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ABSTRACT

With the continuous advancement of China’s “peak carbon dioxide emissions and Carbon Neutrality” process, the
proportion of wind power is increasing. In the current research, aiming at the problem that the forecasting model is
outdated due to the continuous updating of wind power data, a short-term wind power forecasting algorithm based
on Incremental Learning-Bagging Deep Hybrid Kernel Extreme Learning Machine (IL-Bagging-DHKELM) error
affinity propagation cluster analysis is proposed. The algorithm effectively combines deep hybrid kernel extreme
learning machine (DHKELM) with incremental learning (IL). Firstly, an initial wind power prediction model
is trained using the Bagging-DHKELM model. Secondly, Euclidean morphological distance affinity propagation
AP clustering algorithm is used to cluster and analyze the prediction error of wind power obtained from the
initial training model. Finally, the correlation between wind power prediction errors and Numerical Weather
Prediction (NWP) data is introduced as incremental updates to the initial wind power prediction model. During
the incremental learning process, multiple error performance indicators are used to measure the overall model
performance, thereby enabling incremental updates of wind power models. Practical examples show the method
proposed in this article reduces the root mean square error of the initial model by 1.9 percentage points, indicating
that this method can be better adapted to the current scenario of the continuous increase in wind power penetration
rate. The accuracy and precision of wind power generation prediction are effectively improved through the method.

KEYWORDS
Short-term wind power prediction; deep hybrid kernel extreme learning machine; incremental learning; error
clustering

1 Introduction

With global climate change, the increase of energy consumption, deepening of electric energy sub-
stitution and the continuous improvement of electrification level, wind power forecasting technology
has been widely used, which has significantly promoting the consumption of wind power [1]. Moreover,
As the continuous improvement of wind power permeability, it is necessary to improve the accuracy
of wind power forecasting under the constraint of uncertainty tolerance of power system [2].

In terms of wind power prediction methods, the mainstream AI-based methods have been
extensively studied [3]. Among these, there are applications based on deep learning and machine
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learning [4,5]. Zhou et al. [6] proposed an implementation of ultra-short-term offshore wind power
prediction using an improved long-term recurrent convolutional neural network (LRCN). However,
the study does not consider the influence of the operating conditions of the unit on wind power output.
Chang et al. [7] proposed an ultra-short-term wind power prediction method based on completing
ensemble empirical mode decomposition with adaptive noise (CEEMDAN), permutation entropy
(PE), wavelet packet decomposition (WPD), and multi-objective optimization. Improved wind power
prediction performance of ETSSA-LSTM model. Most short-term forecasting models focus only
on the correlation between a numerical weather prediction (NWP) and wind power, ignoring the
temporal autocorrelation of wind power. Considering Li et al. [8] proposed a short-term wind power
combined prediction model that integrates bidirectional LSTM (Bi-LSTM) and Gaussian kernel
(GKs) continuous conditional random fields (CCRF). However, with the rapidly development of
machine learning and artificial intelligence algorithms, many traditional learning algorithms have
become difficult to adapt to the current application needs of wind power prediction [9,10]. However,
most of the learning algorithms used in the above literature adopt batch learning, which has the
problem of terminating its own learning process after the model training is completed, making it
impossible to correct the model [11]. However, in practical applications, sample data is not obtained at
once, which needs to be collected continuously [12,13]. And with the development of big data, higher
requirements have been put forward for data storage space, so it is necessary to continuously update
and correct prediction models to improve their generalization ability.

One of the hot topics in current research is considering what experience to use to update the
model. Pan et al. [14] proposed using an incremental update mechanism based on hedging algorithms
and online learning for optimizing and iterating wind power prediction models. Ye et al. [15] proposed
utilizing swing window segmentation for analyzing wind power prediction errors and achieve model
correction. Song et al. [16] proposed a gradient transfer learning strategy that effectively solves the
problem of insufficient historical data and feature transfer difficulties faced by new wind farms in
power prediction. However, the above literature is correcting the probability characteristics of model
prediction errors. The correlation between wind power and meteorology is extremely strong [17].
Therefore, on the basis of avoiding inherent errors, the correlation between meteorological factors
and wind power prediction errors is also one of the factors that cannot be ignored [18]. However,
the correlation between wind power prediction errors and weather has not been deeply studied as an
experience for model updating.

Therefore, based on the above analysis, this article proposes an IL-Bagging-DHKELM short-term
wind power prediction algorithm, which is underpinned by error affinity propagation (AP) clustering
analysis.

1) Considering the correlation between wind power prediction error and NWP. Then according
to the weather process, the error classification is realized by AP clustering based on Euclidean
morphological distance.

2) Incremental learning strategy is adopted as the overall framework of the prediction model,
and the actual wind power corresponding to different error categories is used as increments to
realize the effective combination of artificial experience and machine learning.

3) The purpose of this paper is to realize the comprehensive application of deep learning and
integrated learning strategies with DHKELM model as the basic model and Bagging as the
framework of integrated strategy.

Practical case analysis shows that the method proposed in this article can effectively improve
the accuracy of short-term wind power prediction. The remainder of this paper is organized as
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follows: Section 2 describes the framework of the proposed algorithm. The experimental design and
details of the proposed algorithm are elaborated in Sections 3–5, respectively. Section 6 describes the
experimental results and analyses. Finally, Section 7 details the conclusions.

2 Description of Research Methods

The short-term wind power prediction method based on the correlation characteristics of meteo-
rological information and prediction errors proposed in this paper has the following specific research
ideas: Firstly, the initial prediction error layer is established. Based on Bagging-DHKELM model, the
wind power data of the first year and the corresponding NWP data are used as the training set for
training, and then the initial prediction model is obtained. In addition, the wind power in the second
year is predicted according to the initial forecasting model, and the prediction error of wind power
in the second year based on the initial Bagging-DHKELM forecasting model is obtained. Secondly,
the prediction error classification layer is established. The wind power prediction error obtained in
the initial prediction error layer is clustered based on Euclidean morphological distance AP, and the
corresponding NWP data is labeled by the error classification results. Furthermore, the incremental
update layer is established. The actual power and corresponding NWP data under different error
classes are used as increments to realize the Incremental learning of different Bagging-DHKELM
prediction models. Finally, the model prediction layer is established. The NWP data of the test set is
classified and analyzed, and input into the corresponding incremental learning model. The obtained
prediction results are spliced in the time series to obtain the final wind power prediction results. The
overall research ideas are shown in Fig. 1.

3 Bagging-DHKELM Initial Wind Power Prediction Model

In this paper, the ensemble learning strategy is adopted as the framework for constructing the
initial model, that mainly combines multiple base models into an ensemble model. Since individual
learners may have their own defects, multiple models can comprehensively integrate the performance
of multiple learners and have more comprehensive and robust performance. Different application
scenarios can offer solutions using various combination strategies, and most ensemble models can
solve problems that cannot be solved by individual learners.

Typically, the establishment of set model requires two stages, including basic model generation
and set. There are significant differences in performance between different methods used to combine
integrated models.

In the selection of base models, the DHKELM network among deep learning networks is selected
as the basic model. Kernel Extreme Learning Machine (KELM) is a single hidden layer feedforward
neural network based on kernel function. As the weights and deviations of hidden layers are randomly
generated in extreme learning machines, the output may have collinearity problems. This leads to
the decrease of algorithm accuracy. The introduction of kernel function can effectively overcome
this randomness [19]. The kernel function plays an important role affecting the performance of
KELM. A single kernel function is difficult to fully learn wind power historical data with nonlinear
characteristics. Using different kernel functions is an effective way to improve the performance of
prediction models. Considering that wavelet kernel function has good nonlinear ability, and RBF
kernel function is a typical global function, this paper jointly constructs a mixed kernel function by
combining wavelet kernel function and RBF kernel function. The wavelet kernel function expression
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is as follows:
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where, kwt(xi,xj)—wavelet kernel function, which has good non-linear ability; p1, p2 and p3—wavelet
kernel parameters.
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Figure 1: Full-text idea framework
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The RBF kernel function expression is:
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where, kRBF(xi,xj) —RBF kernel function, which has strong global characteristics; γ —kernel parameter
of RBF. After weighted summation, the hybrid kernel function is shown in Eq. (3).
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where, α—weight coefficient of the mixed kernel function. After introducing kD(xi,xj) kernel function,
the kernel mapping is used to replace the random mapping, and the actual output of HKELM is:⎧⎪⎪⎪⎪⎪⎨
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where, ΩELM represents kernel matrix; M represents regularization coefficient; Y represents target
matrix; I represents identity matrix.

In terms of learning ability and generalization ability, deep learning has strong advantages. Apply
the idea of automatic encoder (AE) to ELM to form an ELM-AE structure, which is similar to an
approximator and used to make the input and output of the network the same [20]. Multiple ELM-
AE stacks form a deep learning network, and then the hybrid kernel mapping is used to replace the
random mapping to form DHKELM. Compared to traditional deep learning algorithms, DHKELM
adopts hierarchical unsupervised training, which can greatly reduce reconstruction error and achieve
similarity between model input and output data. Its model is shown in Fig. 2.

During the training process of the DHKELM network, the input data X is first sent to ELM-AE1
for training, and the output weight β1 is processed and sent to the underlying HKELM. The output
matrix of the first hidden layer is used as the input of the second ELM-AE2, and after training, the
output weight β2 is obtained. The system is sent to the underlying HKELM after processing, and
several ELM-AEs are trained in turn. Finally, multiple cores are used for weighting to form a ΩELM

kernel matrix, which replaces the random matrix HHT to obtain the output of DHKELM [21].

In the selection of integration method of integration model, considering the high demand of wind
power data environment for model response speed, parallel direct integration method and integrates
multiple basic models by Bagging-DHKELM algorithm are selected. Parallel integration method can
effectively shorten the overall training time of model establishment. Moreover, it can be more efficient
when the integrated model is dynamically updated and reconstructed. Fig. 3 is a schematic diagram of
the Bagging-DHKELM Initial Wind Power Prediction Model.

Based on the above Bagging-DHKELM initial wind power prediction model, the wind power data
is trained and predicted to obtain the wind power prediction results for the second year, and the wind
power prediction error for the second year is obtained based on the actual power and predicted power.
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Figure 2: Network structure diagram of DHKELM
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Figure 3: Bagging-DHKELM initial wind power prediction model

4 Cluster Analysis of Power Prediction Errors

This paper employs Affinity Propagation (AP) clustering method based on Euclidean mor-
phological distance for clustering analysis of prediction error results. The AP clustering algorithm
believes that all samples have the potential to become cluster centers. It selects a set of high-quality
samples as cluster centers through “election” [22]. Compared to traditional clustering algorithms,
the AP clustering algorithm can automatically determine the number of clusters and has higher
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stability [23,24]. On this basis, this article introduces Euclidean morphological distance to measure
the similarity of error curves, further improving the clustering effect.

Firstly, concerning the determination of the number of error clusters, this paper opts for the count
of clusters that corresponds to the superior clustering quality as the definitive quantity of error clusters.
In terms of evaluating clustering quality, we select the DB index from the internal evaluation index and
the modified index based on Euclidean morphological distance. The specific formula is as follows:

1) DB indicator.

DB index can comprehensively consider the degree of agglomeration within clusters and the degree
of separation between clusters, and its calculation formula is as follows:
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K
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are the average Euclidean distance between the sample points and the sample

center in cluster Ck and cluster Cj, respectively, indicating the degree of aggregation between samples
within a cluster; d(Ck,Cj) is the average Euclidean distance between the sample centers in cluster Ck

and cluster Cj, indicating the degree of separation between two different clusters.

2) Modified DB (MDB) index based on Euclidean morphological distance.

IMDB = 1
K

K∑
k=1

max
k�=j

demd (Xk) + demd

(
Xj

)
demd

(
Ck, Cj

) (8)

where, demd(Xk) and demd(Xk) are the average Euclidean morphological distances between the sample
points and the sample centers in clusters Ck and Cj; demd(Ck,Cj) is the average Euclidean morphological
distance between the sample centers in clusters Ck and Cj.

Both IDB and IMDB calculate the ratio of within-cluster similarity and between-cluster dissimilarity
between any two clusters, so the lower the value, the higher the clustering quality. When selecting the
optimal number of clusters, it is generally necessary to find its minimum point.

Secondly, in the implementation process of AP clustering algorithm, the similarity matrix S
composed of the distance between pairs of samples is used as the input. The matrix element s(i,j)
is generally a negative value of the Euclidean distance between sequences X and Y . The larger s(i,j),
the more similar sequences X and Y . In this paper, the negative value of the Euclidean morphological
trend distance is taken, as shown in Eq. (9).

s (i, j) = −Demd (X , Y) (9)

In addition to configuring similarity measurement schemes, the AP clustering scheme also controls
the clustering effect of the algorithm by referring to the degree of reference p and damping coefficient
λ. The reference degree is the diagonal element s(i,j) of the similarity matrix. In the algorithm, the final
clustering result can be controlled by adjusting the reference degree. The larger the reference degree, the
smaller the number of clusters. In order to avoid parameter oscillations during the clustering process,
the default value of λ is set to 0.9 in this article.
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5 Incremental Learning of Wind Power Prediction Model

After clustering the errors, corresponding NWP data labels are given according to the error
categories, and different types of NWP data and their corresponding actual wind power prediction
data are used as increments to update the initial model.

When a new incremental set Di is input, the base model of the integrated DHKELM model is
continuously updated to ensure the stability of the integrated model. Integrated incremental learning
usually requires a forgetting mechanism to remove the base model from the integrated model and
add new base models to adapt to new data. In order to avoid catastrophic forgetting of knowledge,
this paper dynamically reconstructs the integrated model Ei and uses eMAPE and R2 as indicators to
achieve the optimization of the weight of the base learner integration. The optimization is solved
using MPA, thus obtaining the optimal integration weight strategy between the base learners and
the final prediction result. The method proposed in this article makes full use of the performance
differences and complementary capabilities between the base learners. When facing different data
sets, it can obtain the optimal integrated strong learner model through simple optimization, which
has better performance than traditional average integration methods. The base learner integration
weight optimization model based on eMAPE and R2 can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(10)

where, eMAPE and R2 represent the average absolute percentage error and coefficient of determination
of the integrated prediction, respectively. The smaller eMAPE and the larger R2 indicate better wind
power prediction performance. Both eMAPE and R2 have a value range of [0, 1]; w1, . . . ,wn represent
the integration weights of DHKELM1,t . . . DHKELMM,t, respectively. T is the number of samples.
lDHKELM1,t, lDHKELM2,t, . . . ,lDHKELMM,t represent the predicted values of each base learner for the t-th sample.
lreal,t is the true value of the t-th wind power sample, and lmean,t is the average value of wind power samples.

For the newly input incremental sample set Di, eMAPE and R2 consider the accuracy of each
DHKELM’s mapping learning for each sample, making the prediction results more objective and
accurate. Additionally, the weight of each DHKELM in the integrated model Ei can be used to
measure its importance in integrated decision-making. The performance of individual base models
in the integrated model is measured using the results of integrated output. The DHKELM with the
largest eMAPE and the smallest R2 value is considered to be the worst-performing base model for the new
incremental set. This allows better performance evaluation of individual DHKELMs in the integrated
model and enables identification and deletion of the worst-performing DHKELM during dynamic
incremental updates. In each incremental step, the entire new incremental set is used as a validation
set for dynamic ensemble reconstruction. As shown in Fig. 4, whenever a new input incremental set
is input, the worst-performing DHKELMr is identified by calculating eMAPE and R2 values, and it is
deleted when eMAPE > 0.03 and R2 < 0.95. At the same time, a new DHKELMDi is trained on the
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incremental set to replace it. By dynamically reconstructing the integrated model using eMAPE and R2

values for each integrated component DHKELM on the new incremental set, model obsolescence can
be effectively avoided. Fig. 4 illustrates a schematic diagram of implementing incremental updates for
models under a class by taking a type of NWP and corresponding actual wind power data as input.

Figure 4: Schematic diagram of dynamic incremental learning of model

The evaluation indicators for prediction error are the standard root mean square error (INRMSE)
and the standard mean absolute error (INMAE), namely⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
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where, pk and pk, pre are the measured and predicted values of wind power at time k, respectively; Cap is
the installed capacity of the wind farm; N is the sample size of the prediction segment. The monthly
standard root mean square error is taken as the evaluation criterion for improving prediction accuracy.

6 Experimental Results and Analysis

The hardware platform configuration of this paper is as follows: The processor is an i9-14900HX,
the memory is 32 GB, the solid-state disk capacity is 1 TB, and the GPU graphics card is an RTX4060.
The simulation software uses Python to build a deep neural network, with Keras as the front end and
TensorFlow as the back end to write a software framework. A calculus analysis was conducted on
10 wind farms in a province in northeastern China, with a total installed capacity of 752.3 MW. The
actual and predicted power for the entire year of 2021 were used as the data samples for the initial
model, while the actual and predicted power from January to November of 2022 was used as the data
samples for incremental model updates. The actual and predicted power for December 2022 were used
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as the test set, with a time resolution of 15 min and a prediction time scale of 1 day before, that is, the
power from 0–24 h of the next day was predicted in the morning of each day.

6.1 Determination of the Number of Error Clusters

Using the AP clustering algorithm with Euclidean morphological distance, a clustering test was
conducted on the error curve. The weight coefficients a and β for the two similarity measurement
schemes were calculated using the entropy weight method, and were taken to be 0.6832 and 0.5275,
respectively. The damping coefficient was set to 0.95, and the corresponding number of clusters was
obtained by adjusting the reference degree p. The optimal number of clusters was selected using the
DB index and MDB index. Fig. 5 shows the relationship between the number of clusters and clustering
indicators.

Figure 5: Relationship between the number of clusters and the clustering validity index

As shown in Fig. 5, when K = 6, both the DB and MDB metrics have the minimum value, so the
errors are clustered into six categories. Fig. 6 shows the effect of error clustering.

(a) (b)

Figure 6: (Continued)
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(c) (d)

(e) (f)

Figure 6: Error clustering effect

From the results shown in Fig. 6, it can be seen that the error in category c is relatively large, and
the error in category f has a large fluctuation. By performing correlation analysis on NWP data under
different error categories, it can be concluded that the average wind speed in NWP under categories c
and f is the largest. This also proves that determining NWP data categories based on error classification
is analyzable.

6.2 Analysis of Short-Term Wind Power Prediction Results

Mark NWP data under the above classification errors, and add the actual power and NWP data
corresponding to each error as increments to the initial model for updating. Therefore, six types of
incremental updating prediction models are produced. In addition, the test set NWP data is matched
with the optimal prediction model based on correlation, and obtain the prediction results as shown in
Fig. 7 and Table 1.

It can be seen from the prediction curve that using DHKELM as the basic model has better
prediction performance than using LSTM as the basic model. Incremental learning is introduced
into the initial set prediction model to improve the prediction accuracy. This can better track the
wind power curve during the peak wind power period. Furthermore, it can be seen from the error
index that compared with the initial model, INMSE and INRMSE of the incremental updating model based
on integrated learning strategy have increased by 1.9 percentage points and 2.1 percentage points,
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respectively. Based on the above analysis, it can be concluded that the prediction model can effectively
improve the accuracy of wind power forecasting.

Figure 7: Results of wind forecasting curve

Table 1: Statistics of wind power prediction and evaluation index of different forecasting models

Predictive model INRMSE/% INMSE/%

Bagging-DHKELM 0.132 0.147
Bagging-LSTM 0.146 0.152
IL-Bagging-DHKELM 0.113 0.126
IL-Bagging-LSTM 0.125 0.134

7 Conclusion

An IL-Bagging-DHKELM short-term wind power prediction model based on error AP clustering
analysis is proposed. An IL-Bagging-DHKELM short-term wind power forecasting model based on
error AP clustering analysis is proposed. That model is suitable for current wind power, and it has
the characteristics of strong randomness and large amount of data. The following conclusions can be
drawn:

1) AP clustering of input meteorological data using error features can deeply explore the influence
of meteorological data on the accuracy of wind power prediction and effectively improve the
accuracy of wind power prediction.

2) In comparison with deep learning or ensemble learning, DHKELM model has more reliable
prediction performance. Through the DHKELM model as the basic model and Bagging as the
ensemble strategy framework, an effective combination of deep learning and ensemble learning
strategies can be achieved.

3) Wind power data and NWP data are used as incremental updates of Bagging DHKELM
model, which effectively solves the problem of data redundancy. More importantly, the model
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parameters are updated, which effectively improves the generalization ability and prediction
efficiency of the model.
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