to the target distribution p,
which we need to solve for, and thus makes the following transformations:

φM
vik = ηT

vkθik

yvi

∝ exp(log(Eq[ηT
vkθik])) = exp(Eq[log(ηT

vkθik)]) = exp
{
Eq

[
log ηT

vk + log θik

]}
(38)
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where Eq(·) represents the expectation under the distribution q. Since there exists log ηT
vk = Ψ

(
γ shp

vk

)
−

log γ rte
vk

, the final iterative formula for φM
vik is given as:

φM
vik = Gq

[
ηT

vkθik

] = exp
{
Eq

[
log ηT

vk + log θik

]} = exp{Ψ (
γ

shp
vk

) − log γ rte
vk + Ψ

(
γ

shp
ik

) − log γ rte
ik } (39)

By the same reasoning, it is easy to obtain the following equation:

φvji = exp{	 (
γ shp

vj

) − log γ rte
vj + log sijyji} (40)

φuwi = exp{	 (
γ shp

vw

) − log γ rte
vw + log s

′
iwywi} (41)

Then we can derive and obtain the update equations are summarize in Table A1:

Table A1: Hidden variables, complement conditionals, variational parameters and relevant expecta-
tions

Latent
variable

Type Complete conditional Para. Latent variable

ηv Gamma λva + ∑
i zM

vik, λvb + ∑
i θik γ

shp
vk , γ rte

vk λva + ∑
i yviφ

M
vik, λvb + ∑

i
γ

shp
ik

γ rte
ik

θi Gamma λia + ∑
v zM

vik, λib + ∑
v ηvik γ

shp
ik , γ rte

ik λia + ∑
v yviφ

M
vik, λib + ∑

v
γ

shp
vk

γ rte
vk

δvj Gamma λja + ∑
i zvji, λjb + ∑

i sijyji γ
shp
vj , γ rte

vj λja + ∑
i yviφvji,λjb + ∑

i sijyji

τvw Gamma λha + ∑
i zvwi, λhb + ∑

i s
′
iwywi γ

shp
vw , γ rte

vw λha + ∑
i yviφvwi,λhb + ∑

i s
′
iwywi

zM
vik Mult log ηvk + log θik z̃M

vik exp
{
	

(
γ

shp
vk

)
− log γ rte

vk + 	
(
γ

shp
ik

)
− log γ rte

ik

}
zvji Mult log δvj + log sijyji z̃vji exp

{
	

(
γ

shp
vj

)
− log γ rte

vj + log sijyji

}
zvwi Mult log τvw + log s

′
iwywi z̃vwi exp

{
	

(
γ

shp
vw

)
− log γ rte

vw + log s
′
iwywi

}
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