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ABSTRACT

In the context of enterprise systems, intrusion detection (ID) emerges as a critical element driving the digital
transformation of enterprises. With systems spanning various sectors of enterprises geographically dispersed,
the necessity for seamless information exchange has surged significantly. The existing cross-domain solutions
are challenged by such issues as insufficient security, high communication overhead, and a lack of effective
update mechanisms, rendering them less feasible for prolonged application on resource-limited devices. This
study proposes a new cross-domain collaboration scheme based on federated chains to streamline the server-
side workload. Within this framework, individual nodes solely engage in training local data and subsequently
amalgamate the final model employing a federated learning algorithm to uphold enterprise systems with efficiency
and security. To curtail the resource utilization of blockchains and deter malicious nodes, a node administration
module predicated on the workload paradigm is introduced, enabling the release of surplus resources in response
to variations in a node’s contribution metric. Upon encountering an intrusion, the system triggers an alert and logs
the characteristics of the breach, facilitating a comprehensive global update across all nodes for collective defense.
Experimental results across multiple scenarios have verified the security and effectiveness of the proposed solution,
with no loss of its recognition accuracy.
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1 Introduction

Data exchange between database systems is often hindered by various factors, including incon-
gruent data format standards, privacy apprehensions, and intricate procedures, resulting in data silos
within organizations. However, data should not be isolated in different departments within the same
organization, but should be shared and integrated. Nonetheless, data segregation within different
divisions of an enterprise is counterproductive; instead, data should be collaboratively shared and
integrated to prevent isolation from external communication networks [1]. To address this issue,
Google [2] has proposed a new artificial intelligence model based on federated learning (FL), which
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can protect the data in distributed terminals from not being leaked, and the model can be trained
and updated safely. Countries worldwide are enhancing their data security and privacy protection. In
2018, the European Union officially implemented the General Data Protection Regulation (GDPR)
[3], one of the successful reliable legislations in this regard, which prohibits enterprises from using
vague language or lengthy privacy policies related to gaining access to data. However, traditional
FL algorithms are troubled by five major problems [4]: Single points of failures [5], lack of trust
between nodes [6], poisoning attacks [7], lack of corresponding incentives, and model ownership issues.
Consequently, FL still carries the risk of information security during the uploading and downloading
processes due to single central servers [8]. These problems can lead to mutual distrust between
terminals and nodes, forming a major challenge hindering the development of federated learning.
Blockchain technology, leveraging cryptography for data validation and storage, offers a decentralized
alternative to remediate these issues.

In the context of blockchain technology, the need to strike a balance between computational
efficiency and storage optimization has emerged as a critical and formidable challenge. To address
this pressing issue, the present investigation introduces a novel lightweight FL chain framework,
denoted as MLchain, which is capable of facilitating node management within the framework
of traditional Blockchain-based Federated Learning (BFL). Furthermore, this research integrates
incentive mechanisms and proof-of-work principles into the blockchain structure in order to enhance
the operational efficiency of the FL chain. Concurrently, a management component is devised to
address the presence of low-contributing nodes, thereby mitigating the potential disruption caused
by inactive or unreliable nodes to the learning process.

In this research endeavor, the dataset is partitioned into separate entities, namely a test set and
a sample set, designated for model training and recognition tasks, utilizing a fusion of FL and
blockchain. The robustness and security of the proposed framework are rigorously evaluated against
a spectrum of attack vectors. Subsequent to the experimentation phase, various FL algorithms are
substituted with alternative counterparts, with meticulous documentation of their corresponding
parameters, in an endeavor to curtail computational burden and communication overheads. The end
objective is to furnish a practical solution that can be effectively deployed within Intrusion Detection
Systems (IDS). To evaluate the efficacy of the proposed approach, a realistic use-case scenario is
meticulously outlined, juxtaposing this novel paradigm against incumbent algorithms with respect
to temporal efficiency, computational requisites, and storage footprint.

The primary contributions of this research are outlined as follows:

1) An MLchain scheme is proposed utilizing the FL framework to maintain the original accuracy
and balance the computation and storage overheads effectively. Moreover, various categories
of malicious attack scenarios have been formulated to evaluate the resilience and anti-attack
capabilities of the MLchain scheme.

2) In order to enhance the learning efficiency of the model, a Proof of Work (PoW) mechanism
is incorporated. The PoW value diminishes after a specified number of iterations, triggering
early warning processing by the node management function if it falls below the threshold.
Subsequently, the node with the maximum value serves as the central service node responsible
for parameter reception and model integration, while other nodes engage in local training and
related tasks.

3) This study introduces the function modules of IDS within the system and validates the
proposed scheme through real-world scenario testing. A comparative analysis is conducted
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to evaluate the time efficiency of the MLchain scheme as opposed to the traditional FL
framework.

2 Related Work
2.1 Blockchain

The participants within the blockchain network are commonly referred to as miners, with
their primary responsibility being the generation, validation, and propagation of block transactions.
Utilizing cryptography and smart contract technology, each transaction record is rendered immutable,
ensuring the integrity and sequential nature of the blockchain [9]. The scope of blockchain technology
extends beyond digital currencies, with its potential utility encompassing the construction of secure
systems within virtual environments [10].

The operational efficacy of blockchain technology rests upon the seamless alignment of ledger
data and the secure execution of block operations, including addition, deletion, and modification.
Nonetheless, the consensus mechanism imposes substantial hardware computing and storage requi-
sites on miner nodes. Notably, a single Bitcoin transaction reportedly consumes an amount of energy
capable of powering a typical household for a fortnight. As of early October 2022, the sheer size of
the Bitcoin ledger had swollen to 500 GB, imposing significant computing and storage burdens on
newly integrated nodes [11]. It is worth noting that the meager computing capabilities and limited
storage capacities prevalent across most enterprises serve as impediments to the widespread adoption
of conventional blockchain technology across diverse domains [12].

In recent years, the realm of consensus algorithms has witnessed a proliferation of advancements
and refinements. These innovations include the Equity-Based Proof of Stake (PoS) consensus protocol
[13], Synergistic Multiple Proof (SMP) applied to Industrial Internet of Things scenario [14], a novel
transaction settlement blockchain that uses Tangle technology based on DAG structure internally for
transaction consensus [15], the Proof of Elapsed Work and Luck (PoEWAL) mechanism [16], a Trust-
based Proof of Work (PoW) model [17], and the Proof of Block and Trade (PoBT), a lightweight
consensus protocol designed for the Internet of Things based on Hyperledger Fabric framework.
These novel algorithms offer heightened efficiencies, particularly in terms of reduced computational
overhead, in contrast to traditional algorithms [18].

The immutable nature of the ledger necessitates a continuous expansion of its capacity over time.
Consequently, nodes with limited storage capabilities may struggle to accommodate the burgeoning
blockchain ledger, thus impeding their ability to partake in the maintenance of the blockchain. The
dwindling number of active miners may predispose nodes with ample storage capacity to secure more
block rewards, potentially culminating in a diminished level of decentralization [12]. Subsequently,
ongoing blockchain research endeavors are exploring enhanced storage optimization strategies, with
four primary models identified to streamline storage utilization: Historical transaction data deletion
[14,19,20], block compression techniques [21], slice-based storage methodologies [22], and the new
Local Transaction Architecture approach [18]. Each of these strategies harbors distinct advantages
and drawbacks, with their effectiveness contingent upon judicious selection based on storage capacity
and processing efficiency to ensure optimal outcomes and mitigate excessive computational overhead.

2.2 Federated Learning

The fundamental concept of FL revolves around decentralizing user data storage, shifting the
primary responsibility of the central server to aggregating model parameters from all clients, and
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updating the final global model locally on the server. Throughout this process, the global model
undergoes optimization [23].

As shown in Fig. 1, it can be seen that FL needs to go through four stages: Broadcast, model
aggregation, model upload and download. In the traditional FL approach utilizing the FedSGD
algorithm, the central server required frequent uploads for training, demanding constant and stable
communication with the devices. McMahan et al. [24] proposed an improved FedAvg algorithm, which
stacked as many training iterations as possible for each data upload operation, effectively reducing
unnecessary communication overhead. Li et al. [25] proposed the MOON algorithm, which selects a
powerful eigenvalue from the global model for training iteration to further improve the effectiveness
of FL algorithm. Acar DAE [26] and Li et al. [27] added fitting values to the loss function to improve
the energy efficiency of the model aggregation operation.

Figure 1: Federated learning process

Despite the advancements, inefficiencies permeate FL frameworks due to their reliance on single-
server transport mechanisms, remote distribution of devices, and non-encrypted processing. Scholars
have discerned five key flaws within FL: Vulnerabilities to single points of failure, inadequate trust
among nodes, susceptibility to poisoning attacks, absence of a corresponding incentive mechanism,
and unresolved model ownership concerns. Issues like information blocking, prolonged offline status,
or inactivity within nodes can significantly impede training iterations, causing delays in the learning
process.

Specifically, poisoning attacks present a malicious attempt to corrupt algorithms or models by
transmitting adversarial data from a node to the central server, exploiting established inter-node
trust mechanisms and fixed transmission protocols. For instance, in the context of model ownership,
each device must locally train the model before transmitting parameters to the central server, often
amplifying the global model’s accuracy. Operators face challenges in maintaining this intricate learning
process without ownership information and a tailored reward mechanism for individual parameters.
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2.3 Block-Chain-Based Federated Learning

In recent years, numerous researchers have reviewed the framework and privacy security of
blockchain and FL, respectively [28]. The current utility of blockchain within the domain of FL
remains predominantly situated in the realm of exploratory research [29]. As shown in Fig. 2,
the BFL principle espouses the leveraging of blockchain technology to supplant the centralized
server infrastructure endemic to conventional FL frameworks, thereby effecting decentralization.
Furthermore, BFL harnesses the innate security features of blockchain to remediate challenges such
as data contamination and breaches that plague the FL landscape. Over the past few years, the BFL
framework has increasingly garnered attention as a burgeoning area of research, with emphasis placed
on enhancing computational efficiency and storage capacities. Nevertheless, the practical deployment
of BFL within a specific application context has yet to materialize, warranting further exploration and
investigation within the scientific community.

Figure 2: Typical block-chain-based federated learning framework

Majeed et al. [30] used the original FL paradigm in conjunction with blockchain technology to
build an alliance chain framework, seamlessly integrating blockchain mechanisms within the process
of FL operations related to data uploading and downloading. This fusion ensures the fortification
of secure interactions within untrusted environments. Kim et al. [31] proposed the BFL framework,
instrumental in conceptualizing the PoW principle to instate an incentive mechanism within FL
setups. Upon task initiation, the node exhibiting the highest workload from the previous round
of model amalgamation assumes the mantle of a central node, with other nodes engaging in local
training and parameter uploads. The central node bears the onus of parameter aggregation, model
integration, workload calculation, and block generation. Wang et al. [32] applied the Federated Chain
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Framework to a Multi-mode Transformer task for experiments, where computational sacrifices were
strategically deployed to markedly enhance the security protocols of the overarching framework. This
novel approach assigns blockchain a pivotal role in delineating FL model ownership and bolstering
the intricacies of device-mediated parameter uploads.

In light of these findings, the study posits that an increased allocation of computational resources
towards the FL training process is indispensable, thereby warranting a sharp focus on minimizing
computational and storage overheads inherent to blockchain integration.

2.4 Intrusion Detection System

Intrusion detection (ID) is a crucial security measure for safeguarding user data against malicious
traffic attacks. Early Intrusion Detection Systems (IDS) rely on signature database matching or rule
filtering for proactive fortification. The development of artificial intelligence has led to the creation of
numerous machine learning algorithms for IDS, including k-means, SVM, and naive Bayes [33]. Some
researchers also advocate for the use of deep learning [34], which has shown promise in detecting new
attack methods like 0-day vulnerabilities and aiding in security diagnosis.

Mahoney et al. [35] introduced artificial intelligence into the network intrusion detection system
(NIDS) and made the model learn the protocol vocabulary from the link layer to the application
layer to detect unknown attacks. With the rapid development of artificial intelligence technology in
recent years, a variety of deep neural networks have been introduced into different NIDS, and typical
ones include deep neural networks (DNN) [36], long short-term memory neural networks (LSTM)
[37], multi-layer perceptron (MLP) [38], etc. Although intelligent NIDS has a high recognition rate of
traditional malicious traffic, the existing models are still carried out by traditional centralized servers,
and it is difficult to form a global model for joint defense.

The decentralized paradigm of IDS is a frontier direction in the exploration stage. Empirical
studies undertaken by Tang et al. [39] have demonstrated that distributed learning endows perfor-
mance ratios akin to those of centralized deep learning models while fostering enhanced scalability
and resilience. The conception of Distributed Intrusion Detection Systems (DIDS) was first proposed
and developed by CERIAS of Purdue University in the United States [40], thereby fraught with
the burgeoning blend of artificial intelligence methodologies and Intrusion Detection, which has
metamorphosed into a burgeoning research terrain within the domain of cyber security [41].

3 Introduction of System and Concept
3.1 Introduction of System Framework

The system performs two tests sequentially to detect attacks. Firstly, it uses feature matching
methods to determine the type of attack, and then employs machine learning to train the model to
further identify and confirm the attack. In other words, the IDS continuously monitors network data
and immediately captures abnormal data. Upon examination, the system first analyzes the URL to
determine whether it is a malicious attack. Upon detection of abnormal data, an alarm is immediately
triggered to evaluate the security implications of the data packet. The IDS in this study uses the SVM
machine learning algorithm. The general process of artificial intelligence involves three steps: Data
preprocessing, feature extraction, and classification, which are not discussed in detail here, as shown
in Fig. 3.
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Figure 3: The process of intrusion detection system

The system initially seeks authorization for port monitoring and subsequently validates the
availability of the model file. Upon confirmation that all requisite components are prepared, the system
commences monitoring network data from the designated port while instantiating the model file for
preliminary identification. Furthermore, the device maintains a local signature database containing
malicious URL. If an exception occurs, the network packet is immediately captured, and the nature of
the attack mode is determined by cross-referencing both the signature database and model inference. In
instances where malicious attacks are detected, the firewall disables IP addresses. The system continues
to monitor.

The model training phase in the process chart can be replaced with the FL framework. In this
setup, the client deploys the machine learning algorithm environment locally to train its own data,
eliminating the necessity of establishing a dedicated connection for data transmission and minimizing
the risk of data leakage. As shown in Fig. 1, the traditional FL framework consists of a central server
and client architecture, known as the CS pattern. The client sends the trained local model parameters
to the central server, which collects and amalgamates these parameters to generate a global model.
Notably, the central server’s computational burden appears manageable, leading to the proposition of
the MLchain framework in this study.

Fig. 4 shows that candidate node pools are selected from the client base, consisting of nodes
equipped with computing and storage capabilities integrated into the FL network. Each node is
responsible for model training and parameters uploading based on its local dataset, maintaining a
block data ledger. If a node is selected as the central node, the node receives and integrates parameters
uploaded from other nodes, and updates the blockchain with new blocks. This decentralized approach
encourages effective resolution of data silo quandaries, allowing each node to contribute optimally.



4498 CMC, 2024, vol.79, no.3

Figure 4: Lightweight federated learning chain framework that supports node management

Finally, Fig. 3 showcases the intrusion detection system’s continuous network surveillance post
the global model acquisition to fortify system security.

3.2 Formulaic Expression

Simulating multiple client devices within a virtual machine environment, while configuring routing
and forwarding functionalities along with local training algorithms, is a crucial aspect of distributed
computing systems. In this context, a total of S samples are involved, constituting the client node
set N = {N1, N2, N3, . . . , Nn}. Here, Di is the data owned by the ith node and D is the sum of data

owned by all nodes. The set of D = Nn∪
i=1

Di.M = {M1, M2, M3, . . . , Mm} represents a blockchain or a

pool of candidate nodes. Simply put, node Ni upload the trained parameters to the selected central
node Mj.wl

k is the weight trained by the Dk data at the l iteration, Wr is the global model value for
roundr, aiming to minimize the loss function f (W). in all iterative processes beyond the initial step,
the previous iteration’s weights are required to consolidate the model, with the gradient ∇f (Wr) being
computed by the local vector ∇wr

k and the global update vector ∇Wr, as depicted by Eqs. (1)–(4).

∇wr
k = wr

k − wr−1
k (1)

∇Wr = Wr − Wr−1 (2)
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f (W) = 1
S

∑Nn

i=1

∑
Dk∈Di

fk (W) (3)

Wr = Wr−1 +
∑N

i=1

Nn

S

(
wR

i − w(R−1)

i

)
(4)

Client Ni uploads weight ωl
i and gradient (∇fk (Wr))Sk∈Si

to central node Mj, and Mj complete the
integration of models. Subsequently, the model, timestamp and summary information are packaged
to generate a new block. Other clients can download the model from the new block as a local model
update or continue operations to train the next round of new models.

The alliance chain appears to lack an incentive mechanism. The central node is only responsible
for tasks with relatively lower computational intensity compared to other nodes, presenting an
opportunity for positive reinforcement in rewarding the candidate node pool that successfully trains
a quality model, thereby fostering a consensual framework within the federated learning network.

For instance, PoW is a consensus mechanism that introduces the concept of incentive mechanism
and proof of work. It sets a computation threshold according to the number of nodes, and the threshold
directly affects the difficulty of computation. Nodes are required to leverage the hash function to
compute a number that keeps getting closer to the threshold, and the formula is Hash(Hash(nonce)) ≤
lim it, in which nonceis the random number and limit is the target threshold. This method poses a
brute force mathematical challenge where diverse values of limit are tested until meeting the threshold
requirement. The main disadvantage of this mechanism is that the more times the threshold is set,
the more computing resources are required. Non-central nodes need to upload parameters repeatedly,
which inevitably generates a large amount of communication overhead.

Traditional FL adopts the FedSGD algorithm necessitating individualized training result sub-
missions to the server. Conversely, the enhanced FedAVG protocol streamlines operations by consol-
idating numerous training iterations per round before submission. For such a scenario, the server is
initialized, and nodes S1, S2, . . . , Sn participate in FL. The formula is Hi = ∑R

r=1 ∇wi
r. R denotes final

iteration number, r represents current iteration number, and Wr is the global model value of the round
r of the algorithm, wk

r is the model trained by Dk data in the r round, Hi marks the history record of
node Di.

Each iteration of the algorithm entails the randomized selection of fixed data from D for round
r training. When r falls within the three intervals of r = 1, 1 < r < R and r = R, specific tasks are
executed as follows:

1. When r = 1, an initial scenario unfolds where no node exhibits a contributory role in the
first iteration. The candidate node is trained locally and the parameters are uploaded to a
central node that will be randomly selected, and then the contribution value of other nodes is
calculated after the aggregation model is completed.

2. When 1 < r < R, the central node selection is intricately tied to the contribution values of the
local model from the preceding round. The central node performs a series of operations such
as receiving model parameters and aggregating models. The generated model acts as the next
loop until it ends.

3. When r = R, completing the final round generates a new block for the final global model to
join the consortium chain.

The structure and algorithmic framework have been elucidated in the preceding discussion. The
MLchain, as delineated in Algorithm 1 of this investigation, is the focal point of analysis. In order
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to provide a more nuanced delineation of the roles of the central node and the common node, it is
imperative to underscore that the algorithm embarks on an iteration with the initialization model W0.
It is crucial to highlight that the model remains unincorporated in block 0 owing to the generation of
block 0 in the inaugural round.

Algorithm 1: The training process of client Ni at the l time in lightweight federated learning chain
framework that supports node management
Input: Client node N = {N1, N2, N3, . . . , Nn};
Output: New global model

1© Central node Mj is randomly selected from N, essentially born from the node with the highest
contribution value of proof of work;

2© Central node Mj broadcasts information to node pool N;
3© Client N receiving the broadcast sends identity information to Mj;
4© Mj adds the responding node to candidate node pool M and waits for the preset

timestamp before sending the task start request;
5© All candidate nodes download the latest upload model from the blockchain system;
6© Candidate nodes except Mj confirm the corresponding training parameters, such as local

data D = {D1, D2, D3, . . . , Dn}, iteration number R, loss function f (W), learning rate and so on of
each node;

7© Candidate nodes except Mj begin to train local model wr−1
i , compare whether the current

iteration number meets 1 < r < R. If the inequality is satisfied, the model parameters are uploaded
to Mj for the next step, otherwise go back to 6© to continue the local training;

8© Mj receives model parameters for evaluation, calculates node work proof contribution value
and model integration operation;

9© Mj packages the aggregate model, node number of the model, completion time and other
information into blocks, and then uploads it to the blockchain system;

10© The proof-of-work contributions of all candidate nodes are reduced proportionally.

3.3 Node Management Component

The node management component is responsible for clearing the nodes whose work proof
contribution value is about to return to zero or the long-term accumulation of invalid blocks in the
candidate node pool. The system process is introduced in detail in Section 3.2. The node management
component will manage nodes according to the incentive mechanism and corresponding contribution
values in 1© 8© 10©.

The term “contribution value” denotes the node’s impact coefficient in the model parameters
supplied by the complete candidate node pool, with the node’s utilization of computational and
storage resources reflected in said parameters. The determination of the contribution value involves the
employment of the Shapley value algorithm, widely utilized in financial contexts to aid in investment
decision-making. An inherent benefit of this algorithm is enabling investors to garner a deeper
comprehension of the risks and advantages associated with a given investment portfolio, empowering
them to make more informed investment choices.

Candidate node pool M = {M1, M2, M3, . . . , Mn} has n nodes, and I = {I1, I2, I3, . . . , In} represents
the input variable of these nodes, which is usually also the output variable of the previous iteration.
O = {O1, O2, O3, . . . , On} represents the output variable of these nodes. The Shapley value SVk of a
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certain node Mk, K ∈ {1, 2, . . . , n}, SVk = ∑n

i=1

∣∣∣ ∂Oi
∂Ik

∣∣∣
∑n

j=1

∣∣∣ ∂Oi
∂Ij

∣∣∣
. The magnitude of the Shapley value directly

correlates with the impact of node model parameters on the global model output.

The decrement of the contributive value at step 10© aligns more closely with the concept of equitable
competition across all nodes.

In addition, the central node could potentially engage in malicious behavior, such as maliciously
modifying parameter information or forging contribution information. Therefore, any deviations in
the parameter data or contribution levels of neighboring blocks may signify nefarious intentions by
the service node. This study references an algorithm [42] based on similarity judgement that is used to
mitigate the effects caused by Sybil attacks.

As shown in Fig. 5, where the dotted line represents the update vector submitted by the client
node, the solid line represents the aggregated model, θ represents the angle made by the update vector
of the Sybil node, γ represents the angle made by the update vector of the honest client and the Sybil
node, and θ < γ implies that there will be more similarity between the Sybil nodes than between the
Sybil node and the other nodes, the more similar the nodes are, the higher the likelihood that they are
malicious.

Figure 5: Schematic diagram of similarity judgement algorithm

Upon completion of step 8©, the node management component is activated to evaluate the
contribution value of each node for similarity. Nodes exhibiting excessive similarity within a group
are disqualified from being selected as central nodes to safeguard against potential Sybil attacks.
Any node with a contribution value consistently below a specific threshold over an extended period
faces elimination from the candidate node pool. This process ensures that newly added nodes to the
candidate pool can actively engage in the learning procedure. Furthermore, information within the
new block specifies the origin of a node’s parameters, linking the model of the block to a specific
node. Subsequent to the completion of step 9©, the node management component initiates a cleanup
protocol when the blockchain exceeds a designated length, resulting in the enforced removal of the
initial chain section to optimize storage space.
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4 Experiment and Analysis
4.1 Preparatory Work

This study uses two classical datasets in different fields for training and testing. One is the dataset
for intrusion detection, NSL-KDD [43]. This data is a typical big data with few features, with a data
volume of about 5 million, of which 4 million are intrusion behavior data and the rest are normal user
data. The training set contains 22 attack types, and the test set contains 17 attack types.

The other is the handwriting recognition data MNIST [44], an image data widely used in
machine learning and deep learning experiments, published by the National Institute of Standards
and Technology (NIST). The training set of the dataset contains 60000 images of 0–9 handwritten
digital picture files, and the test set contains 10000 images.

The paper discusses traditional FL, which is divided into Horizontal Federated Learning (HFL),
Vertical Federated Learning (VFL), and Federated Transfer Learning (FTL). In order to unify the
standard, this study adopts two datasets for experiments: VFL adopts the NSL-KDD dataset which
has fewer features and a large number of samples, while HFL adopts the MNIST dataset which is
aligned with both the sample data and the feature vectors.

The evaluation indexes of IDS functions are often carried out by confusion matrix and attack
rate, which vividly represent the advantages and disadvantages of the classification model. It consists
of Recall rate, Precision, F1 and AttackRate, as shown in Eqs. (5)–(8).

Recall rate is a measure of the system’s ability to correctly identify and classify attacks correctly.
It is calculated as the ratio of true positive predictions (TP) to the sum of true positive and false
negative predictions (FN). Therefore, a higher recall rate indicates that the system is better at detecting
intrusions:

Recall = TP
TP + FN

(5)

Precision, on the other hand, evaluates the system’s ability to correctly identify non-attacks or
normal behavior. It is calculated as the ratio of true negative predictions (TN) to the sum of true
negative and false positive predictions (FP). A higher precision indicates a lower false positive rate:

Precision = TP
TP + FP

(6)

The F1 Score combines both precision and recall into a single metric, offering a balance between
the two. It is the harmonic mean of precision and recall, providing a comprehensive assessment of the
model’s performance:

F1 = 2 ∗ Recall ∗ Precision
Recall + Precision

(7)

Lastly, the AttackRate measures the proportion of attacks correctly identified by the system,
giving insights into the system’s effectiveness in detecting intrusions:

AttackRate = Count(Attackafter)

m ∗ Count(Attackbefore)
× 100% (8)

The higher the score of F1, the better the detection performance; F1 = 1.0 indicates that all
adversarial cases can be detected without introducing any false negatives; the attack rate indicates
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the influence effect in backdoor attack scenarios; the higher the attack rate indicates the worse the
security of the system. The symbolic function descriptor is shown in Table 1.

Table 1: Symbolic function descriptor

Symbol Description

TP (True Positives) Correctly detected positive instances
FN (False Negatives) Exception records successfully detect the attack type
FP (False Positives) Normal records that are detected as abnormal
TN (True Negative) Exception records are successfully detected as normal
Count () Counting function
Attackbefore Before replacing a label value
Attackafter After replacing a label value
m The number of malicious nodes

The experiments experimentation was conducted using an Intel® CoreTM i7-10700 CPU
processor, 32 GB of RAM, and an NVIDIA GeForce RTX 2060 graphics card. Six virtual machines
with the same system configuration were set up for the experiment. The experimental environment
was configured within the system: Four nodes engaged in model training, one node managed central
server responsibilities, and another node oversaw the blockchain database. Additionally, in certain
specialized scenarios, extra cloud servers were deployed for network testing.

The training model for FL utilized a two-layer convolutional neural network. This is a basic
form of convolutional neural network that consists of two convolutional layers. The network structure
extracted input data features through convolutional operations and combined them into higher-level
abstract features through cascade processing of multiple layers of neurons. Ultimately, the model
output the prediction results.

Specific hyperparameters were set as follows: Each batch encompassed 30 data pieces; the local
learning rate was set to 0.005, and the number of local training rounds was set to 3. The maximum
number of training rounds was fixed at 100, and all clients participated in each round of aggregation
in the centralized federated learning algorithm. The number of global iterations was determined to be
20. Unless explicitly stated, any additional parameters were retained as indicated in the original paper.

To reflect potential heterogeneity in the system, the computational speed of half of the clients
was reduced by a factor of two compared to the other half. To ensure reliable and stable experimental
results, each result was independently evaluated five times.

4.2 Experiment and Safety Analysis in Multiple Scenarios

The detection system uses the classical support vector machine (SVM) algorithm to identify
network flow. This algorithm is a strong classifier, which can ensure the maximization of the region
classification and select the model with excellent performance. The SVM in this section establishes
a 5-layer classifier on KDD dataset, sets default algorithm parameters, imports training data to
build a kernel function, maps low-dimensional data to high-dimensional space, and finds the optimal
classification surface. The KDD dataset is divided into training set and test set, and their proportions
are 0.85 and 0.15, respectively.
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Three groups of comparison experiments are set up here: The first group is the classic SVM in
the field; the second group is neural network model based on traditional BFL; and the third group is
neural network model based on the MLchain.

(1) In the common scenario

In the experimental environment without any attack type, the results of SVM, BFL and MLchain
experiments are shown in the Fig. 6.

Figure 6: The convergence effect of SVM, BFL and MLchain

Although the introduction of blockchain technology does not affect model recognition accuracy,
it will sacrifice a small portion of computing resources to obtain verifiable security and traceable
functionality. In a typical scenario, upon reaching 450 iterations, all three sets of experiments achieve
an accuracy of approximately 90%, with negligible differences not exceeding 1%.

The SVM model converges and tends to be stable after only 300 iterations, and becomes the
best model in the three groups of experiments. The latter two require more iterations to complete
convergence. When the number of iterations is specified within 125, the initial detection effect of
the BFL model is significantly better than that of the MLchain model, but both outperform the
SVM model. This discrepancy arises due to the initially limited computing and storage resources
in the blockchain environment, with shortcomings becoming apparent in later stages characterized
by enhanced resource deployment and accrued communication costs. In contrast to the conventional
BFL framework, MLchain exhibits a performance enhancement ranging between 7% and 12%.

In conclusion, in the non-interference scenario, the final accuracy of the three groups of experi-
ments is not much different, and the addition of blockchain will indeed affect the convergence speed
to a certain extent. However, the node management component will gradually play a role in the middle
and late iteration process.

(2) Stability experiment of three groups of models in the attack scenario

Malicious nodes are set to carry out backdoor attacks and poison attacks on the three groups of
models in turn. The implementation process is that the malicious node adds data that can reduce the
accuracy by forging the identity. Backdoor attacks and poison attacks are called directional attacks
and non-directed attacks, respectively. Directional attacks refer to replacing a constant value of a label
with another constant, while non-directional attacks refer to replacing a constant with a random value.

In the attack scenario, the SVM model exhibits a lack of resistance to attacks, making it susceptible
to label replacement and consequent accuracy degradation. Consequently, testing the security of the
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SVM model yields insignificant results. As the KDD dataset comprises a vast number of records but
a limited variety of around 40 feature types, the impact of malicious attacks is relatively minimal.
Therefore, additional experimentation was conducted using the MNIST dataset. In this experiment,
the correct rate and attack rate of BFL and MLchain are specifically counted, as shown in the Table 2,
where P denotes the accuracy rate and AR represents the vulnerability rate.

Table 2: Stability test of the model

Data Attack
pattern

m BFL MLchain

P(%) AR(%) P(%) AR(%)

NSL-KDD

No-ops 0 96.8 — 96.5 —
Backdoor 1 96.5 66.6 96.7 44.4

2 96.8 72 96.5 72
5 96.2 83.33 96.5 66.6

Poison — 92.7 — 96.5 —

MNIST

No-ops 0 88.4 — 88 —
Backdoor 1 83.2 23.33 86.4 5.1

2 76.8 34.5 80.1 15.5
5 69.6 99 74.6 98.9

Poison — 65 — 75.1 —

Regardless of accuracy and attack rate, MLchain model is more robust than BFL. As the number
of malicious nodes increases, the intensity of attacks rises, leading to heightened attack rates and
diminished accuracy. Given the abundance of KDD data and limited features, it proves challenging to
elucidate the impact of backdoor attacks. Only poison attacks can effectively reveal disparities within
the model, where MLchain consistently upholds stable accuracy, unlike BFL, which experiences a
decline in accuracy. Analysis of the MNIST dataset conspicuously exposes differentials between the
two model groups. Whether subjected to backdoor or poison attacks, escalating attack rates correlate
with declining accuracies. Despite demonstrating commendable resilience against attacks, MLchain
registers notably high attack rates under the backdoor assault of five malicious nodes, suggesting
potential enhancement opportunities for the scheme. It is essential to ensure that the number of nodes
matches or exceeds that of malicious nodes to achieve optimal defense effectiveness.

(3) Stability experiments of three groups of models in the Sybil attack scenario

The central node may exhibit malicious behavior, such as modifying parameter information or
forging contribution information. In this experiment, a malicious node joined the federated learning
process by copying its own backdoor attack dataset and forging its identity. The experimental results
are shown in Fig. 7.

As can be seen from the experimental results, when the number of malicious nodes reaches 2,
the attack rate on the benchmark algorithm FedAVG is nearly 100%, indicating that at this time
the malicious nodes have fully achieved their attack purpose and successfully left the backdoor. The
similarity-based judgement proposed in this study can achieve almost 100% defense effect when more
than 2 identical malicious nodes appear. And when only 1 malicious node appears, the attack rate
reaches 100%. This phenomenon is chiefly attributed to the mutual resemblance among the bona
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fide nodes which wield an insignificantly minimal influence during the model fusion process, in stark
juxtaposition to the distinctive malevolent node, Sybil’s unique dissimilarity from other network nodes
results in its disproportionately elevated impact within the aggregation process. Nevertheless, a critical
flaw is detected in this methodology when disingenuous nodes are sparse and eschew the application of
duplicative Sybil stratagems, as such instances may adversely affect the overall efficacy of the training
protocol.

Figure 7: Impact of malicious nodes number on attack rate in Sybil attack scenario

To summarize, the similarity judgment approach propounded herein offers robust resilience
against attacks, notwithstanding its diminished effectiveness in scenarios featuring a singular malicious
node. It is noteworthy to acknowledge that the incursion rate during singular node vulnerabilities does
not scale significantly, thereby implying the meager viability of the proposed scheme in such limited
circumstances.

4.3 Federated Learning Algorithm

In order to reduce the computational load and communication overhead of the FLs process,
this summary mainly compares the popular traditional FL algorithms, such as FedSGD, FedAvg,
FedProx, etc. The MNIST dataset was used to train the model in the same environment, and the
accuracy, training time and calculation time ratio were recorded.

Defined as the fraction of time a specific device expends in executing computational tasks
relative to the total duration of the collective computing activities, the calculation time ratio serves
as a pivotal metric for evaluating the device’s engagement in computational endeavors. Enhanced
algorithmic computational efficiency is correlated with decreased training periods and heightened
share of computational time. A detailed exposition juxtaposing prevalent algorithms is illustrated in
Table 3.

As can be seen from the table, FedRep demonstrates a minimum 15% increase in accuracy
compared to alternative algorithms, attributed to the distinctive substitution method it employs
to prioritize precision. However, under conditions where data lacks independence and uniform
distribution, the client encounters challenges wherein newly discovered feature vectors fail to perform
satisfactorily in the test set. It is evidently unreasonable to regard the local model as the definitive
global model, thereby presenting a key challenge that necessitates resolution and validation within
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Federated Learning (FL) environments. Consequently, to enhance the algorithm’s rationality and
robustness, numerous scholars integrate fitting values into conventional loss functions to harmonize
model aggregation rationale. For instance, a loss component is incorporated into FedAvg to gauge the
disparity between model predictions and actual targets.

Table 3: Common FL algorithms

Algorithm Precision Training time/s Calculation time
ratio/%

FedSGD 0.797 1.7689 32.6
FedAvg [24] 0.799 1.3687 37.6
FedAvg + loss [24] 0.805 1.7606 32.9
FedProx [27] 0.799 1.6289 34.3
FedRep [45] 0.974 2.1425 42.7
FedAsync [46] 0.835 1.4764 100.0

In a highly heterogeneous environment, devices face additional challenges when performing FL
tasks. For example, there may be differences in the computing and communication capabilities of
devices, and the data distribution may also exhibit characteristics that are not independent and equally
distributed. FedProx is a generalization and reconstruction of FedAvg algorithm, with its principal
innovation lying in the introduction of a proximal term to deal with heterogeneity in FL, and it has
more stable and accurate convergence behavior.

FedAsync achieves a 100% efficiency ratio in computational time, attributable to the direct
transmission of parameters to the server post-model aggregation, precluding the necessity for nodes
to complete their uploads. Nevertheless, this necessitates the central node to sustain communication
channels and computational resources, impeding the attainment of decentralization objectives.

The disparity in accuracy among algorithms aside from FedRep is marginal, approximately 1%.
Not only does the FedAvg algorithm exhibit the briefest training duration, but it also excels in equip-
ment utilization. Therefore, the MLchain framework proposed in this study is implemented based
on FedAvg algorithm. This section underscores that algorithm comparability is not of paramount
importance. Each algorithm is devised for a specific environment or circumstance, and a single
experiment cannot fully explain the energy efficiency of the algorithm. The demonstration of an
algorithm’s efficacy may necessitate the creation of a highly heterogeneous environment incurring
substantial costs.

5 Lightweight Blockchain Resource Management Scheme Attempt

In this section, FedAvg + PoW is introduced into the MLchain framework, and the scheme is put
into the intrusion detection system for testing. In the simulation of real resource redundancy scenarios,
KDD datasets are used for model training to further verify the possibility of applications of FL based
on blockchain.

To streamline node management, the conventional global model within the original block is
substituted with a file address (referred to as the file hash value), and the actual model file is stored
in a database. This modification effectively minimizes the performance overhead arising from ledger
storage in the blockchain. The current research leverages the InterPlanetary File System (IPFS) to
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enable this functionality. The essence lies in organizing nodes within the network into a distributed file
system while employing a more efficient hash-addressing scheme for resource indexing. Notably, IPFS,
which remains an ongoing open-source initiative, lacks a direct file deletion interface, thus obviating
the need to expunge historical data by simply overwriting it. Consequently, IPFS offers the capability
to permanently retain the most recent files amidst frequent upload and download operations, aligning
perfectly with the objectives of this investigation.

Diverging slightly from the aforementioned approach, users acquire the file hash value by verifying
the blockchain ledger, subsequently transmitting it to the interplanetary file system. Upon receipt and
verification of the hash value as valid, the system furnishes the model file to the user. It is imperative
to highlight that files transmitted between nodes necessitate encryption and decryption procedures
before plaintext visibility can be achieved.

To ensure impartial comparison, three sets of experiments—comprising FL, BFL, and the
enhanced framework delineated in this section—are performed under an equivalent number of
iterations. To uphold data integrity and consistency, the experiments are conducted on virtual
machines within a standardized environment, thereby mitigating the impacts of system or hardware
discrepancies to the greatest extent feasible.

As shown in Fig. 8, the experimental results reveal that BFL exhibits a consistently prolonged
execution duration, illustrating an augmented ratio in computation time vis-à-vis iterations. Further-
more, the discernible divergence between BFL and the comparator groups accentuates progressively
over time. The juxtaposition underscores that the mere amalgamation of blockchain technology with
FL fails to substantially alter the precision rate, while inducing constraints on computation and
storage capacities. The integration of block chain inevitably imposes a substantial temporal overhead.
Remarkably, the enhanced MLchain framework boasts a performance superiority of 10% over the
conventional BFL framework. Intriguingly, the efficacy of the MLchain framework manifests more
prominently with escalating iteration counts. Consequently, a strategic trade-off surfaces, wherein
computational resources are leveraged to fortify resilience against cyber assaults. The decision-making
process necessitates a case-by-case evaluation of the situational exigencies.

Figure 8: Comparison of convergence times for FL, BFL and final MLchain
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The NSL-KDD dataset, renowned for its canonical status in intrusion detection research, is
characterized by swift convergence and universal applicability across most algorithms. Consequently,
a comparative analysis was conducted encompassing traditional Federated Learning protocols along-
side the experimental configurations. The outcomes of the four algorithmic models are summarized
in Table 4 for comprehensive review and examination.

Table 4: Comparison of experimental results for each model

Model Accuracy Precision Recall F1

SVM 99.34% 99.62% 98.81% 99.2%
FL 98.33% 98.75% 98.23% 98.5%
BFL 98.79% 98.53% 99.04% 98.8%
MLchain 99.34% 98.87% 98.77% 99.1%

The outcomes of the four sets of models demonstrate a high degree of similarity. However, the
blockchain-driven federated learning framework not only upholds recognition accuracy but also safe-
guards user privacy, thus bearing significant relevance for practical implementations. Furthermore, the
integration of blockchain technology plays a pivotal role in averting model collapse stemming from a
singular device malfunction.

Conclusively, within the conventional setting, there exists scant variance in the ultimate precision
levels across the four experimental sets. The incorporation of blockchain technology modestly impacts
the pace of convergence while increasingly spotlighting transmission efficiency during intermediate
and advanced iterations commensurate with growing data magnitudes.

6 Conclusion

This study proposes a lightweight federated learning chain framework with node management
support, enhancing model accuracy through node management components and proof-of-work
mechanisms. The study explores the continuous improvement of model accuracy and device utilization
efficiency via an incentive mechanism and rational node management strategies. Robustness and
accuracy assessments are conducted under diverse attack scenarios. To streamline the blockchain and
alleviate block congestion, the InterPlanetary File System is incorporated to manage excessive blocks.

Compared with the traditional BFL model, the MLchain scheme in this study exhibits a minimum
10% enhancement, with further gains anticipated as redundant data accumulates. Empirical analyses
affirm this finding. This research contributes a pioneering approach in applying blockchain technology
and federated learning, particularly beneficial for applications necessitating federated learning like
smart city edge security, vehicular network diagnostics, and IoT information classification and
traceability. This proposed scheme not only bolsters federated learning reliability but also optimizes
blockchain throughput, bearing practical and widespread utility.

However, the final scheme’s performance is contingent on specific conditions and carries various
limitations:

Lack of formulaic theoretical proof. Federated learning has always been a very controversial
algorithm, which is embodied in the highly heterogeneous environment or the data is not independent
and equally distributed.



4510 CMC, 2024, vol.79, no.3

Lack of local model assessments. In order to guarantee the precision of the model and avoid
suboptimal training outcomes attributable to premature overfitting, it is imperative to ascribe distinct
weighting factors to various parameters when computing the evaluation metric.

Application scope tailored to dataset availability, imposing constraints on generalizability beyond
the intrusion detection system supported by the NSL-KDD dataset.

Inability to express the heterogeneity that may exist in real systems. This impediment arises from
the constrained access to experimental apparatus. Should the computational velocity of one subset
of users be doubled in comparison to the other subset, each outcome necessitates repetitive and
independent assessment to warrant the reliability and stability of the experimental findings.
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