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ABSTRACT

Artificial intelligence (AI) technology has become integral in the realm of medicine and healthcare, particularly in
human activity recognition (HAR) applications such as fitness and rehabilitation tracking. This study introduces
a robust coupling analysis framework that integrates four AI-enabled models, combining both machine learning
(ML) and deep learning (DL) approaches to evaluate their effectiveness in HAR. The analytical dataset comprises
561 features sourced from the UCI-HAR database, forming the foundation for training the models. Additionally, the
MHEALTH database is employed to replicate the modeling process for comparative purposes, while inclusion of the
WISDM database, renowned for its challenging features, supports the framework’s resilience and adaptability. The
ML-based models employ the methodologies including adaptive neuro-fuzzy inference system (ANFIS), support
vector machine (SVM), and random forest (RF), for data training. In contrast, a DL-based model utilizes one-
dimensional convolution neural network (1dCNN) to automate feature extraction. Furthermore, the recursive
feature elimination (RFE) algorithm, which drives an ML-based estimator to eliminate low-participation features,
helps identify the optimal features for enhancing model performance. The best accuracies of the ANFIS, SVM,
RF, and 1dCNN models with meticulous featuring process achieve around 90%, 96%, 91%, and 93%, respectively.
Comparative analysis using the MHEALTH dataset showcases the 1dCNN model’s remarkable perfect accuracy
(100%), while the RF, SVM, and ANFIS models equipped with selected features achieve accuracies of 99.8%, 99.7%,
and 96.5%, respectively. Finally, when applied to the WISDM dataset, the DL-based and ML-based models attain
accuracies of 91.4% and 87.3%, respectively, aligning with prior research findings. In conclusion, the proposed
framework yields HAR models with commendable performance metrics, exhibiting its suitability for integration
into the healthcare services system through AI-driven applications.
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1 Introduction

Human activity recognition (HAR) is a key technology for the surveillance of rehabilitation and
fitness for healthcare applications in smart cities [1,2]. Many emerging HAR methods have been
developed in the areas of signal, image, and video analysis technology due to surveillance in various
dimensions. The technology enabled the automatic recognition of patient’s daily activities, abnormal
gestures, and rehabilitation processes with artificial intelligence (AI) in healthcare applications [3].
Non-image signal analysis is particularly helpful in a healthcare system for privacy concerns. Various
machine learning (ML) models are proposed to improve recognition accuracy significantly, boosting
comprehension of human postures and movements for AI computing. An HAR framework usually
contains four steps, i.e., collecting, preprocessing, featuring, and labeling data segments, to prepare
samples before data training [4].

The base of ML algorithms was assorted with two types: non-iteration and iteration. The non-
iteration-based algorithm classifies multiclass labels of the features based on classification formu-
lations. The support vector machine (SVM) and random forest (RF) with ensemble analysis were
popular in identifying the HAR data in the past decades [5–7]. The iteration-based algorithm drives
the forward and backward iterations in the multiple-layer neural networks (NN) for modeling the
optimal structure. The adaptive neural fuzzy inference system (ANFIS), which combines an artificial
neural network (ANN) and a fuzzy inference system (FIS), is a typical method [8,9]. In the last decade,
the convolutional neural network (CNN) initiatively filtered delicate features for deeply learning data
segments and became an import subset of ML methods [10,11]. The ANFIS, SVM, RF, and CNN
algorithms, which were sequentially invented in the past four decades, could be integrated with AI
computing and data identification for the HAR applications.

Many open databases help train various ML models to improve the modern HAR technique.
The UCI-HAR was a well-known open database measuring thirty subjects for HAR modeling [12].
With default design, measurement data of twenty-one and nine subjects were arranged for training
and testing, respectively. Each subject wore a smartphone on the waist and executed six activities. The
datasets also include 561 feature variables in time and frequency domains to download for learning.
The MHEALTH was also a popular open database that offers the measurement of twelve activities
by locating the sensors, including accelerometers, gyroscopes, and magnetometers, on the subject’s
chest, left ankle, and right arm in high-performance modeling for complex-classes HAR [13]. The
study recruited ten subjects wearing three sensors on the chest, left ankle, and right-lower arm to
collect signals of acceleration, angular velocity, and magnetic field along three axes. In addition, the
WISDM database measured eighteen lifestyle activities of fifty-one subjects with the accelerometers
and gyroscopes of smartwatches and smartphones, which was challenging for HAR applications [14].
The raw data could be converted to diverse features for machine learning.

In general, the ML methods require preparing features for data training. An efficient featuring
process can improve the efficacy of the ML models. The conventional ML methods requested massive
features to enhance the model’s recognition capability, but redundant features increased the overall
computational complexity [15,16]. A recursive feature elimination (RFE) method was suggested to
explore the most relevant features for recognition [17]. Recently, the deep learning (DL) technique
has been known to automatically discover features with high performance in HAR. In recent years,
numerous DL methods have been explored to accomplish various HAR approaches [18]. The advanced
DL methods, such as CNN, could initiatively filter possible features via convolutional operation in the
network layers, but degradation occurred in the deep layers. The squeeze-and-excitation (SE) block and
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residual blocks derived from the CNN were advised to avoid degradation [19,20]. The hybrid CNNs
became a strategy to improve the model’s effectiveness.

In this study, we contributed a coupling analysis framework to design proposed HAR models
with an efficient machine learning process using three open databases. We first applied the UCI-HAR
to build multiple ML and DL models based on ANFIS, SVM, RF, and hybrid CNNs for coupling
analysis. The MHEALTH was further employed to repeat the modeling process for comparison.
Finally, the WISDM was applied to application to approve the framework’s robustness and versatility.
In this article, the framework was designed in the methods section, followed by the results and
discussions sections, and then a conclusion was addressed in the last section.

2 Methods

This study engaged the UCI-HAR to train the proposed models and applied the MHEALTH
for comparative modeling. Besides the raw measured signals, at most, 561 feature variables in time
and frequency domains can also be downloaded on the UCI-HAR website for machine learning. The
functions used to derive UCI-HAR’s features were referred to convert MHEALTH’s raw signals to the
possible features. In this study, the “fitcecoc” and “anfis” functions, built-in MATLABTM (license no.
40660563) toolbox, were employed to drive the SVM, RF, and ANFIS methods, respectively, for ML-
based models. Python’s “tensorflow” library was also applied to establish a DL-based model using the
hybrid CNNs method.

2.1 UCI-HAR Open Dataset

The UCI-HAR project recruited thirty subjects wearing smartphones on their waists to exercise
six activities. According to the downloaded data, 21 subjects were arranged for training in ML, while
the other 9 subjects were for testing (i.e., train-test ratio is 7:3). We denoted the segments of walking,
walking upstairs, walking downstairs, sitting, standing, and laying activities by labels: {walk, wu,
wd, sit, sta, lay}, in which the number of training and testing datasets were {1226, 1073, 986, 1286,
1374, 1407} and {496, 471, 420, 491, 532, 537}, respectively. Due to the experiment, an accelerometer
and a gyroscope embedded in the smartphone could collect signals of acceleration, acceleration with
gravity, and angular velocity. Each physical quantity contains x, y, and z axial components parallel to
the human body’s up-down, left-right, and front-rear directions. The raw signals were measured at a
frequency of 50 Hz. All data segments were processed by a Butterworth low-pass filter with a cutoff
frequency 0.3 Hz to remove noises. Each segment sampled by a sliding window of 128 timestamps
with 50% overlap was converted to analytical features in time and frequency domains, as shown in
Table 1. The features were transformed into 561 potential features, as referred to in Table S1, for
machine learning, while the sample segments of raw signals tBodyAcc-XYZ, tGravityAcc-XYZ, and
tBodyGyro-XYZ were applied for DL.

Table 1: Analytical features in time and frequency domains provided by the UCI-HAR [12]

Feature Description

tBodyAcc-XYZ Body acceleration in three axes
tGravityAcc-XYZ Body acceleration with gravity in three axes
tBodyAccJerk-XYZ Jerk of body acceleration in three axes

(Continued)
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Table 1 (continued)

Feature Description

tBodyGyro-XYZ Body angular velocity in three axes
tBodyGyroJerk-XYZ Jerk of body angular velocity in three axes
tBodyAccMag Magnitude of body acceleration
tGravityAccMag Magnitude of body acceleration with gravity
tBodyAccJerkMag Magnitude of jerk of body acceleration
tBodyGyroMag Magnitude of body angular velocity
tBodyGyroJerkMag Magnitude of jerk of body angular velocity
fBodyAcc-XYZ FFT-based body acceleration in three axes
fBodyAccJerk-XYZ Jerk of FFT-based body acceleration in three axes
fBodyGyro-XYZ FFT-based body angular velocity in three axes
fBodyAccMag Magnitude of FFT-based body acceleration
fBodyAccJerkMag Magnitude of jerk of FFT-based body acceleration
fBodyGyroMag Magnitude of body angular velocity
fBodyGyroJerkMag Magnitude of jerk of body angular velocity

Note: The prefix ‘t’ indicates time domain signals; the prefix ‘f ’ indicates frequency domain signals; XYZ means signal
components in three axes; FFT means signals through fast Fourier transform; Jerk means the rate of signals changed over time.

2.2 Classic Learning Algorithms

For comparison, we generated analytical models based on four conventional ML and DL
algorithms that were the most representative methods for each decade in the past 40 years. The
algorithms for the proposed models are briefly addressed below for the article’s integrity. Their
parameters are shown in Table 2, and the DL model’s architecture is illustrated in Fig. 1.

Table 2: Machine learning modules and primary control parameters

ML-based model by MATLABTM

Model Function Parameter

SVM templateSVM Kernel: linear function, offset = 0
Optimization routine: ‘SMO’
Tolerance for gradient difference: 1e−3;
standardize: true

fitcecoc Coding design: ‘onevsone’
RF templateTree Decision tree type: ‘classification’

Maximal number of decision splits: 10
Minimum sample leaf size: 20
Minimum observations per branch node:
10
Maximum category levels in split node: 10

(Continued)
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Table 2 (continued)

ML-based model by MATLABTM

Model Function Parameter

templateEnsemble Ensemble aggregation method: ‘bag’
Number of ensemble learning cycles: 100

fitcecoc Coding design: ‘onevsone’
ANFIS genfisOptions Clustering method: ‘FCMClustering’, no.

of clusters: 12
Method of clustering distance: ‘euclidean’
Exponent for the fuzzy partition matrix:
1.1
Maximum iterations: 100

anfisOptions Maximum training epoch: 300
DL-based model: 1dCNN (hybrid convolution neural network) by Python’s “tensorflow”
Network Network layer parameters
Base CNN 1st convolution: kernel size = 3, groups = n, filters = n ∗ 5, activation = LR,

zero padding
2nd convolution: kernel size = 3, groups = n, filters = n ∗ 10, activation = LR,
zero padding
3rd convolution: kernel size = 3, groups = n ∗ 2, filters = n ∗ 8, activation =
LR, zero padding
4th convolution: kernel size = 3, groups = n, filters = n ∗ 10, activation = LR,
zero padding
1st dense: unit = 128, activation = softmax
2nd dense: unit = number of labels, activation = softmax
Notes: n = no. of convolution groups; LR = Leaky ReLU (α = 0.3)

SE block 1st dense: unit = 4, activation = ReLU
2nd dense: unit = the number of channels for input data, activation = sigmoid

Residual
block

1st convolution: kernel size = 3, groups = n ∗ m1, filters = n ∗ m2, activation =
LR
2nd convolution: kernel size = 3, groups = n ∗ m1, filters = number of channels,
activation = LR (α = 0.3)
Notes: n = no. of convolution groups; m1, m2 are adjustable integer; LR =
Leaky ReLU

Global Batch size: 128 for UCI-HAR, 16 for MHEALTH
network Group size: n (=3); epoch: 300; optimizer: adam optimizer

Loss function: categorical cross entropy; learning rate: start at 10−3 until 10−6
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Hybrid Convolution Neural Networks
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Figure 1: Architecture of one-dimensional convolutional neural network (1dCNN) model

A. Support vector machine (SVM)—The SVM method mathematically includes the allowable
error variables in the objective functions, which presents the buffer range of partition boundaries in
the high-dimensional domain. The method engages the error minimization principle to maximize the
boundary between the two classes. The support vector on the boundary yields a formula to separate the
classes for recognition. The computation applying a subset of training points to the support vectors
can perform effective decision functions in high-dimensional spaces with efficient memory [21]. In
computing, various kernel functions are recruited to simplify the transforming process of mapping
features from complex boundaries to linear ones. This study adopted a linear kernel provided by
“templateSVM” of MATLAB’s machine learning template for setting up the “fitcecoc” function. The
primary parameters are shown in Table 2.

B. Random forest (RF)—The method of random forest (RF) drives ensemble learning sets by
conducting multiple decision trees, which calculate information gains of conditional nodes (i.e., the
branches of trees) to judge the possibility of class events and the most potential category is output for
prediction [22]. In a stable RF model, the various learning sets can fit parallel without dependencies,
and multiple weak learners can be integrated into a strong learner. The calculation involves weight
regression for the loss function to improve the gradient of features and optimize weak learning
in the model. A bootstrap aggregating (Bag) algorithm randomly generates subset trees for each
sampling and averages the prediction results to enhance the RF model. The MATLAB’s templates,
“templateTree” and “templateEnsemble”, were ensemble for setting up the “fitcecoc” function to
create a strong learner by iteratively adding weak learners in this study. The primary parameters for
RF’s “trees” are shown in Table 2.

C. Adaptive neural fuzzy inference system (ANFIS)—The ANFIS implements Sugeno-type FIS
that uses a crisp set as the membership function (MF) of output classes for optimization and
adaptability while applying the geometrical MFs due to data distribution pattern for the input features
[23]. The crisp set consists of dependent coefficients of linear functions that will be adjusted with
input features’ MFs for the neural network’s iterative fuzzification and defuzzification processes. The
network contains clear control rules of fuzzy logic in the hidden layer, which can initialize proper
parameters and train the parameters in iteration according to the rules [24]. However, MATLAB’s
toolbox allows about 256 fuzzy logic rules for computing capacity at most, which limits the number
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of input features. We, therefore, employed fuzzy C-means clustering (FCM) methods [25] to identify
the MFs of the FIS by organizing data samples into clusters for analysis. The FCM drives the number
of clusters, the clustering exponent, and the distance metric in the input space to identify the premise
MFs of the FIS structure for processing ANFIS. According to the assigned numbers of clusters, the
clustering exponent and the distance metric compute the amount of fuzzy overlap between clusters, in
which larger values indicate a greater degree of overlap, to partition the input space of features. Then,
the clusters can be defined by selected MFs and the fuzzy logic rules can be created for all inputs. For
an example of the m input features, each input can contain n clusters, and a Gauss-type MF defines
each cluster; then, the FIS contains n fuzzy logic rules in which each rule as Eq. (1) can control m
conditions with respect to the correspondent MFs of inputs for the output cluster. Due to MATLAB’s
“anfis” function, we initialized FIS through “genfisOptions” and set up ANFIS’s learning epoch by
“anfisOptions”. The important parameters are revealed in Table 2.

If [inputi] is
[
MFi−j

]
and . . . Then [output] is

[
cluster − outputj

]
; i = 1 ∼ m, j = 1 ∼ n (1)

D. Hybrid convolution neural networks (CNNs)—We generated a one-dimensional CNN
(1dCNN) model with hybrid CNNs, which involved SE and residual blocks in the CNN layers as
shown in Fig. 1, to compare the efficiency of DL and ML methods in HAR. The necessary coefficients
for modeling are shown in Table 2. Each input contains the same quantity of fragments for the DL
methods, which differs from the feature data format for the ML methods. In the convolution layer,
the CNN method drives different kernels for convolution and pooling operations that filter all inputs
to extract possible features. The feature maps are integrated into a concatenate layer for advanced
calculation in subsequent network layers. The “Conv1d” functions of Python’s “tensorflow” package
were applied to the model for 1-D convolutions. The kernel’s initial weight was randomly assigned by
the uniform Xavier initialization method [26,27]. Due to the architecture, we also grouped three-axis
components of each physical quantity (e.g., accelerations) for parallel convolution [28]. The proposed
model comprises two convolutional layers with a max pooling layer to construct a prototype of HAR
for training data. An activation function “Leaky ReLU” in Eq. (2) was used in the convolutional layer,
where a weight coefficient α = 0.3 in the study.{

f (x) = x, if x > 0
f (x) = αx, if x ≤ 0 (2)

The model was superposed by a batch normalization (BN) layer and SE block, which can
normalize the fragment in a standard normal distribution and consistently adjust the weights of feature
maps in the training process, respectively [29]. We added two residual blocks to avoid degradation and
a global average pooling layer to produce the feature maps before full connection. We applied the
activation function “softmax,” as shown in Eq. (3), in the fully connected layers to attain the label’s
probability. The label with the highest probability value was recognized as the output.

softmax (x) = exi∑n

j=1 exj
; i = 1, 2, 3, . . . , n (3)

E. Recursive feature elimination (RFE)—The RFE method recursively estimates smaller sets of
features to rank weights of the features and selects the optimal features for modeling [15]. To discover
the number of optimal features, a cross-validation method is repeatedly combined with RFE’s ML-
based estimator to score different feature subsets until the features with the best scores are collected
[30]. With the estimator, the selected features are ranked by the features’ importance, and a small
number of features are eliminated recursively per loop. The RFE process is detailed in Fig. 2. We
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employed the RFE and support vector classifier (SVC) from the Python-based scikit-learn library
(known as the “sklearn” package) to explore the potential features for modeling in this study. The
linear-kernel SVC is an SVM estimator of RFE for cross-validation. In this study, we applied RFE
to compare the importance of features for each model, particularly for the ANFIS models that were
restricted by the number of input features and fuzzy rules [31].
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Figure 2: Coupling analysis framework including RFE process and three stages for evaluating the ML
and DL models trained by UCI-HAR datasets

2.3 Coupling Analysis of Multiple Models

In the study, the UCI-HAR datasets, including manually selected features, were primarily substi-
tuted into the ML and DL models mentioned above for three-stage coupling analysis. The analysis
flow chart is shown in Fig. 2. We first substituted all 561 features into the SVM and RF models for
data training. The stage would verify the modeling with the previous studies. Then, we applied the
RFE combining SVM estimator (RFE+SVM) to screen the optimal features and substituted them
into proposed ML models (i.e., SVM, RF, ANFIS) for data training. We selected the groups of 75,
100, 110, 120, 130, 140, and 150 features, as referred in Table S2, and adopted the groups of 100,
110, and 120 features for satisfying ANFIS’s restrictions, including consuming time and computing
capacity to conform the available number of features for model’s performance. Finally, we substituted
the samples of original signal segments into the 1dCNN model for deep learning. The stages would
discover the computation effectiveness of ML modeling, which selected features manually, and DL
modeling, which extracted features automatically.
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2.4 Comparative Modeling with MHEALTH and WISDM Open Datasets

Furthermore, the MHEALTH open dataset was used for comparative modeling with the
UCI-HAR, while the WISDM open dataset was used to approve the modeling’ applicability. The
MHEALTH measured three sensor nodes, different from one sensor on the waist for UCI-HAR, on
the chest, ankle, and arm to collect three-axial vectors of acceleration, angular velocity, and magnetic
field. The raw signals contained seven time-domain analytical features that FFT could convert to
frequency-domain features. Due to the measured datasets, a raw segment with a sampling frequency
of 50 Hz contained 128 timestamps with 50% overlap. Referring to UCI-HAR’s featuring and RFE
process, we selected eight functions, including “mean”, “std”, “mad”, “max”, “min”, “energy”, “iqr”,
and “kurtosis”, which are denoted in Table S3, to derive the features from each segment. Based on
these functions, the analytical features in each domain could derive 168 features for modeling. Twelve
activities: {standing, sitting, laying, walking, climbing stairs, bending waist, raising arm, crouching
knee, cycling, jogging, running, jumping front and back} were labeled by {sta, sit, lay, walk, cs, bw, ra,
ck, cycl, jog, run, jump} that contain the amount of data {480, 480, 480, 480, 480, 444, 460, 460, 480,
480, 480, 162}, respectively.

We then substituted the WISDM into the modeling, using 48 three-axis time-domain features
derived by the eight functions above to explore the model’s applicability. The WISDM offered
surveillance for 51 subjects with a smartwatch on hand and a smartphone in pocket to measure 18
lifestyle activities: {walking, jogging, climbing stairs, sitting, standing, typing, brushing teeth, eating
soup, eating chips, eating pasta, drinking from cup, eating sandwich, kicking soccer ball, playing catch
with tennis ball, dribbling basketball, writing, clapping, folding clothes}, which were labeled with prefix
“label” orderly from 0 to 17. The smart phone and watch were embedded with an accelerometer and
gyroscope for measurement. A measured segment contained 128 timestamps but with a frequency of 20
Hz, and 50% overlap between two segments. To simplify complicated data combination for application,
we categorized four segment groups in comparison: (a) smartphone’s accelerometer and gyroscope, (b)
smartwatch’s accelerometer and gyroscope, (c) accelerometers of smartphone and smartwatch, and
(d) gyroscope of smartphone and smartwatch. The functions of derived features and the number of
segments corresponding to the activity labels are detailed in Table S3 for reference.

We followed a portion ratio of 7:3 for training vs. testing groups based on label-oriented data
training designed in the MHEALTH and WISDM; i.e., every subject’s dataset could be trained and
tested while the testing group would not be trained. The design could be compared with the UCI-
HAR by subject-oriented analysis (i.e., the subjects whose data were trained would not be tested). The
training and testing processes above repeated the framework, as shown in Fig. 2, to generate the ML
and DL models for coupling analysis. A confusion matrix with indicators, i.e., overall accuracy, recall,
precision, and F1-score in one-vs.-all mode, evaluated the model’s efficacy.

3 Results

Four HAR models based on the methods, including SVM, RF, ANFIS, and hybrid CNNs, were
trained by two databases for coupling analyses. The primary results regarding the UCI-HAR are
demonstrated in the first three sub-sections. Consequently, the approaches regarding the comparative
modeling due to the MHEALTH are exhibited for a comprehensive discussion.

3.1 SVM and RF Models Trained by UCI-HAR’s 561 Features

The SVM and RF models trained by 561 features could reach overall accuracies of 95.8% and
91.7%, respectively. As shown in Table 3, the confusion matrixes reveal that the SVM model could
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recognize more activity patterns than the RF model. The SVM model could completely recognize a
total of 400 and 537 walking downstairs and laying patterns (i.e., “wd” and “lay”), respectively; while
the RF model worked excellently for the laying pattern. The past study approved the SVM’s results
[12] using the multiclass SVM for UCI-HAR with approaches of overall accuracy at 96% for 2947 test
patterns.

Table 3: Confusion matrix of SVM and RF models trained by UCI-HAR’s 561 features

SVM model, accuracy = 0.958 RF model, accuracy = 0.917

T\P walk wu wd sit sta lay
walk 494 2 0 0 0 0

wu 16 454 0 0 1 0

wd 7 13 400 0 0 0

sit 0 0 0 432 59 0

sta 0 0 0 25 507 0

lay 0 0 0 0 0 537

rec. 0.996 0.964 0.952 0.88 0.953 1

prec. 0.956 0.968 1 0.945 0.894 1

F1 0.975 0.966 0.976 0.911 0.923 1

T\P walk wu wd sit sta lay
walk 468 11 17 0 0 0

wu 46 418 7 0 0 0

wd 27 45 348 0 0 0

sit 0 0 0 437 54 0

sta 0 0 0 39 493 0

lay 0 0 0 0 0 537

rec. 0.944 0.887 0.829 0.89 0.927 1

prec. 0.865 0.882 0.935 0.918 0.901 1

F1 0.903 0.885 0.879 0.904 0.914 1

Note: T\P: True\Prediction; rec.: recall; prec.: precision; F1: F1-score.

3.2 ANFIS, SVM, and RF Models Trained by UCI-HAR’s Optimal Features

The computing capacity of MATLABTM software limited the ANFIS models and could not
contain all features in training. Therefore, we employed the RFE+SVM method to select 100, 110,
and 120 features for training SVM, RF, and ANFIS models. The selected features are referred in
Table S2. As a result, the overall accuracies of SVM, RF, and ANFIS models corresponding to 100
optimal features were 93.9%, 88.8%, and 89.8%, respectively, and that due to 110 and 120 features were
{93.9%, 89.2%, 91.4%}, {94.6%, 89.5%, 90.5%}, respectively. Their confusion matrixes were detailed as
shown in Table 4–parts Tables 4a–4c, in which various models trained by the same features displayed
comparable accuracies between about 89% and 95%.

In general, three ML-based models could achieve an accuracy of over 89% by selected features, yet
the SVM model performed better recognition than the RF and ANFIS models. SVM and RF models
trained with 120 selected features were better than those trained with 100 and 110 features. Due to the
confusion matrix, the laying patterns (i.e., “lay”) exhibit the most recognized activity since all models,
excluding ANFIS by 100 features, could almost identify 537 patterns.

3.3 1dCNN Model by Deep Learning UCI-HAR Datasets

In comparison with previous ML models, we evaluated the proposed DL model 1dCNN, which
was trained by the original datasets of the same subjects but without feature selection. The overall
accuracy reached 92.5% due to the confusion matrix, as shown in Table 5.
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Table 4: Confusion matrix of ML-based models trained by UCI-HAR’s optimal features via
RFE+SVM

Part (a) 100 features Part (b) 110 features

ANFIS model, accuracy = 0.898 ANFIS model, accuracy = 0.914
T\P walk wu wd sit sta lay
walk 470 16 0 0 0 0

wu 44 424 3 0 0 0

wd 0 103 316 1 0 0

sit 0 0 6 414 62 8

sta 0 0 3 25 501 2

lay 0 0 0 0 24 492

rec. 0.967 0.9 0.752 0.845 0.944 0.953

prec. 0.914 0.781 0.963 0.941 0.853 0.98

f1 0.94 0.836 0.845 0.89 0.896 0.967

T\P walk wu wd sit sta lay
walk 487 5 0 0 0 0

wu 42 427 2 0 0 0

wd 1 100 319 0 0 0

sit 0 0 7 420 61 1

sta 0 0 0 26 500 6

lay 0 0 0 0 2 524

rec. 0.99 0.907 0.76 0.859 0.94 0.996

prec. 0.919 0.803 0.973 0.942 0.888 0.987

f1 0.953 0.851 0.853 0.898 0.913 0.991

SVM model, accuracy = 0.939 SVM model, accuracy = 0.939
T\P walk wu wd sit sta lay
walk 472 16 8 0 0 0

wu 39 412 19 0 1 0

wd 4 21 395 0 0 0

sit 0 0 0 435 56 0

sta 0 0 0 17 515 0

lay 0 0 0 0 0 537

rec. 0.952 0.875 0.94 0.886 0.968 1

prec. 0.917 0.918 0.936 0.962 0.9 1

f1 0.934 0.896 0.938 0.923 0.933 1

T\P walk wu wd sit sta lay
walk 484 7 5 0 0 0

wu 42 413 15 0 1 0

wd 6 27 387 0 0 0

sit 0 0 0 425 66 0

sta 0 0 0 12 520 0

lay 0 0 0 0 0 537

rec. 0.976 0.877 0.921 0.866 0.977 1

prec. 0.91 0.924 0.951 0.973 0.886 1

f1 0.942 0.9 0.936 0.916 0.929 1

RF model, accuracy = 0.888 RF model, accuracy = 0.892
T\P walk wu wd sit sta lay
walk 452 34 10 0 0 0

wu 70 391 10 0 0 0

wd 35 54 331 0 0 0

sit 0 0 0 430 61 0

sta 0 0 0 55 477 0

lay 0 0 0 0 0 537

rec. 0.911 0.83 0.788 0.876 0.897 1

prec. 0.811 0.816 0.943 0.887 0.887 1

f1 0.858 0.823 0.859 0.881 0.892 1

T\P walk wu wd sit sta lay
walk 451 29 16 0 0 0

wu 66 396 9 0 0 0

wd 34 49 337 0 0 0

sit 0 0 0 430 61 0

sta 0 0 0 53 479 0

lay 0 0 0 0 0 537

rec. 0.909 0.841 0.802 0.876 0.9 1

prec. 0.819 0.835 0.931 0.89 0.887 1

f1 0.862 0.838 0.862 0.883 0.894 1

(Continued)
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Table 4 (continued)

Part (c) 120 features

ANFIS model, accuracy = 0.905 RF model, accuracy = 0.895

SVM model, accuracy = 0.946

Confusion matrix indicator formulation:
TP: true positive; TN: true negative
FP: false positive; FN: false negative

accuracy = TP + TN
TP + FP + FN + TN

recall = TP
TP + FN

; precision = TP
TP + FP

F1-score = 2
(1/precision) + (1/recall)

Note: T\P: True\Prediction; rec.: recall; prec.: precision; F1: F1-score.

Table 5: Confusion matrix of DL-based models due to UCI-HAR

1dCNN model, accuracy = 0.925

Note: T\P: True\Prediction; rec.: recall; prec.: pre-
cision; F1: F1-score.
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3.4 DL and ML Models Trained by MHEALTH’s Features

Due to previous results, the ANFIS was not suitable for training with numerous features. For
comparative modeling, we used MHEALTH’s original time-domain segments to train the 1dCNN
model and adopted the features through RFE to train the RF, SVM, and ANFIS models. The
indicators evaluated the DL and ML models, i.e., overall accuracy, recall, precision, and F1-score,
as shown in Table 6.

Table 6: Evaluation indicators for 1dCNN, RF, and SVM models due to MHEALTH’s features

1dCNN model, accuracy = 1

labels sta sit lay walk cs bw ra ck cycl jog run jump

recall 1 1 1 1 1 1 1 1 1 1 1 1

precision 1 1 1 1 1 1 1 1 1 1 1 1

F1-score 1 1 1 1 1 1 1 1 1 1 1 1

RF model, accuracy = 0.998
labels sta sit lay walk cs bw ra ck cycl jog run jump

recall 1 1 1 0.993 1 1 1 1 1 1 1 0.969

precision 1 1 1 1 0.994 1 1 1 1 0.986 1 1

F1-score 1 1 1 0.996 0.997 1 1 1 1 0.993 1 0.984

SVM model, accuracy = 0.997
labels sta sit lay walk cs bw ra ck cycl jog run jump

recall 1 1 0.993 1 1 0.992 1 0.993 1 1 1 0.969

precision 1 1 1 1 0.981 1 1 0.993 0.993 1 1 1

F1-score 1 1 0.997 1 0.99 0.996 1 0.993 0.996 1 1 0.984

ANFIS model, accuracy = 0.965
labels sta sit lay walk cs bw ra ck cycl jog run jump

recall 0.98 0.993 1 1 0.814 0.984 0.992 0.978 1 0.971 0.952 0.905

precision 1 0.986 0.986 0.902 0.984 0.907 0.963 1 0.971 0.992 0.959 0.905

F1-score 0.99 0.99 0.993 0.948 0.891 0.944 0.977 0.989 0.985 0.981 0.956 0.905

The 1dCNN model achieved an overall accuracy of 100% for the 12 labels validated by the previous
study [11], i.e., all activities were perfectly recognized. Considering 336 features derived from eight
types of functions in time and frequency domains for training the ML models, the RF and SVM models
reached overall accuracies of 99.8% and 99.7%, respectively. We further explored the performance
using the single-functioned feature to train the SVM model. The accuracies corresponding to {mean,
std, mad, max, min, energy, iqr, kurtosis} were {99.6%, 99.6%, 95.2%, 91.7%, 99.6%, 98.0%, 99.9%,
91.8%}, respectively. We experienced that the features derived by specific functions could reach a good
accuracy over 91.7%. Consequently, we used 84 time-domain features derived by mean, std, min, and
iqr functions, which obtained excellent performance for SVM, to train the ANFIS model and achieved
an accuracy of 96.5%. The results of comparative modeling approved the coupling analysis framework
with proper feature selection.

Each algorithm is applicable in some fields but is probably limited in others. We proposed the
coupling analysis framework that recruited the UCI-HAR and MHEALTH open data to train the
HAR models based on four classic ML and DL methods for comparison. The modeling process could
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concurrently evaluate and provide the comparative models with the best approaches as a reference for
the implementation of AI-enabled healthcare systems.

4 Discussions

This study developed a coupling analysis framework to build the HAR models by exploring the
methods of ANFIS, SVM, RF, and hybrid CNN sequentially the representative techniques for each
decade in the past four decades. The framework can generate suitable models with efficient modeling
process and adapt to AI-enabled applications. After coupling analysis, the efficacies of four HAR
models corresponding to the open databases were compared. The limitations, findings, comparisons,
and applications are discussed below.

4.1 Limitations

We employed MATLAB’s neuro-fuzzy designer toolbox to establish the ANFIS models, which
were limited by the software’s calculation capability. If UCI-HAR’s 561 features for 7532 data pairs
were trained, the array size would be 226.3 GB, which exceeds MATLAB’s maximum preference. The
RFE method was then considered for feature selection to reduce computing resources. In addition, a
DL model usually requires extra GPU to improve computing performance. We therefore added a video
card with chips of NVidia GeForce RTX 2070 plus 8 GB RAM on the desktop computer embedded
with Intel® Core™ i7-7700 CPU @ 3.60 GHz and 64 GB RAM.

4.2 Findings

All of the suggested methods could achieve an overall accuracy of 90%, which is acceptable for
HAR, by selecting the proper features for the ML-based models or designing the network architecture
for the DL-based models. We were interested in evaluating the model’s efficacy.

(1) Evaluating optimal features for improving the model’s efficacy. Proper feature selection could
improve the model’s efficacy in machine learning for clinical applications on disease prediction [32].
With UCI-HAR datasets, we compared the ML-based models trained by three sets of 100, 110, and 120
features, as shown in Table 4 for the study. The SVM, RF, and ANFIS models could attain about 90%
accuracy without using 561 features. The 110 features were enough for ANFIS to obtain acceptable
accuracy (91.4%) with efficient computing resources for the proposed models in the UCI-HAR case.
The SVM model’s best accuracy (94.6%) was only 1.2% to 95.8% of the model trained by 561 features.
For MHEALTH datasets, we experienced poor features, causing SVM’s difficulty separating complex
dimensional spaces during training. With the chosen 336 features, the SVM and RF models achieved
higher than 99% accuracy. Meanwhile, the ANFIS model was improved to reach an accuracy of around
97%.

(2) Evaluating time efficiency of iteration and non-iteration models. From the machine learning
aspect, the non-iterative algorithms benefit from efficient calculation for the non-NN-based models.
In contrast, the iterative algorithms are computationally stable for the NN-based models [33]. For the
UCI-HAR case, the study took about 20–25 s to train non-iterative SVM and RF models with 561
features. In addition, the iterative RFE+SVM method spent 42 min selecting 110 optimal features,
which reduced training time to less than 12 s for SVM and RF models. However, the iterative ANFIS
model required more than 5 h for training in 300 epochs, which initially created the FIS with these
features in clustering by at most 100 iterations. All well-trained models could complete recognition
for a feature set in a few millisecond. For deep learning, the 1dCNN model took about three to four
minutes for data training in 300 epochs. In general, four models can achieve at least 90% of accuracy.
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If the quality of HAR data were good, then the non-iterative algorithms would be suggested to train
the model for efficient, time-consuming tasks. However, when analyzing the complex activities that
caused ambiguous data quality, the iterative algorithms would be helpful to explore proper features to
improve the model’s recognition capability.

(3) Evaluating featuring modes due to DL-based and ML-based models. The DL-based models
were known to extract concealed features in training while the ML models requested selecting possible
features for learning. With UCI-HAR’s features, each model’s average accuracies are shown in Fig. 3
and Table 4. The DL-based 1dCNN model reached an accuracy of about 93%, slightly higher than
the ML-based RF and ANFIS models (approximately 90%) but lower than ML-based SVM models
(about 95%). Our previous study suggested multiple heterogeneous inputs in hybrid CNNs with
hierarchical modeling to reach an accuracy of 96% for UCI-HAR [34]. The recent study proposed a
DL-based model, which coupled optimal features due to data pre-processing with deep convolutional
neural network (DCNN) and long short-term memory (LSTM) methods for data training, could
achieve an overall accuracy of 99.9% for UCI-HAR [35]. Furthermore, the innovative HAR technique
could drive the multi-head CNN with convolution block attention module and LSTM to recognize
multi-level features with the time-sensitive multi-source sensor information [36]. Besides, the advanced
method of fusion features could concatenate the features derived for the conventional ML model with
the DL feature maps in the CNN structure [37]. The studies approved that manual and automatic
operations can help extract appropriate features for training the ML and DL models.

Figure 3: Overall accuracies of the ML and DL models trained by the UCI-HAR database

(4) Evaluating the model’s accuracy according to RFE’s estimator. Redundant features usually
increase dimensional complexity to reduce machine learning effectiveness. The RFE was known to
remain a subset of the most relevant features for a dataset by incorporating the proper ML model as an
estimator to repeatedly classify all features through cross-validation and regression [38]. In regression,
all features were ranked by calculating the importance scores, e.g., information gain; then, the lower-
ranked features standing for the most irrelevant features in each cross-validation epoch could be
eliminated recursively [39]. Machine learning has challenges for HAR in irregular movements implying
specific features of high dimensionality [40]. We were interested in the performance of the selected
features due to RFE’s ML estimators. For the UCI-HAR case, we used RF as RFE’s estimator (i.e.,
RFE+RF) to select features for comparison with RFE+SVM. The optimal features due to RFE+RF,
as referred to in Table S4, were partially different from that of RFE+SVM. The accuracies of the RF
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model due to the feature sets by RFE+RF, as shown in Fig. 4, were approximately 1% better than
the feature sets by RFE+SVM. The accuracies of SVM models due to the 100, 110, and 120 optimal
features of RFE+RF were similar to the feature sets of RFE+SVM. However, the SVM models trained
by 130, 140, and 150 features based on RFE+RF could reach an accuracy of around 96%, the same as
using 561 features. In this case, the SVM models performed with better accuracy than the RF models
due to the features selected by both RFE methods.

Figure 4: Accuracies of the SVM and RF models due to UCI-HAR’s features selected by RFE

(5) Evaluating comparative analyses with UCI-HAR and MHEALTH datasets. The UCI-HAR
study was initially considered a subject-oriented analysis that split the subjects into training and testing
groups (i.e., 7:3) to recognize six labels. For the MHEALTH case that provided few subjects, we
proposed a label-oriented analysis, i.e., split all features of each label into the training and testing
groups randomly, to ensure the model could learn the subject’s habitual motions and a perfect
accuracy (i.e., 100%) was obtained by 1dCNN. If the MHEALTH trained the 1dCNN model with
subject-oriented analysis (i.e., 7 subjects for training and 3 subjects for testing), the overall accuracy
was 0.9. With the same analysis for the SVM and RF models, the accuracies due to MHEALTH’s
selected features were 0.878 and 0.953, respectively. Therefore, we adopted label-oriented analysis for
the 1dCNN modeling with UCI-HAR. The overall accuracy was improved to 0.979. Similarly, the
accuracies of the ANFIS, SVM, and RF models trained by the 100 optimal features were increased to
0.954, 0.975, and 0.963, respectively, as shown in Table S5.

4.3 Comparisons

We initially considered merging the UCI-HAR and MHEALTH datasets labeled the same
activities for advanced analysis. However, the collected datasets of the two projects could not be
unified since their subjects wore the sensors at different locations. The models trained by the UCI-
HAR and MHEALTH datasets could not identify each other’s features. For comparing various
data measurements, we considered the subject-and label-oriented analyses for the modeling with
both datasets. In comparison, the ANFIS model provides adaptive interpretation capabilities to infer
complex patterns for nonlinear relationships, but it remains a challenge in computation for the curse
of dimensionality [41]. The SVM model benefits from calculating high-dimensional data but is quite
sensitive to noise and outliers. In contrast, the RF model can compute various data types and eliminate
outliers and missing values. Still, it is unsuitable for inferring a variable’s significance [42]. The CNN
model automatically filters underlying features to deliver high accuracy in recognition tasks but



CMC, 2024, vol.79, no.3 3799

requires more hardware capacity for large network size and complexity [43]. In practice, every learning
algorithm is available for implementation in a relatively suitable field to perform good results. We
suggested a personalized healthcare program for the HAR applications that can collect universalized
datasets from the subjects to ensure reliable HAR quality. The users can choose the appropriate model
based on the requirement level.

4.4 Applications

We finally evaluated the framework’s robustness and versatility by applying the proposed coupling
analysis to a WISDM database, which offered lifestyle surveillance for 51 subjects with a smartwatch
on hand and a smartphone in pocket to measure 18 activities. Our approaches, as shown in Table S6,
yielded 91.4% and 87.3% accuracy for the 1dCNN and RF models, respectively, trained by the datasets
due to the phone’s and watch’s accelerometers; conversely, 83.1% and 72.4% for the gyroscopes. The
framework’s robustness was confirmed by a recent study indicating that DL-based convolutional
LSTM and ML-based RF models achieved accuracies of 84.1% and 61.1% for the smartwatch,
respectively, as well as 84.9% and 75.4% for the smartphone [44].

The framework would be produced as the modular package via Python’s “Model.save” func-
tionality or MATLAB’s “library compiler” toolbox. The packages can be adapted to the artificial
intelligence of things (AIoT) system developed in our previous study for physiotherapy programs
to track rehabilitation motions [45]. Due to an exercise guideline for rehabilitation management in
healthcare services, the patient used to rehab the injured limbs with simple actions. The modeling
with label-oriented analysis that trains a personalized model to recognize the subject’s activities can be
practically utilized to track whether the patient obeys the guideline. For example, the subject can easily
wear bracelets to collect signals of specified rehab exercises. The personal HAR model of a surveillance
system can be pre-trained within the framework. Then, the exercise labels can be quickly recognized,
and feedback can be given when receiving the signals. The results can be displayed on the real-time
dashboard for advanced healthcare management.

The above discussions revealed four AI-available HAR models in detail for data training on
the classic ML and DL methods. The well-trained models could accomplish recognition for a set of
hundred features around a few milliseconds. The performance metrics were compared with previous
studies, as shown in Table S7. Past studies have usually applied wearable sensors for HAR applications
in daily activity, self-harming, sleep management, and physical manipulation [46]. Based on the
advantage of the coupling analysis process in testing three HAR open databases, the framework can
discover proper features for the ML methods and involve effective layers in the DL structures for
the diverse HAR models with adaptability to the above applications in the real world. The process
can also derive the analytical features with comprehensive data preprocessing and training due to
the datasets for reproducing the HAR models with computational efficiency. The proposed models
were expandable for AI-enabled health promotion and management, e.g., incorporating AIoT in
rehabilitation and self-fitness programs to utilize the HAR functionality for an advanced surveillance
and healthcare system.

5 Conclusion

A coupling analysis framework of multiple HAR models investigated the ML and DL methods
with the proper featuring process to attain good performance. The UCI-HAR was first employed to
train the proposed models through the conventional ML and DL algorithms, including SVM, RF,
ANFIS, and 1dCNN. Besides, the RFE method was applied to eliminate the features recursively from
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the datasets and retain the optimal features for data training. The MHEALTH was then recruited
to follow the modeling process for comparison. The WISDM was finally applied to approve the
framework’s robustness and versatility.

For the UCI-HAR, the SVM and RF models achieved accuracy at about 95% and 90%,
respectively, with efficient computing time. The ANFIS model restricted to the number of fuzzy logic
rules could reach 91% with a proper clustering process and RFE operations. Compared with the ML-
based model, the 1dCNN model stably filtered the raw datasets through convolution operations to
perform an accuracy of around 93%. Furthermore, the MHEALTH datasets were recruited using the
same process to train the ML and DL models for comparison. With RFE, 336 features were adopted
for ML-based modeling, in which the accuracy of SVM and RF models could achieve more than
99%. By selecting the 84 time-domain features, the ANFIS model could reach an accuracy of 96.5%.
The DL-based 1dCNN model could perform a perfect accuracy of 100%. The comparative modeling
consequently approved the feasibility of the proposed coupling analysis framework. Finally, for the
WISDM, the ML-based and DL-based models could reach 87.3% and 91.4% accuracy, respectively,
due to data measured by the accelerometers of the smartphone and smartwatch.

In conclusion, the proposed HAR models, which performed well, were suitable for AI-enabled
applications. We finally contributed a coupling analysis framework with the computing processes of
four HAR models based on classic machine learning methods. The analysis is flexible in exploring
more novel datasets, which measure complex signals, images, or videos in various dimensions, for
creating diverse HAR models in the extended study. The model can be modularly adapted to AI-
enabled home healthcare services for health management by tracking daily activity, self-harming,
physical manipulation, etc. The framework will be integrated with emerging technologies in the future,
e.g., joining artificial intelligence of things (AIoT) with personalized HAR functionality on smart
medicine, self-fitness, and rehabilitation programs for health promotion challenges.
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