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ABSTRACT

Deep neural networks have been widely applied to bearing fault diagnosis systems and achieved impressive success
recently. To address the problem that the insufficient fault feature extraction ability of traditional fault diagnosis
methods results in poor diagnosis effect under variable load and noise interference scenarios, a rolling bearing
fault diagnosis model combining Multi-Scale Convolutional Neural Network (MSCNN) and Long Short-Term
Memory (LSTM) fused with attention mechanism is proposed. To adaptively extract the essential spatial feature
information of various sizes, the model creates a multi-scale feature extraction module using the convolutional
neural network (CNN) learning process. The learning capacity of LSTM for time information sequence is then used
to extract the vibration signal’s temporal feature information. Two parallel large and small convolutional kernels
teach the system spatial local features. LSTM gathers temporal global features to thoroughly and painstakingly
mine the vibration signal’s characteristics, thus enhancing model generalization. Lastly, bearing fault diagnosis is
accomplished by using the SoftMax classifier. The experiment outcomes demonstrate that the model can derive
fault properties entirely from the initial vibration signal. It can retain good diagnostic accuracy under variable load
and noise interference and has strong generalization compared to other fault diagnosis models.
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1 Introduction

Rolling element bearing, as a key basic mechanical component widely used in modern industries, is
prone to various forms of defects due to the complex and variant working conditions, which will affect
the efficiency of mechanical equipment, spawn pecuniary losses and even threaten personal safety
[1–4]. Therefore, fault diagnosis of bearing has raised great interest in the academic and industrial
domains [5,6].

As an important branch of machine learning, deep learning technology [7] has broadened its appli-
cation scope recently, such as driverless cars [8,9] computer vision [10,11], etc. Naturally, in bearing
fault diagnosis area, various deep networks, including deep belief networks [12], autoencoder [13],
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recurrent neural networks [14], especially convolutional neural networks [15], etc., have been developed
more and more and achieved remarkable results [16].

A critical component of the safe operation of mechanical equipment is the identification of rolling
bearing faults. The main goal of rolling bearing fault recognition is to find, diagnose, and pinpoint the
source of the vibration data collected from the bearings by using a variety of effective signal processing
algorithms.

While time domain analysis is easy to use and straightforward, the fault information derived
from statistical parameters that are explicitly chosen is not all-inclusive and has limitations. Fault
diagnosis is done using spectral analysis, while frequency domain analysis is based on processed
signals in the frequency domain. Amplitude, power, energy, envelope, and other types of spectra are
frequently utilized. Zhang et al. [17] proposed an improved integrated empirical mode decomposi-
tion hard threshold denoising method, which denoises the collected data and highlights the fault
characteristics of each sensor. Secondly, the Gaussian mixture model was used to analyze single-
source and multi-source faults of sensors at different points. The experimental results indicate that
the Gaussian mixture model and Gaussian mixture model have high diagnostic ability. Chen et al. [18]
employed optimization algorithms to enhance the classification accuracy of support vector machines
by optimizing parameters. The chicken swarm optimization algorithm, a novel global optimization
approach proposed in recent years, is widely utilized for solving optimization problems due to its
clear structure and robust global search capability. Building upon this foundation, we propose a fault
diagnosis method based on the chicken swarm optimization support vector machine model and apply
it to the bearing fault diagnosis field, comparing it with the trained model to determine the fault type.
Han et al. [19] presented a cyclostationary analysis and variational mode decomposition-based defect
diagnosis technique for rolling bearings. Initially, the correlation coefficient index is used to adaptively
determine the suitable mode number of various signals. The determined mode number is then used to
break down the original signals using variational mode decomposition, yielding certain intrinsic mode
components. Second, select the optimal IMF based on the maximum kurtosis criterion. Finally, the
best intrinsic mode components are picked out, and they are given a more thorough envelope spectrum
analysis based on cyclostationary analysis.

While there have been some successes with this kind of approach, its use is severely constrained by
its high reliance on expert knowledge, laborious feature extraction process, and subpar generalization
capabilities; It will also be important for the model to adaptively extract features since, over the course
of the mechanical equipment detection system’s extended operation, the amount of state detection
data will grow.

As artificial intelligence and other technologies have advanced in recent years, deep learning has
been progressively used in the field of fault diagnostics. When it comes to retrieving feature information
that characterizes bearing states from huge amounts of data, deep learning makes up for the drawbacks
of shallow network models. Rather than requiring a manual feature extraction method, the deep
network structure of deep learning may directly extract features from the original vibration signals of
bearings. Inspired by the above research, many researchers are interested in developing deep network-
based artificial intelligence algorithms in bearing fault diagnosis [20–23]. For instance, Lu et al. [24]
presented a deep neural network embedding maximum mean discrepancy for cross-domain bearing
fault identification. Li et al. [25] addressed the bearing fault diagnosis domain shift problem by
minimizing multi-layer and multi-kernel maximum mean discrepancies between two domains. While
the techniques can successfully extract fault feature information, it is challenging to recover temporal
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information from vibration signals when depending just on convolutional structures since vibration
signals have certain temporal features and periodicity.

Numerous research studies have indicated that even though one system consistently exhibits better
performance than another, the combined utilization of both systems has the potential to achieve
superior results [26]. Mwelinde et al. [27] proposed an integrated model based on Hierarchical Fuzzy
Entropy, Convolutional Neural Network and Long Short-Term Memory. The two main components
of the model are fault classification and feature extraction. Furthermore, to improve the computational
efficiency and classification accuracy of the model, an intensity discriminator is integrated into the
convolutional neural network to efficiently extract critical features that represent the actual condition
of the bearing. Therefore, Liao et al. [28] proposed a bearing fault diagnosis method based on CNN-
BiLSTM-Attention. This technique combines a bidirectional long-short-term memory network with a
convolutional neural network. It then adds a dropout mechanism to the BiLSTM network to prevent
overfitting. Finally, it adds an attention mechanism to automatically assign different weights to the
BiLSTM network to enhance its sensitivity and its capacity to understand various fault information.

Even though these techniques show off CNN’s benefits, there are still issues such limited general-
ization, insufficient convolutional kernel scale, trouble adequately extracting deep fault characteristics,
and challenges maintaining excellent performance in the face of heavy noise and fluctuating loads.

Although deep learning techniques have advanced significantly in the field of fault identification
thus far, certain issues remain. Firstly, stacking convolutional layers is typically used to improve
network performance for the problem of challenging extraction of bearing defect characteristics.
However, this increases the spatial complexity of the network and complicates the deployment of the
model. Second, the model’s stability and dependability may suffer if the coupling effect between noise
interference and load variations is ignored. Lastly, it is challenging to acquire real defect samples and
to attain optimal network performance.

To address the problems, the multi-scale fusion module was employed to enhance CNN’s learning
process, successfully extracting the data’s essential fault space feature information. An LSTM network
was combined to create a fusion network model that fully extracted temporal features. This paper
employs long-short-term memory networks to enhance feature extraction efficacy and presents a
fault diagnostic technique based on these networks along with convolutional and long-short-term
memory networks. In this study, multiple techniques are implemented to ensure the model’s complexity
while minimizing the phenomena of excessive fitting, including the addition of a BN layer and a
dropout layer. Ultimately, a completely connected layer completes the bearing status recognition and
categorization process.

2 Theoretical Backgrounds
2.1 Convolutional Neural Network

The convolutional neural network (CNN), a kind of deep neural network with a convolution
structure, has been widely used in many practical applications and achieved impressive performance.
The architecture of CNN is composed of the input layer, convolutional layer, pooling layer, fully
connected layer, and output layer. In general, a convolutional layer consists of multiple kernels. It
convolves the raw input data with kernels and generates features. The output of the layer can be
expressed as:
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After the activation operation, the deep features are flattened into one-dimensional vectors, then
a fully connected layer is utilized to conduct classification. The pooling layer’s primary job is to carry
out down-sampling operations, which clean up the input feature vector’s features to extract the key
attributes. This method’s primary goal is to make neural network parameters less computationally
tricky. By doing so, overfitting issues can be prevented more successfully. But in this paper, global
average pooling is first proposed to replace the fully connected layer to enhance generalization ability.

2.2 Long-Short-Term Memory Network

In 1997, Hochreiter and Schmid Huber proposed long-short-term memory networks (LSTM).
These networks introduced gating units and memory mechanisms to improve feature extraction
capability. This effectively addressed the issue of gradient vanishing and prevented RNN from losing
its capacity to learn new information. Most of RNN’s features are carried over to LSTM. It is superior
to RNN in processing lengthy sequence signal data and has a stronger memory.

As shown in Fig. 1, by adding input, forgetting, and output gates, this model functions as a gated
neural network and processes data. The input gate’s primary function is to evaluate incoming data
and determine how much of it may now be saved to the memory unit; The forgetting gate primarily
regulates the updating and forgetting of data in the memory unit, deciding which historical data should
be forgotten and which data should be kept; in other words, it determines how the previous time
memory unit affected the current time memory unit; The output gate determines how the memory
unit affects the current output value by controlling the LSTM unit’s output at that moment. The
three gate control units that have been introduced work together to store and update data through the
LSTM, and the gate control unit’s hidden layer is fully connected.

The following formula can represent the gate’s output:

ft = σ
(
Wf � [ht−1, Xt] + bf

)
(3)

in the formula, Wf and bf stand for weights and biases; The product of the elements is represented by
the operator; The sigmoid activation function is represented by σ , whose output is 1 when the value is
retained and 0 when it is forgotten.
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Figure 1: Architecture for long-short-term memory network

Two activation functions are employed to ascertain the data kept in the state unit of an LSTM.
The input gate’s sigmoid function determines the information to be updated, and the new information
to be added to the unit state denoted by Ct is determined by the hyperbolic tangent function. The
following is the mathematical description:

it = σ (Wi � [ht−1, Xt] + bi) (4)

Ct = tanh (WC � [ht−1, Xt] + bC) (5)

it = σ (Wi � [ht−1, Xt] + bi) (6)

The input gate’s output is represented by it in the formula; the weights and biases of the input gates
are represented by Wi and bi; the consequences and preferences of the tanh function are represented
by WC and bC, respectively.

Meanwhile, Wf stand for weights, the LSTM unit calculates the output Ot of the output gate using
the following equation:

Ot = σ (WO � [ht−1, Xt] + bO) (7)

Finally, calculate the output ht of the hidden layer unit as follows:

ht = Ot tanh (Ct) (8)

3 Proposed Methods
3.1 Framework of MSCNN-LSTM

An LSTM module plus a CNN module make up the entire model. While conventional CNN
models can extract shape properties from the original bearing vibration signals, they struggle to capture
the temporal elements of the signs, which leads to the loss of essential features in the time series.
With the use of unique gating mechanisms, LSTM can learn temporal aspects of vibration signals and
address problems closely tied to time. In the meantime, multi-scale can reduce superfluous features,
enhance the expression ability of significant characteristics, and dynamically assign weights to input
elements. As a result, it has been suggested to use a rolling bearing fault diagnosis technique based on
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the combination of long short-term memory networks and convolutional neural networks (MSCNN-
LSTM).

This paper presents a method that allows neural networks to determine the rolling bearing health
condition by directly extracting internal feature representations from normalized vibration data. The
MSCNN-LSTM model’s structure is depicted in Fig. 2. Z-score normalization is applied to all samples
before training to standardize dimensions and make further computations easier. A raw time-domain
signal with a length of 1,1024 is the input sample.

Figure 2: Framework of MSCNN-LSTM

Specifically, the model has two modules: A classifier and a feature extractor. The feature extractor
consists of a two-layer LSTM network and a convolutional network made up of two parallel big
convolutional kernels and a tiny convolutional kernel. First, both CNNs get the normalized Z-score
vibration signal simultaneously. In the lower branch, CNN1, Conv_5, and Conv_6 mine low-frequency
data using a 20 ∗ 1 big convolutional kernel. 6 ∗ 1 tiny convolutional kernels are used in the CNN2
upper branch Conv_ 1 to Conv_ All 4 to mine high-frequency data. Second, the element product is
utilized to fuse the outputs from the two branches. To further investigate the data that the convolutional
network overlooked, the fused features are then input into a two-layer LSTM network. Fig. 2 illustrates
how LSTM2 receives input from the hidden state of LSTM1, and how a fully connected layer receives
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the LTSM2 output for classification. The preceding step’s output influences the subsequent step’s
production in LSTM networks. As a result, LSTM networks extract the internal elements of vibration
signals and fully use the time series characteristics. Ultimately, the diagnostic outcome is the defect
that corresponds to the maximum probability label after the SoftMax function transforms the fully
connected layer neurons’ output into the probability distribution of bearing health status.

It is important to note that to increase the model’s learning rate and prevent overfitting, this article
adds a BN layer to CNN. As feature extractors, MSCNN and LSTM offer the following benefits:
They can automatically learn the features of various vibration signals; CNN employs a shared weight
strategy, which drastically lowers the number of parameters and high-dimensional input vectors; the
size of the convolutional kernel limits both the input and output of the previous layer; LSTM fully
utilizes the global features of vibration signals and improves model generalization.

The parameter list of MSCNN-LSTM is shown in Table 1, and the network containing the LSTM
layer is trained using the Adam algorithm. A network with only convolutional layers and no LSTM
layers is trained using SGD. During the training process of all models, the learning rate is adjusted in
stages, with a total of 200 iterations. The learning rate for the first 60 iterations is set to 0.01, and after
60 iterations, the learning rate is adjusted to 0.001. The batch size is set to 64 throughout the entire
training process.

Table 1: Parameter list of MSCNN-LSTM fault diagnosis model structure of the proposed model

Layer structure Convolutional kernel size Step Input size Output size Number of
parameters

Conv_1-BN-ReLU 6 ∗ 1 (50) 4 [1,1024] [40,255] 400
Conv_2-BN-ReLU 6 ∗ 1 (40) 1 [40,255] [40,250] 12080
Pooling_1 2 ∗ 1 2 [40,250] [40,125] 0
Conv_3-BN-ReLU 6 ∗ 1 (30) 1 [40,125] [30,120] 7260
Conv_4-BN-ReLU 6 ∗ 1 (30) 2 [30,120] [30,58] 5460
Pooling_2 2 ∗ 1 2 [30,58] [30,29] 0
Conv_5-BN-ReLU 20 ∗ 1 (50) 4 [1,1024] [50,252] 1100
Pooling_3 2 ∗ 1 2 [50,252] [50,126] 0
Conv_6-BN-ReLU 20 ∗ 1 (30) 2 [50,126] [30,59] 15060
Pooling_4 2 ∗ 1 2 [30,59] [30,29] 0
Feature fusion – – [30,29] [30,29] 0

[30,29]
LSTM1 – – [30,29] [30,60] 21360
LSTM2 – – [30,60] [30,1] 244
FC – – [30,1] [10,1] 310

3.2 Network Optimization Learning

Cross entropy is typically used to compute the error between predicted values and true values
in multiclass fault diagnosis activities. As a result, the objective function in this article is likewise
constructed using it, and the expression is as follows:
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L = −1
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In the original diagnostic signal formula, yi represents the true value, and zi represents the output
of the i − th neuron in the last fully connected layer; soft max (zi) is the probability output of the i − th
neuron after passing through the Softmax classifier; n represents the number of training samples; K
represents the number of categories.

The original diagnostic signal should be normalized before being fed into two parallel convo-
lutional networks to extract vibration features and gather local spatial correlation features using
complementary convolutional kernels of varying widths.

To make up for convolutional networks’ inadequate capacity for global feature capture, the data
features are fused using element product fusion and used as feature inputs for the LSTM layer.
Temporal features are then recovered utilizing the memory module of hidden units in LSTM. Update
the model’s parameters, minimize the cross-entropy objective function, and use error backpropagation.
Until the model converges, repeat the first three sections.

Following the MSCNN-LSTM model’s training, test samples will be fed into the model for
validation and a diagnostic model will be implemented for fault classification.

4 Experiment
4.1 CWRU Bearing Dataset

The dataset is the CWRU dataset from the Bearing Data Center of Case Western Reserve
University [29]. The test bearing works under four working conditions (A0:1797 r/min/0 hp, A1:1772
r/min/hp, A2:1750 r/min/2 hp, A3:1730 r/min/3 hp), so twelve transfer scenarios can be established. As
illustrated in Fig. 3, drive end-bearing vibration data with a 12 kHz sampling frequency is adopted in
this paper. There are four kinds of health modes, including normal condition (NC), inner ring damage
(IF), outer ring damage (OF), and roller damage (RF), and each failure mode has three different
severity levels, namely 7, 14 and 21 mils (1 mil = 0.001 in). Therefore, the dataset can form 10 categories
(NC, IF-07, IF-14, IF-21, OF-07, OF-14, OF-21, RF-07, RF-14, RF-21). In experiments, there are
500 samples in each category, and each sample is composed of 1024 points. As shown in Table 2, the
proportion of training and testing samples is 7:3.

Figure 3: The test rig of CWRU
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Table 2: CWRU experimental sample set

Category RF-7 RF-14 RF-21 IF-7 IF-14 IF-21 OF-7 OF-14 OF-21 NC

Train A0 350 350 350 350 350 350 350 350 350 350
Test A0 150 150 150 150 150 150 150 150 150 150
Train A1 350 350 350 350 350 350 350 350 350 350
Test A1 150 150 150 150 150 150 150 150 150 150
Train A2 350 350 350 350 350 350 350 350 350 350
Test A2 150 150 150 150 150 150 150 150 150 150
Train A3 350 350 350 350 350 350 350 350 350 350
Test A3 150 150 150 150 150 150 150 150 150 150

4.2 Implementation Details and Comparison Approaches

To verify the performance of the proposed method MSCNN-LSTM, the following model was
designed for comparative experiments:

CNN1. The most representative deep model is CNN. We use it as a standard for comparison
as a result. The portion of MSCNN-LSTM that remains after the LSTM is removed is the network
structure. As the initial comparative experiment, we employ convolutional layers 1 through 4 to directly
output the results. CNN2. After the LSTM is removed, the network structure is what’s left of MSCNN-
LSTM. As the second comparative experiment, we directly output the results using convolutional
layers 5 through 6.

CNN1-LSTM. A better recurrent neural network, the long-term dependence of RNN, and the
vanishing gradient in real-world applications are issues that can be resolved by the LSTM, increasing
the network’s dependability. To extend the duration of the short-term memory, LSTM employs
memory blocks to store data selectively. The network structure is what’s left over when CNN2 is
removed from MSCNN-LSTM. As the third comparative experiment, we employ convolutional layers
1 through 4 to directly output the findings. CNN2-LSTM. The network structure is what is left
over when CNN2 is removed from MSCNN-LSTM. The fourth comparative experiment employs
convolutional layers 5 through 6 to directly output the results.

Training time and accuracy can be significantly increased by using Batch Normalization (BN),
a technique that standardizes the activation of intermediate layers in deep neural networks. Larger
gradient step sizes, faster convergence, and the potential to avoid severe local minima are the outcomes
of BN’s continuous correction of the activation output to zero mean and unit standard deviation,
which reduces covariate drift. BN also smoothes the optimization environment, which increases the
predictability and stability of the gradient behavior and facilitates faster training.

MSCNN-LSTM (w/o BN). The portion of MSCNN-LSTM that remains after the BN is removed
is the network structure. As the sixth comparative experiment, we output the results using all
convolutional layers. MSCNN-LSTM. We have introduced a BN layer in CNN to improve the learning
rate of the model and avoid overfitting. Use the model constructed in the article as the sixth experiment.
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4.3 Results of the CWRU Dataset

Table 3 shows the experimental results of CWRU-bearing diagnosis tasks. The accuracy and F1
score of the six methods under four operating conditions A0, A1, A2, and A3 are shown in Table 3,
from which the following conclusions can be drawn:

Table 3: The accuracy and F1 score of the six methods

Model MSCNN-LSTM CNN-1 CNN-2 CNN1-
LSTM

CNN2-
LSTM

MSCNN-LSTM
(w/o BN)

Accuracy of A0 99.71 93.42 92.40 97.95 96.20 98.68
F1 of A0 99.71 93.30 92.35 97.94 96.17 98.68
Accuracy of A1 98.98 93.42 90.20 96.78 95.91 97.51
F1 of A1 98.98 93.30 90.14 96.77 95.84 97.49
Accuracy of A2 99.42 95.47 92.98 97.81 96.64 98.25
F1 of A2 99.41 95.44 92.90 97.79 96.61 98.24
Accuracy of A3 99.12 93.27 90.35 96.05 95.47 97.95
F1 of A3 99.12 93.22 90.35 96.04 95.47 97.94

The two CNN1-LSTM indicators have an average increase of 1.5%, although all CNN1 indicators
are generally 1.9% greater than CNN2. This suggests that convolutional neural networks with deeper
depths produce more abstracted extracted characteristics, which enhances diagnostic performance.
Therefore, deepening the network may aid in improving diagnostic outcomes.

When compared to using CNN alone, the reasonable introduction of LSTM based on CNN, the
potent feature extraction function of convolutional neural networks, and the good temporal modeling
ability of LSTM combined can improve the fault performance of the network. All indicators of
CNN1-LSTM and CNN2-LSTM are more than 3.5% higher than CNN1 and CNN2 on average. In
comparison to CNN1-LSTM and CNN2-LSTM, the fault diagnostic results of MSCNN-LSTM are
1.7% and 3.5% higher on average. This suggests that learning multi-scale fault features in parallel using
a layered structure with multiple pairs of convolutional and pooling layers can significantly improve
feature learning ability and enhance fault diagnosis effectiveness. It is clear from the diagnostic results
of MSCNN-LSTM that adding BN layers to convolutional networks can improve the network’s ability
to represent and extract features. The results are more than 1% higher than the average of MSCNN-
LSTM (w/o BN).

In conclusion, MSCNN-LSTM outperforms the other five approaches in terms of accuracy and
F1 score, suggesting that the suggested algorithm can complete bearing fault classification tasks in the
presence of constant operating conditions.

This article assesses convergence performance using the training process loss as well as the
training and testing sets’ accuracy change curves. The training loss and accuracy curves for six distinct
approaches under operating condition A0 are displayed in Fig. 4. The horizontal axis represents the
number of iterations, the comparative experiment method is inferior to the one suggested in this article
among the six comparison methods.

The superior performance of CNN1-LSTM and CNN2-LSTM models over CNN1 and CNN2
models suggests that adding LSTM layers can significantly increase the accuracy of fault identification.
MSCNN-LSTM is better than CNN1-LSTM and CNN2-LSTM. The high convergence speed and
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accuracy of the LSTM model indicate that parallel multi-scale convolution can learn more fine-grained
distinguishable features, which is helpful for fault recognition.

Figure 4: The curve of loss and accuracy changes during training and testing

The MSCNN-LSTM (w/o BN) without a BN layer converges after 40 iterations. MSCNN-LSTM
only needs 15 iterations to converge, and the convergence curve is smooth. The accuracy of the test set
is also quite high, indicating that the BN layer can indeed accelerate model convergence and improve
diagnostic accuracy.

By feeding the test samples into the trained MSCNN-LSTM rolling bearing fault detection model,
the results were displayed in a confusion matrix, which allowed for a more thorough assessment of the
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model’s generalization capacity based on the structural characteristics of MSCNN-LSTM. The type
of diagnosed rolling bearing defect is represented by the horizontal axis data, whereas the vertical
axis data depicts the actual type of rolling bearing failure. The normal recognition rate of the bearing
is 100%, as illustrated in Fig. 5, while the rolling element damage recognition rate is comparatively
high at 99%. The rolling bearing fault diagnosis model based on the enhanced convolutional neural
network long short-term memory network has strong generalization capacity, as evidenced by the
average accuracy of 98% for the four types of rolling bearing failures.

Figure 5: Confusion matrix of four domain adaptation methods
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The learned characteristics of CNN1, CNN2, CNN1-LSTM, CNN2-LSTM, MSCNN-LSTM
(w/o BN), and MSCNN-LSTM are visualized using t-SNE technology to further demonstrate the
performance of the MSCNN-LSTM. As seen in Fig. 6, where various colors stand for various
categories of data. It is evident that MSCNN-LSTM successfully distinguishes between distinct health
models in addition to precisely identifying diverse sectors. In contrast, features within the same health
mode are found to be clustered in other comparison approaches; however, source and target features
do not exhibit good alignment within the relevant category. These findings generally provide intuitive
evidence that the MSCNN-LSTM can provide superior feature representation and classification
performance.

Figure 6: Visualization of learned features on CWRU
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4.4 Results of the CWRU Dataset

To verify the universality of the model in diagnosing faults of different types of rolling bearings,
this paper introduces bearing fault data collected by Jiangnan University [30]. The data collection
frequency is 50 kHz, and it operates at three speeds: 600, 800, and 1000 r/min. The data in this article
is categorized into four states: Rolling element failure (RF), inner ring failure (IF), outer ring failure
(OF), and normal condition (NC). In the test, there are 500 samples in each category, and each sample
is composed of 1024 points. The proportion of training testing samples is 7:3, additionally, the data
were split into three datasets: B0, B1, and B2, based on the rotational rates of 600, 800, and 1000
revolutions per minute. Table 4 displays the datasets’ specifics.

Table 4: Bearing fault data collected by Jiangnan University

Dataset Training Testing Fault type Label

B0/B1/B2

350 150 RF 0
350 150 IF 1
350 150 OF 2
350 150 NC 3

On datasets B0, B1, and B2, comparative tests were carried out at various speeds. A comparison
was made between the model structure of this experiment and the CWRU bearing dataset. Table 5
displays the experimental outcomes. This shows that, for this experimental dataset, all models’
diagnostic accuracy has dropped. This could be because of the environment and data collection device’s
restricted precision. In comparison with models like BiLSTM, 1DCNN, and CNN-LSTM, our model
performs better on the B0, B1, and B2 datasets than other approaches, demonstrating its stronger
universality and high fault diagnosis performance for various bearing types.

Table 5: Average accuracy of different models

Method B0 B1 B2 Average accuracy

BiLSTM 38.75% 36.62% 35.75% 37.04%
1DCNN 80.71% 90.58% 92.88% 88.06%
CNN-LSTM 90.46% 95.83% 923.92% 93.07%
MSCNN-LSTM 95.92% 96.12% 96.62% 96.22%

5 Conclusions

The MSCNN-LSTM model’s structure, as well as the steps involved in training and testing,
are suggested in this article. Afterward, the CWRU bearing dataset was used to thoroughly validate
the MSCNN-LSTM network’s resilience, fault recognition accuracy, and feature extraction capability.
The main experimental findings are presented in this article to investigate the internal workings
of the model. Real-time bearing status identification is made possible by the technology described in
this article, which features a compact network topology and normalized raw data input. It can reliably
identify ten distinct fault kinds without requiring any preprocessing and automatically extract features
from the raw signal.
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According to the experimental results, the combined model performs better under constant
operating conditions than some intelligent defect diagnosis systems with a single structure. In addition,
the model in this study may reach lower loss values and higher accuracy after fewer iterations, and its
convergence pace is steady and quick. Nevertheless, this paper only validates the model’s capacity to
diagnose faults under fixed loads; more investigation is required to determine its ability to diagnose
problems under fluctuating loads and its anti-noise performance in noisy situations.

There are certain issues with the paper that need to be fixed because of this paper restricted skill
set and the circumstances of the experiment. In the future, it will be important to focus on developing a
model that can automatically optimize parameters, as the configuration and selection of deep learning
parameters rely too heavily on experience. The dataset used in the article was collected in a lab and
will eventually be used in real wind farms.
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