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ABSTRACT

When building a classification model, the scenario where the samples of one class are significantly more than those
of the other class is called data imbalance. Data imbalance causes the trained classification model to be in favor of
the majority class (usually defined as the negative class), which may do harm to the accuracy of the minority class
(usually defined as the positive class), and then lead to poor overall performance of the model. A method called
MSHR-FCSSVM for solving imbalanced data classification is proposed in this article, which is based on a new
hybrid resampling approach (MSHR) and a new fine cost-sensitive support vector machine (CS-SVM) classifier
(FCSSVM). The MSHR measures the separability of each negative sample through its Silhouette value calculated
by Mahalanobis distance between samples, based on which, the so-called pseudo-negative samples are screened
out to generate new positive samples (over-sampling step) through linear interpolation and are deleted finally
(under-sampling step). This approach replaces pseudo-negative samples with generated new positive samples one
by one to clear up the inter-class overlap on the borderline, without changing the overall scale of the dataset. The
FCSSVM is an improved version of the traditional CS-SVM. It considers influences of both the imbalance of sample
number and the class distribution on classification simultaneously, and through finely tuning the class cost weights
by using the efficient optimization algorithm based on the physical phenomenon of rime-ice (RIME) algorithm
with cross-validation accuracy as the fitness function to accurately adjust the classification borderline. To verify
the effectiveness of the proposed method, a series of experiments are carried out based on 20 imbalanced datasets
including both mildly and extremely imbalanced datasets. The experimental results show that the MSHR-FCSSVM
method performs better than the methods for comparison in most cases, and both the MSHR and the FCSSVM
played significant roles.
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1 Introduction

Imbalanced data classification is not uncommon in various applications. The identification of
financial fraud [1] and market research [2] in the financial field, pathological image recognition [3]
and disease detection [4] in the medical field, network intrusion detection [5] and spam information
identification [6] in the network security field, as well as fault detection [7] and object inspection task

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2024.048062
https://www.techscience.com/doi/10.32604/cmc.2024.048062
mailto:zhubo20110720@163.com


3978 CMC, 2024, vol.79, no.3

[8] in the industrial field are all too often encountered with imbalanced data. The available samples
of the more noteworthy class, such as the fraudulent instance, the positive case, the spam, and the
machine failure are usually far less than those of the opposite class, which can be obtained relatively
easily but are not so noteworthy. The noteworthy class is commonly called a positive class or minority
class, while the opposite class is called a negative class or majority class. Although the positive class
is accompanied by higher misclassification costs, it always gets poor classification precision for the
traditional classifiers taking no account of data imbalance are naturally biased to the negative class.
Scholars have proposed many methods to conquer this problem, which can be divided into three types,
namely the data preprocessing approaches, the algorithm approaches, and the hybrid approaches.

The data preprocessing approaches are mainly based on resampling methods, which can be divided
into over-sampling, under-sampling, and hybrid sampling methods, and experts in the field consider
the hybrid sampling methods to be the best [9]. The Synthetic Minority Over-Sampling Technique
(SMOTE) proposed by Chawla et al. [10] is the most famous over-sampling method, which randomly
selects one from k nearest neighbors of the positive sample to generate a new positive sample by linear
interpolation with a random number within the range (0, 1) as the parameter. However, the SMOTE
does not fully consider the distribution of adjacent samples, so it may cause serious inter-class overlap.
Han et al. [11] proposed the Borderline SMOTE method, which only performs nearest-neighbor linear
interpolation on a few samples on the borderline, making the distribution of the synthesized positive
samples more reasonable. He et al. [12] proposed Adaptive Synthetic Sampling (ADASYN), which
automatically determines the number of generated samples based on the density of positive samples
in the feature space. More samples are generated in areas with lower density, while fewer samples
are generated in areas with higher density, which is beneficial for preventing the production of noisy
samples. Random Under-Sampling (RUS) is the simplest under-sampling method, which randomly
removes negative samples to achieve data balance, so there is a high risk of information loss. Compared
to the over-sampling and the under-sampling methods, the hybrid sampling strategy has significant
advantages. Goel et al. [13] proposed the SMOTE-Tomek, which firstly oversamples positive samples
using SMOTE and then uses Tomek links to clean up the Tomek sample pairs on the borderline
to reduce noisy samples. Agrawal et al. [14] proposed the SMOTE and Clustered Under-sampling
Technique (SCUT), the SMOTE is used for over-sampling positive samples, while Expectation
Maximization (EM) clustering is used for under-sampling negative samples, which performs better
on datasets with high imbalance ratio. Batista et al. [15] proposed SMOTEENN, which uses SMOTE
to over-sample data first and then uses the Edited Nearest Neighbor (ENN) to clean out the samples
with most near neighbors belonging to the opposite class. Due to its significant effect in removing noisy
samples, it has become a research hotspot. In recent years, Generative Adversarial Networks (GANs)
have been introduced as an oversampling method in imbalanced data processing. Sharma et al. [16]
proposed a novel hybrid approach including SMOTE and GAN (SMOTifed-GAN), which lets the
samples SMOTE-generated as input for GAN instead of random numbers, to some extent, improve
classification performance. Furthermore, Alberto et al. [17] proposed a new method based on pseudo-
negative sampling (PNS), which refers to the samples labeled as negative but very close to the positive
samples. The Pseudo-negative samples need to be identified and corrected to be the positive samples
to balance the dataset. The PNS needs not to change the overall number of samples, so it does not
introduce new noisy samples or cause potential information loss. But it simply identifies pseudo-
negative samples based on the Euclidean distance between samples, lacking consideration of the overall
distribution of the dataset.

Dealing with imbalanced data problems from an algorithmic perspective is mainly based on
cost-sensitive learning and ensemble learning. The cost-sensitive learning corrects the classifier’s
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discrimination against negative classes by assigning a greater misclassification cost to the positive
class compared to that of the negative class. The academic community has proposed cost-sensitive
versions of various traditional classifiers, such as Logistic Regression (LR), Support Vector Machine
(SVM), and Back Propagation Neural Network (BPNN), among which SVM, as a classification model
that performs well under small sample size, has received research on its cost sensitivity. Article [18]
effectively solved the problem of dataset imbalance based on cost-sensitive semi-supervised laplacian
support vector machines. Iranmehr [19] improved the performance of classifiers by modifying the
loss function based on SVM combined with cost-sensitive algorithms. These proposed methods all
introduce cost weights into SVM, and to some extent alleviate the problem of low accuracy of
positive classes caused by data imbalance. However, they only roughly determine class cost weights
based on the imbalanced ratio of the dataset, because classification accuracy is not only impacted
by data imbalance, but also by distribution characteristics such as inter-class overlap, sub-concepts,
and abstractly small sample size. Therefore, these types of methods cannot get a higher classification
effect, even greatly sacrificing the accuracy of the negative classes while improving the accuracy of the
positive class, and then damaging the overall classification performance. Moreover, Adaptive Cost-
Sensitive Boosting (Ada-Cost), Easy Ensemble, and e-Xtreme Gradient Boosting (XG-Boost) [20]
are ensemble learning algorithms designed to address class imbalance issues. Article [21] successfully
applied the Ada-Cost algorithm with SVM as the base classifier to address imbalanced data, achieving
promising results. Article [22] validated the feasibility and effectiveness of the proposed Easy Ensemble
approach, which transforms the imbalanced class learning problem into a subproblem of ensemble-
based balanced learning. In general, ensemble learning can enhance overall performance by leveraging
the strengths of multiple models, while also possessing favorable characteristics such as robustness and
strong generalization ability.

Some scholars have combined data resampling with classification algorithms for imbalanced data
learning to improve recognition accuracy. Liu [23] proposed an integrated classification algorithm
based on random hybrid resampling and genetic algorithm. Firstly, random sampling was used
to reduce the number of negative class samples, and the SMOTE method was used to generate
positive samples to obtain multiple balanced training data subsets. Based on these, multiple XG-Boost
classifiers were trained, and then the outputs were integrated by using a simple voting method to obtain
the final classifier. Khattak et al. [24] proposed an improved Balance Cascade algorithm that integrates
Bootstrap and XG-Boost, in which, the positive samples are sampled using Bootstrap and the negative
samples are sampled using the Balance Cascade algorithm, while XG-Boost is used as the base
classifier. Zhao et al. [25] proposed an imbalanced data classification method based on under-sampling
and an improved SVM. The proposed method is more stable in classifying imbalanced data and
exhibits better performance in many cases. Hussein et al. [26] proposed a hybrid approach combining
data pre-processing techniques and SVM optimized by improved Simulated Annealing (SA). It
generated new minority samples removed redundancy and duplicated majority samples to equalize the
number of samples between classes first, and then used the improved SA algorithm to search optimum
penalty parameters for the SVM. Their experimental results demonstrate that the approach performs
better on ten public imbalanced datasets in comparison with the conventional SVM.

To sum up, the existing resampling methods have the problems of not fully considering the spatial
distribution of data and requiring manual specification of sampling ratios, and the existing cost-
sensitive and ensemble learning methods have the problems of the decision of cost weights are too
simple to accurately capture sample distribution characteristics. To overcome these problems, this
article proposes a new method named MSHR-FCSSVM for imbalanced classification. Where the
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MSHR means a Hybrid Resampling method based on Silhouette values calculated on Mahalanobis
distance and the FCSSVM means a Fine Cost Sensitive SVM.

The contributions of this article are as follows:

• A new hybrid resampling method called MSHR is proposed, which uses Mahalanobis distance
to calculate Silhouette values of samples to better reflect the distribution of the data. The
physical phenomenon of the rime-ice (RIME) algorithm is used to find more reasonable pseudo-
negative samples, which are based on generating new positive samples that are more correspond
to the distribution of existing positive samples.

• Proposed a fine cost-sensitive SVM model called FCSSVM, the cost weights of which are finely
determined by the RIME algorithm to make the classification hyper-plane more in accord with
the distribution of the imbalanced data.

• Combining the proposed hybrid resampling method with the fine cost-sensitive SVM model to
handle imbalanced data classification.

The remainder of this article is organized as follows. Section 1 introduces the key theoretical
knowledge that supports the proposed method in this article; Section 2 provides a detailed explanation
of the proposed methods and models; Section 3 introduces the experimental datasets and evaluation
metrics; Section 4 presents the data experiments and result analysis; Section 5 concludes this article.

2 Related Theories
2.1 Silhouette Value Is Calculated Based on Mahalanobis Distance

The Silhouette score [27] is usually used to evaluate the performance of a clustering algorithm,
which is achieved by averaging the Silhouette value of each sample. The Silhouette value measures the
similarity between each sample and the class it belongs to, as well as the difference between it and the
other classes. The silhouette value of the sample xi can be calculated by Eq. (1).

S (i) = b (i) − a (i)
max {a (i) , b (i)} (1)

where a (i) indicates the minimum distance between xi and samples belonging to the same class, and
b (i) samples belonging to the other class.

The Silhouette value of a sample is within the range (−1, 1). It means that the sample more
strongly belongs to its class than to other classes as it is approaching 1, and the opposite is true as
it is approaching −1. So, the bigger the Silhouette value, the better the separability of this sample.
Silhouette value is usually calculated based on Euclidean distance. It is proposed in this article to
calculate Silhouette values based on Mahalanobis distance.

Mahalanobis distance was proposed by Indian statistician P. C. Mahalanobis [28]. Unlike
Euclidean distance, it is based on the overall sample set, considering the connections between the
various features of the samples. By introducing the correlation and variance between samples, it can
better measure the similarity between samples, so it is commonly used in clustering [29], anomaly
detection [30], and pattern recognition [31]. The Mahalanobis distance DM

(
xi, xj

)
between the sample

xi and the sample xj can be calculated by Eq. (2).

DM

(
xi, xj

) =
√

(x − y)
T S−1 (x − y) (2)

where, S−1 is the inverse of the covariance matrix of the dataset, as well as x and y are feature vectors for
xi and xj, respectively. Yao et al. [32] oversampled imbalanced data based on improved Mahalanobis
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distance and achieved good results; Siddappa et al. [33] applied the Local Mahalanobis Distance
Learning (LMDL) method to the Nearest Neighbor learning method to improve performance of
imbalanced classification. This article proposes calculating the Silhouette value based on Mahalanobis
distance to reflect the distribution characteristics of samples more accurately under imbalanced data.

2.2 Cost-Sensitive SVM (CS-SVM)

CS-SVM is a variant of SVM designed for imbalanced data and has been commonly used in
binary classification [34], multi-classification [35], and regression problems. CS-SVM assigns different
misclassification cost weights to different classes and sets higher weights for the positive samples to
give them to be given more attention when making predictions, thereby to some extent improving
accuracy for the positive class.

Assuming that there are m positive samples and n negative samples, the CS-SVM model can be
obtained by resolving the following convex quadratic programming problem.

min
1
2

‖ w ‖2 +C1

n∑
i=1

ζi + C2

m∑
j=1

ζj (3)

where the w is the normal vector of the classification hyper-plane, the C1 and C2 are cost weights
for the negative class and the positive class, and the C2 should be set to be greater than the C1 under-
imbalanced data. The ζi and ζj are slack variables, which are used to indicate the deviation degrees from
the correct classification borderline for the negative samples and the positive samples, respectively.

2.3 RIME Algorithm

The RIME optimization algorithm proposed by Su et al. [36] in February 2023 is a new meta-
heuristic algorithm inspired by the growth behavior of frost ice in nature. It includes three steps:
(1) Simulate the motion of soft fog particles in fog and ice. This step continuously switches between
large-scale exploration and small-scale exploration, so it can achieve high efficiency and precision. (2)
Simulate the cross behavior between hard fog agents. This step achieves effective information exchange
between ordinary agents and optimal agents. (3) Select the most optimal solution by filtering out
suboptimal solutions in the population by greedy selection.

The initial population R is composed of n rime agents Si (i = 1, 2, . . . , n), each of which consists
of d particles xij (i = 1, 2, . . . , n j = 1, 2, . . . , d).

R =

⎡
⎢⎢⎣

S1

S2

...
Si

⎤
⎥⎥⎦ ; Si = [

xi1 xi2 . . . xij

]
(4)

The updated position of each rime agent in the condensation process can be calculated by Eq. (5).

Rnew
ij = Rbest,j + r1 · cos θ · β · (

h
(
Ubij − Lbij

) + Lbij

)
, r2 < E (5)

where the Rbest,j is the jth particle of the best rime agent, the r1 is a random number within the range
(−1, 1), which controls the direction of particle motion. The variable cos θ changes with the number
of iterations, as shown in Eq. (6). The β is environmental factor is used to simulate the effect of the
outer environment, which changes with the number of iterations according to Eq. (7) to accelerate
convergence. The h is adhesion degree, which is a random number within the range (0, 1) is used to
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control the distance between two rime particles. The Ubij and Lbij are the upper and lower bounds of
the escape space of particles, respectively. The E is coefficient of being attached, increases following
iterations and decides the convergence probability of an agent, as shown in Eq. (8). The r2 is a random
number within the range (0, 1), which is used to decide whether to update the particle positions together
with the E.

θ = π · t
10 · T

(6)

where the t is the current iteration number and the T is the maximum iteration number.

β = 1 −
[

w · t
T

]
/w (7)

where the w is a constant with a default value equaling to 5, which is used to control the number of
segments of the step function β.

E = √
(t/T) (8)

In strong gale conditions, hard-rime growth is simpler and more regular than soft-rime growth,
which can be used to update the algorithm between agents, so that the particles of the algorithm can
be exchanged and the convergence of the algorithm and the ability to jump out of the local optimum
can be improved.

Rnew
ij = Rbest,j, r3 < Fnormr (Si) (9)

where Rnew
ij is the new position of the updated particle, and Rbest,j is the jth particle of the best rime-

agent in the rime-population R. The Fnormr (Si) indicates the normalized value of the current agent
fitness value, indicating the chance of the ith rime-agent being selected. r3 is a random number within
(−1, 1).

3 Methodology and Model Structure
3.1 Hybrid Resampling Based on Silhouette Value

As mentioned earlier, the PNS method proposed in recent years implements hybrid sampling by
replacing pseudo-negative samples with positive samples directly. It has the advantage of not changing
the overall number of the imbalanced dataset used in this experiment, so introducing no new noisy
samples and causing no information loss. However, it simply identifies pseudo-negative samples by
calculating Euclidean distances between samples, lacking consideration of the overall distribution of
the dataset. In addition, directly flipping the class label to obtain a new positive sample also lacks
exploration of the classification borderline.

The MSHR proposed in this article has made two improvements to the PNS. One is to identify
pseudo-negative samples by calculating the Silhouette value of each negative sample based on
Mahalanobis distance. As mentioned earlier, the Mahalanobis distance incorporates the distribution
information of samples, and the Silhouette value is essentially an accurate measure of the intra-class
similarity and the inter-class difference. Therefore, it is more suitable for identifying the pseudo-
negative samples, which are marked as negative but closer to positive. In addition, the RIME together
with a validation dataset and SVM classifier are used to determine the threshold for identifying
pseudo-negative samples more cautiously. The second is to linearly interpolate each pseudo-negative
sample with the most representative positive sample, which has the maximum Silhouette value, to
generate a new positive sample to replace the pseudo-negative sample. Where the reciprocal of the



CMC, 2024, vol.79, no.3 3983

Imbalance Ratio (IR) of the dataset is used as the interpolation parameter to make the generated new
positive sample retreat from the distribution range of the negative class to that of the positive class
precisely. Therefore, the risk of inter-class overlap is reduced effectively.

The schematic diagram of the proposed hybrid sampling method is shown in Fig. 1, and the
specific measurement depends on different datasets.

Figure 1: Example plot of MSHR

The MSHR algorithm process is shown in the pseudo-code (Algorithm 1: MSHR). In the
pseudocode below, D+ and D− represent the positive and negative samples in an imbalanced dataset.

Algorithm 1: Pseudocode of MSHR

Input: {(xi, yi)}|D−|
i=1 ,

{(
xj, yj

)}|D+|
j=1

Output: {(xi, yi)}|D−−i|
i=1 ,

{(
xj, yj

)}|D++i|
j=1

1. For i ← 1 to |D−| do
2. For j ← 1 to |D+| do
3. xi, xj ← DM−01

(
xi, xj

)
4. min DM−01

(
xi, xj

)
5. End
6. End
7. For i ← 1 to |D−| do
8. For j ← 1 to |D−| do
9. xi, xj ← DM−00

(
xi, xj

)
10. min DM−00

(
xi, xj

)
11. End
12. End
13. For i ← 1 to |D−| do
14. min DM

(
xi, xj

)
, min DM−00

(
xi, xj

) ← S− (i) followed by Eq. (1)
15. S− (i) less than the threshold x is a pseudo-negative sample

(Continued)
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Algorithm 1 (continued)
16. Calculate the S+ (i) of D+, max (S+ (i)) corresponds to the representative positive sample x∗

17. xnew = 1
IR

× x∗ +
(

1 − 1
IR

)
× x−

18. D+ append xnew, D−delete x−

19. End
20. End

3.2 Fine Cost-Sensitive SVM Method

Unlike most of the existing cost-sensitive models and ensemble learning algorithms that solve
imbalanced classification problems by simply determining cost weights based on IR, the FCSSVM
applies the RIME algorithm to finely tune the class cost weights. The class cost weights are set to be
particles, and the mean of five performance evaluation metrics (described in Section 3.2) obtained on
a given validation dataset is set as the fitness function value. FCSSVM considers the impact of class
distribution as well as data imbalance to achieve better overall performance. The specific algorithm
process is shown in the pseudo-code (Algorithm 2: FCSSVM):

Algorithm 2: Pseudocode of FCSSVM
Input: X , class_weight ← fitness = 0.2 × (AUC + F1 + Recall + ACC + G − mean)

Output: X̂ , Class_ŵeight, the trained parameters
Initialize the rime population R
Get the current optimal agent and optimal fitness
1. While t ≤ T
2. Coefficient of adherence E calculated by Eq. (8)
3. If {r_2} E
4. Update rime agent location by the soft-rime search
5. Strategy
6. End If
7. If {r_3} Normalizefitness of {S_i}
8. Cross updating between agents by the hard-rime
9. puncture mechanism
10. End If
11. If F

(
Rnew

i

)
FRi

)
12. Select the optimal solution and replace the suboptimal solution

using the positive greedy selection mechanism
13. End If
14. t = t + 1
15. End While

3.3 Model Structure

The structure of the proposed MSHR-FCSSVM is shown in Fig. 2.
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Figure 2: The structure of MSHR-FCSSVM

4 Dataset and Evaluation Metrics
4.1 Dataset

Eighteen datasets are selected from the UCI database (https://archive.ics.uci.edu/datasets) and the
Keel database (https://sci2s.ugr.es/keel/datasets.php) and two datasets are synthesized for the experi-
ment, eleven of which are mildly imbalanced, and the others are extremely imbalanced. According to
Noorhalim et al. [37], a dataset with 1.9 < IR < 9 can be defined as mildly imbalanced, and a dataset
with IR>=9 is extremely imbalanced. These datasets are described in detail in Table 1.

Table 1: The information of datasets

IR category Dataset Number of samples Number of features IR

pageblocks 548 10 164
abalone19 4174 8 129.44
abalone20vs8910 1916 8 72.69
ecoli 336 7 71.5

Mildly class winequalityred3vs5 691 11 68.1
imbalanced winequalitywhite39vs5 1482 11 58.28

winequalitywhite3vs7 900 11 44
yeast1289vs7 947 8 30.6
synthetic dataset2 2000 2 19
ecoli0146vs5 280 6 13
synthetic dataset1 2000 2 9

(Continued)

https://archive.ics.uci.edu/datasets
https://sci2s.ugr.es/keel/datasets.php
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Table 1 (continued)

IR category Dataset Number of samples Number of features IR

ecoli3 336 7 8.6
wine_red 1599 11 7.04
newthyroid 215 5 5.14
SPECT 269 27 3.89

Extremely class ecoli1 336 7 3.36
imbalanced haberman 306 3 2.78

yeast1 1484 8 2.46
phoneme 5404 5 2.41
pima 768 8 1.87

4.2 Model Evaluation Metrics

Six commonly used performance metrics for imbalanced data classification, namely Precision,
accuracy (ACC), Recall, F1 score, the area under curve (AUC), and geometric mean of sensitivity
(G-mean) [38] are introduced, which are given by the Eqs. (10) to (15). These metrics are calculated
based on the confusion matrix shown in Table 2, where True Positive (TP) represents the number of
actual positive samples predicted as positive, True Negative (TN) represents the number of actual
negative samples predicted as negative, False Negative (FN) represents the number of actual positive
samples predicted as negative, and False Positive (FP) represents the number of actual negative samples
predicted as positive.

Precision = TP
TP + FP

(10)

ACC = TP + TN
TP + FP + TN + FN

(11)

Recall = TP
TP + FN

(12)

F1 = 2 × Precision × Recall
Precision + Recall

(13)

G − mean =
√

TP
TP + FN

× TN
TN + FP

(14)

AUC = 1 −
FP
N

+ FN
M

2
(15)

Table 2: Confusion matrix

Predicted positive Predicted negative

True positive TP FN
True negative FP TN
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The ACC metric reflects the overall classification accuracy of the model; The Precision and Recall
metrics respectively reflect the model’s ability to eliminate negative samples and recognize positive
samples; The F1 score, G-mean, and AUC all reflect the comprehensive performance of the model in
identifying positive and negative samples.

4.3 Experimental Confirmation and Results Discussion

4.3.1 Experimental Environment

The experiments are conducted on a computer with an i7-12700F CPU and 32 GB memory. The
related software includes the Windows 11.0 OS, PyCharm 2020, the Python 3.8 library, and the Scikit-
learn1.1.1 library. All the algorithms proposed in this article are implemented through programming
with Python language.

4.3.2 Performance Experiment on the MSHR Method

To verify the effectiveness of the proposed MSHR method, it is applied to experiment on the given
20 imbalanced datasets. A standard SVM considering no cost sensitivity is used as the classifier here
to ensure the result is only caused by the resampling method. To make the experimental results more
reliable, the 5-fold cross-validation method is applied, and a quarter of the training data are used for
running the RIME to set up the Silhouette value threshold X for finding out the pseudo-negative
samples. Some resampling methods mentioned earlier, i.e., the SMOTE, the ADASYN, the RUS, the
SMOTEENN, the SMOTifed-GAN, and the PNS are used for comparison. The experimental results
are shown in Table 3.

Table 3: Results of SMOTE, ADASYN, RUS, SMOTEENN, SMOTifed-GAN, PNS and MSHR

Dataset Metrics SVM

SMOTE ADASYN RUS SMOTEENN SMOTifed-
GAN

PNS MSHR

pageblocks

AUC 0.560 0.574 0.561 0.560 0.606 \ 0.654
F1 0.206 0.247 0.209 0.206 0.205 \ 0.209
Recall 0.124 0.178 0.124 0.124 0.108 \ 0.124
ACC 0.906 0.888 0.907 0.906 0.906 \ 0.908
G-mean 0.288 0.278 0.296 0.288 0.316 \ 0.319

abalone19

AUC 0.797 0.788 0.686 0.794 0.809 0.812 0.823
F1 0.258 0.256 0.226 0.254 0.297 0.272 0.310
Recall 0.790 0.773 0.895 0.807 0.862 0.823 0.866
ACC 0.804 0.802 0.480 0.782 0.731 0.620 0.733
G-mean 0.354 0.350 0.309 0.349 0.296 0.388 0.301

abalone20vs8910

AUC 0.832 0.839 0.700 0.837 0.825 0.843 0.885
F1 0.257 0.243 0.053 0.233 0.268 0.262 0.322
Recall 0.720 0.740 0.760 0.740 0.713 0.800 0.820
ACC 0.941 0.935 0.641 0.932 0.886 0.789 0.819
G-mean 0.334 0.326 0.144 0.318 0.326 0.361 0.348

(Continued)
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Table 3 (continued)
Dataset Metrics SVM

SMOTE ADASYN RUS SMOTEENN SMOTifed-
GAN

PNS MSHR

ecoli

AUC 0.977 0.971 0.976 0.977 0.969 0.973 0.986
F1 0.972 0.962 0.970 0.970 0.964 0.966 0.972
Recall 0.989 0.996 0.989 0.992 0.964 0.982 0.985
ACC 0.976 0.967 0.974 0.974 0.970 0.971 0.976
G-mean 0.972 0.963 0.970 0.971 0.964 0.967 0.972

winequalityred3vs5

AUC 0.612 0.609 0.629 0.590 0.650 0.653 0.753
F1 0.140 0.139 0.141 0.136 0.154 0.150 0.155
Recall 0.650 0.650 0.750 0.650 0.769 0.750 0.800
ACC 0.575 0.570 0.513 0.532 0.585 0.560 0.592
G-mean 0.215 0.214 0.225 0.209 0.257 0.237 0.150

winequalitywhite39vs5

AUC 0.618 0.621 0.607 0.608 0.645 0.654 0.677
F1 0.262 0.263 0.356 0.252 0.321 0.322 0.379
Recall 0.480 0.500 0.280 0.620 0.606 0.600 0.679
ACC 0.751 0.738 0.923 0.596 0.708 0.718 0.793
G-mean 0.325 0.328 0.376 0.328 0.375 0.382 0.442

winequalitywhite3vs7

AUC 0.795 0.787 0.618 0.776 0.803 0.779 0.822
F1 0.158 0.147 0.197 0.134 0.201 0.226 0.255
Recall 0.775 0.775 0.275 0.775 0.787 0.500 0.700
ACC 0.815 0.799 0.947 0.777 0.817 0.766 0.838
G-mean 0.261 0.251 0.221 0.238 0.279 0.282 0.323

yeast1289vs7

AUC 0.685 0.679 0.643 0.671 0.652 0.677 0.704
F1 0.136 0.130 0.102 0.115 0.178 0.186 0.249
Recall 0.616 0.616 0.566 0.666 0.725 0.733 0.600
ACC 0.750 0.738 0.714 0.675 0.809 0.778 0.825
G-mean 0.217 0.211 0.176 0.205 0.236 0.277 0.209

synthetic dataset2

AUC 0.733 0.737 0.704 0.751 0.729 0.785 0.841
F1 0.227 0.228 0.222 0.231 0.225 0.227 0.226
Recall 0.383 0.383 0.376 0.425 0.372 0.500 0.512
ACC 0.774 0.782 0.692 0.746 0.719 0.776 0.775
G-mean 0.252 0.252 0.216 0.264 0.236 0.243 0.285

ecoli0146vs5

AUC 0.905 0.900 0.878 0.903 0.875 0.922 0.969
F1 0.817 0.779 0.617 0.801 0.857 0.821 0.793
Recall 0.825 0.825 0.825 0.825 0.750 0.820 0.850
ACC 0.975 0.966 0.925 0.971 0.972 0.967 0.976
G-mean 0.831 0.798 0.641 0.812 0.866 0.827 0.797

synthetic dataset1

AUC 0.711 0.699 0.695 0.682 0.689 0.718 0.735
F1 0.354 0.319 0.318 0.302 0.335 0.368 0.375
Recall 0.639 0.700 0.700 0.679 0.600 0.710 0.717
ACC 0.768 0.699 0.691 0.683 0.750 0.728 0.752
G-mean 0.396 0.380 0.379 0.363 0.356 0.423 0.416

(Continued)
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Table 3 (continued)
Dataset Metrics SVM

SMOTE ADASYN RUS SMOTEENN SMOTifed-
GAN

PNS MSHR

ecoli3

AUC 0.892 0.893 0.895 0.903 0.897 0.904 0.907
F1 0.623 0.609 0.557 0.619 0.603 0.683 0.743
Recall 0.900 0.914 0.971 0.942 0.528 0.742 0.600
ACC 0.886 0.877 0.835 0.879 0.918 0.926 0.931
G-mean 0.656 0.647 0.616 0.660 0.607 0.690 0.648

wine_red

AUC 0.713 0.706 0.624 0.667 0.725 0.757 0.769
F1 0.360 0.348 0.281 0.312 0.396 0.440 0.455
Recall 0.812 0.837 0.820 0.847 0.803 0.715 0.722
ACC 0.638 0.607 0.477 0.532 0.715 0.639 0.717
G-mean 0.433 0.429 0.373 0.402 0.454 0.421 0.494

newthyroid

AUC 0.874 0.897 0.796 0.877 0.871 0.896 0.923
F1 0.818 0.726 0.664 0.812 0.713 0.725 0.640
Recall 0.771 0.914 0.657 0.785 0.842 0.842 0.785
ACC 0.944 0.886 0.890 0.939 0.860 0.932 0.950
G-mean 0.827 0.743 0.684 0.821 0.777 0.777 0.850

SPECT

AUC 0.770 0.747 0.826 0.746 0.772 0.816 0.781
F1 0.592 0.551 0.624 0.529 0.602 0.642 0.783
Recall 0.727 0.727 0.909 0.818 0.713 0.914 0.935
ACC 0.796 0.759 0.777 0.703 0.794 0.818 0.791
G-mean 0.603 0.568 0.657 0.565 0.612 0.658 0.789

ecoli1

AUC 0.888 0.889 0.886 0.892 0.914 0.875 0.937
F1 0.775 0.753 0.747 0.758 0.840 0.795 0.786
Recall 0.900 0.940 0.940 0.940 0.866 0.820 0.829
ACC 0.882 0.861 0.856 0.865 0.895 0.892 0.898
G-mean 0.784 0.770 0.764 0.773 0.745 0.797 0.790

haberman

AUC 0.635 0.615 0.624 0.626 0.669 0.620 0.699
F1 0.449 0.440 0.422 0.452 0.513 0.511 0.528
Recall 0.412 0.493 0.343 0.500 0.517 0.843 0.525
ACC 0.740 0.673 0.757 0.686 0.737 0.667 0.741
G-mean 0.454 0.458 0.438 0.462 0.494 0.478 0.537

yeast1

AUC 0.714 0.711 0.716 0.698 0.716 0.681 0.776
F1 0.591 0.586 0.593 0.574 0.592 0.558 0.593
Recall 0.760 0.844 0.737 0.867 0.782 0.872 0.725
ACC 0.694 0.655 0.707 0.627 0.704 0.600 0.712
G-mean 0.606 0.616 0.605 0.610 0.609 0.598 0.603

phoneme

AUC 0.834 0.830 0.830 0.833 0.819 0.866 0.893
F1 0.731 0.721 0.724 0.728 0.712 0.703 0.731
Recall 0.908 0.938 0.913 0.916 0.804 0.820 0.803
ACC 0.803 0.786 0.796 0.798 0.823 0.804 0.825
G-mean 0.745 0.741 0.740 0.743 0.722 0.667 0.733

(Continued)
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Table 3 (continued)
Dataset Metrics SVM

SMOTE ADASYN RUS SMOTEENN SMOTifed-
GAN

PNS MSHR

pima

AUC 0.716 0.713 0.709 0.725 0.796 0.797 0.799
F1 0.637 0.637 0.629 0.653 0.665 0.610 0.679
Recall 0.711 0.735 0.705 0.809 0.728 0.962 0.615
ACC 0.717 0.707 0.710 0.699 0.723 0.658 0.733
G-mean 0.642 0.643 0.633 0.666 0.670 0.678 0.680

As can be seen from Table 3, compared with the other methods, the MSHR takes an advantage
in the overall performance. For three of the extremely imbalanced datasets (i.e., the ecoli, winequali-
tyred3vs5, and winequalitywhite39vs5), and two of the mildly imbalanced datasets (i.e., the wine_red
and pima), it gets the highest values on 4 of the 5 metrics.

Fig. 3 contrasts the sample numbers of the two classes in each dataset before and after being
resampled by the MSHR. It can be seen that the number imbalance of each dataset is reduced,
nonetheless, it is still far from being eliminated. It is because the MSHR is by nature to make the
classification borderline cleaner by diminishing the pseudo-negative samples and generating new
positive samples accordingly, but not to pursue merely an abstract balance on sample numbers.

Figure 3: Positive and negative sample numbers before and after using MSHR

To further study how the MSHR acts on an imbalanced dataset, a simulated imbalanced dataset
(IR = 10) containing only 3 features is generated for visualization. Fig. 4a shows the raw dataset
displayed in a 3D scatter chart. The positive samples and the negative samples overlapped on the
borderline. Figs. 4b to 4h show the results given by the MSHR and the other resampling methods.
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Figure 4: Results given by the MSHR and the other resampling methods

The SMOTE method leads to a more serious inter-class overlap for it does not discriminate
between samples inside and outside the overlap area when choosing core samples to generate new
samples. The ADASYN method generates new samples only based on the positive samples nearing the
borderline and lacks the consideration of the overall distribution of the positive class, so it intensifies
inter-class overlap, too. The RUS method effectively reduces negative samples but loses important
samples in favor of constructing classification boundaries for its way of randomly choosing negative
samples to delete. The SMOTEENN method relieves inter-class overlap to some extent through
cleaning of samples being regarded as noise, but it is still not well for lacking consideration of the
overall distribution of the dataset. The SMOTifed-GAN is limited by the quality of the samples
generated by SMOTE and the training of the GAN model, therefore, it is greatly affected by the
characteristics of the sample distribution, it has the same problem as SMOTE. The PNS method
generates very few positive samples for it identifies pseudo-negative samples based on spatial Euclidean
distance and may cease to be effective as the clustering centers of positive and negative samples are far
apart. Additionally, the new samples generated by it are still trapped in the overlapping area for they
are simply replacements of the pseudo-negative samples. In contrast, the MSHR can effectively screen
out the pseudo-negative samples based on the Silhouette value calculated by Mahalanobis distance and
generates new positive samples more agreed with the distribution of the positive class through linear
interpolation, so making the borderline cleaner and is more in favor of classification. We conducted
runtime statistics on MSHR with other resampling methods, and the results are shown in Table 4.

As can be seen from Table 4, compared with traditional resampling methods, MSHR has a
longer runtime due to the optimization process. However, the training requirements of the GAN
network result in its time consumption being longer than MSHR. According to the literature review,
there are still many studies that have introduced intelligent optimization algorithms in the process of
resampling. A method named Ant Colony Optimization Resampling (ACOR) was proposed in [39],
and a genetic optimization resampling method was proposed in [40]. They all significantly improved
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the performance of imbalanced classification through parameter optimization at the cost of efficiency.
Therefore, though our method has no advantages on account of time efficiency, given its better overall
performance, it still can be regarded as valuable for classification applications that do not lay too much
stress on efficiency.

Table 4: Comparison of resampling time between MSHR and other resampling methods

Dataset Run time (s)

SMOTE ADASYN RUS SMOTEENN SMOTifed-GAN PNS MSHR

ecoli 5.987 6.353 6.009 5.932 22.928 5.914 16.877
ecoli0146vs5 6.232 6.094 6.756 8.477 19.991 6.343 16.104
ecoli3 6.486 6.048 7.765 8.203 23.222 6.025 16.889
newthyroid 7.451 6.949 6.133 7.167 18.240 6.114 14.473
SPECT 6.711 6.141 6.078 6.004 20.404 5.973 23.092
ecoli1 6.037 7.286 6.680 6.509 23.460 5.980 16.723
haberman 7.969 6.763 6.130 5.964 20.095 6.012 16.663

4.3.3 Performance Experiment on the MSHR-FCSSVM

To verify the effectiveness of the proposed MSHR-FCSSVM method, comparative experiments
were conducted with some other methods. In which, the Ada-cost, the Easy-Ensemble, and the XG-
Boost are both ensemble learning methods reported to be effective, the CS-SVM is a commonly used
cost-sensitive SVM whose class cost weights are set directly according to IR. In addition, the LR
and the BPNN are introduced into our model framework to replace SVM for comparison, i.e., the
MSHR-FCSLR and the MSHR-RCSBPNN. Five runs of the 5-fold cross-validation method are used
to ensure the reliability of the experiment, and the average results for each dataset are shown in Table 5.

Table 5: Performance comparison of MSHR-FCSSVM with other methods

Dataset Metrics Ada-cost Easy-
ensemble

XG-
boost

CS-SVM MSHR-
FCSLR

MSHR-
FCSBPNN

MSHR-
FCSSVM

pageblocks

AUC 0.815 0.831 0.792 0.823 0.813 0.838 0.592
F1 0.423 0.414 0.300 0.185 0.208 0.200 0.250
Recall 0.754 0.645 0.400 1.000 0.109 0.119 0.144
ACC 0.663 0.719 0.983 0.102 0.736 0.818 0.914
G-mean 0.433 0.438 0.315 0.319 0.318 0.315 0.446

abalone19

AUC 0.741 0.730 0.500 0.588 0.765 0.774 0.817
F1 0.268 0.137 0.000 0.115 0.352 0.336 0.385
Recall 0.495 0.785 0.000 1.000 0.796 0.802 0.952
ACC 0.981 0.676 0.992 0.108 0.763 0.852 0.893
G-mean 0.271 0.222 0.000 0.187 0.296 0.285 0.301

(Continued)
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Table 5 (continued)
Dataset Metrics Ada-cost Easy-

ensemble
XG-
boost

CS-SVM MSHR-
FCSLR

MSHR-
FCSBPNN

MSHR-
FCSSVM

abalone20vs8910

AUC 0.814 0.810 0.887 0.603 0.802 0.792 0.888
F1 0.156 0.108 0.234 0.126 0.325 0.307 0.337
Recall 0.706 0.960 0.399 1.000 0.854 0.600 0.860
ACC 0.978 0.783 0.965 0.114 0.918 0.976 0.973
G-mean 0.265 0.233 0.259 0.216 0.314 0.316 0.339

ecoli

AUC 0.983 0.960 0.989 0.984 0.985 0.983 0.987
F1 0.959 0.953 0.943 0.946 0.965 0.971 0.972
Recall 0.938 0.957 0.964 0.992 0.982 0.980 0.985
ACC 0.971 0.961 0.952 0.952 0.963 0.968 0.976
G-mean 0.959 0.954 0.944 0.947 0.956 0.962 0.972

winequality-red3vs5

AUC 0.695 0.697 0.634 0.447 0.703 0.753 0.799
F1 0.133 0.124 0.123 0.128 0.147 0.152 0.158
Recall 0.400 0.700 0.300 1.000 0.500 0.603 0.800
ACC 0.982 0.695 0.966 0.117 0.985 0.857 0.620
G-mean 0.223 0.252 0.215 0.220 0.242 0.240 0.254

winequality-
white39vs5

AUC 0.635 0.706 0.821 0.525 0.690 0.707 0.709
F1 0.294 0.275 0.156 0.130 0.348 0.341 0.432
Recall 0.280 0.720 0.200 0.919 0.800 0.820 0.850
ACC 0.979 0.693 0.962 0.215 0.466 0.544 0.677
G-mean 0.296 0.269 0.162 0.219 0.340 0.362 0.440

winequality-white3vs7

AUC 0.722 0.802 0.806 0.348 0.800 0.798 0.824
F1 0.213 0.234 0.158 0.043 0.215 0.213 0.255
Recall 0.450 0.850 0.150 1.000 0.696 0.695 0.705
ACC 0.756 0.856 0.962 0.022 0.817 0.812 0.842
G-mean 0.246 0.249 0.170 0.149 0.299 0.298 0.311

yeast1289vs7

AUC 0.619 0.718 0.773 0.728 0.750 0.758 0.798
F1 0.241 0.235 0.184 0.107 0.261 0.225 0.272
Recall 0.266 0.733 0.300 0.700 0.612 0.566 0.533
ACC 0.950 0.704 0.960 0.643 0.831 0.825 0.870
G-mean 0.208 0.204 0.200 0.201 0.208 0.209 0.215

synthetic dataset2

AUC 0.749 0.740 0.745 0.687 0.806 0.795 0.849
F1 0.336 0.322 0.328 0.256 0.356 0.335 0.338
Recall 0.345 0.333 0.339 0.223 0.468 0.436 0.525
ACC 0.781 0.751 0.773 0.916 0.835 0.831 0.832
G-mean 0.402 0.391 0.399 0.255 0.396 0.392 0.403

ecoli0146vs5

AUC 0.857 0.950 0.940 0.947 0.846 0.878 0.952
F1 0.674 0.611 0.759 0.585 0.600 0.552 0.800
Recall 0.750 1.000 0.650 0.800 0.750 0.750 0.860
ACC 0.950 0.907 0.971 0.917 0.928 0.803 0.924
G-mean 0.695 0.663 0.779 0.614 0.612 0.616 0.797

(Continued)
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Table 5 (continued)
Dataset Metrics Ada-cost Easy-

ensemble
XG-
boost

CS-SVM MSHR-
FCSLR

MSHR-
FCSBPNN

MSHR-
FCSSVM

synthetic dataset1

AUC 0.651 0.663 0.591 0.607 0.636 0.621 0.774
F1 0.333 0.304 0.322 0.314 0.418 0.396 0.409
Recall 0.400 0.580 0.487 0.296 0.606 0.597 0.718
ACC 0.853 0.738 0.834 0.925 0.699 0.692 0.805
G-mean 0.339 0.346 0.345 0.309 0.395 0.385 0.417

ecoli3

AUC 0.860 0.926 0.906 0.886 0.850 0.847 0.940
F1 0.524 0.614 0.460 0.459 0.719 0.708 0.727
Recall 0.600 1.000 0.342 0.742 0.835 0.829 0.828
ACC 0.986 0.868 0.919 0.818 0.904 0.895 0.934
G-mean 0.530 0.666 0.506 0.497 0.723 0.721 0.734

wine_red

AUC 0.565 0.553 0.821 0.579 0.509 0.537 0.597
F1 0.658 0.568 0.293 0.733 0.501 0.584 0.738
Recall 0.682 0.725 0.182 0.998 0.516 0.525 0.985
ACC 0.800 0.711 0.847 0.582 0.590 0.506 0.597
G-mean 0.659 0.601 0.374 0.760 0.521 0.509 0.762

newthyroid

AUC 0.925 0.866 0.896 0.993 0.916 0.913 0.939
F1 0.701 0.695 0.702 0.599 0.713 0.713 0.717
Recall 0.757 0.771 0.742 1.000 0.800 0.714 0.800
ACC 0.972 0.962 0.958 0.781 0.876 0.853 0.883
G-mean 0.708 0.717 0.756 0.654 0.735 0.725 0.757

SPECT

AUC 0.823 0.678 0.716 0.761 0.792 0.854 0.858
F1 0.644 0.468 0.121 0.387 0.618 0.632 0.854
Recall 0.527 0.654 0.072 0.436 0.706 0.727 0.800
ACC 0.801 0.692 0.796 0.732 0.714 0.811 0.799
G-mean 0.850 0.489 0.172 0.394 0.851 0.853 0.862

ecoli1

AUC 0.774 0.876 0.940 0.917 0.908 0.901 0.941
F1 0.649 0.759 0.741 0.727 0.766 0.765 0.796
Recall 0.653 0.880 0.746 0.819 0.779 0.781 0.790
ACC 0.941 0.874 0.886 0.860 0.856 0.823 0.898
G-mean 0.654 0.767 0.747 0.734 0.728 0.713 0.778

haberman

AUC 0.546 0.601 0.669 0.606 0.714 0.715 0.740
F1 0.339 0.431 0.044 0.424 0.431 0.421 0.434
Recall 0.337 0.625 0.025 0.663 0.525 0.565 0.575
ACC 0.845 0.590 0.737 0.529 0.721 0.738 0.741
G-mean 0.340 0.460 0.070 0.456 0.459 0.460 0.461

yeast1

AUC 0.746 0.707 0.738 0.740 0.755 0.713 0.778
F1 0.569 0.572 0.433 0.550 0.569 0.573 0.580
Recall 0.790 0.725 0.318 0.874 0.774 0.569 0.804
ACC 0.712 0.719 0.758 0.586 0.618 0.774 0.664
G-mean 0.597 0.594 0.465 0.592 0.598 0.598 0.604

(Continued)
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Table 5 (continued)
Dataset Metrics Ada-cost Easy-

ensemble
XG-
boost

CS-SVM MSHR-
FCSLR

MSHR-
FCSBPNN

MSHR-
FCSSVM

phoneme

AUC 0.905 0.915 0.906 0.888 0.912 0.908 0.917
F1 0.741 0.717 0.685 0.640 0.716 0.704 0.763
Recall 0.835 0.836 0.622 0.964 0.889 0.874 0.905
ACC 0.849 0.806 0.832 0.680 0.810 0.826 0.834
G-mean 0.741 0.725 0.688 0.679 0.768 0.753 0.772

pima

AUC 0.746 0.747 0.827 0.809 0.785 0.698 0.794
F1 0.635 0.673 0.592 0.676 0.676 0.636 0.717
Recall 0.722 0.782 0.500 0.798 0.681 0.907 0.694
ACC 0.714 0.736 0.759 0.734 0.693 0.636 0.699
G-mean 0.706 0.680 0.604 0.685 0.712 0.666 0.722

As can be seen from Table 5, the proposed MSHR-FCSSVM performs best from the look on
the whole. It outperforms the others on two metrics in 4 datasets, on three metrics in 14 datasets,
and on four metrics in 1 dataset. The Ada-cost, the Easy Ensemble, the XG-Boost, and the CS-SVM
behave better on a certain metric of some datasets. The Ada-cost method updates the cost value of
misclassified samples in each round of training based on the previous round of testing results. More
negative samples have a chance to be increased cost values than the positive ones, leading the Acc
metric to improve steadily. The Easy Ensemble method simply splits the negative samples into multiple
subsets of equal size as that of the positive class to achieve balance in sample number, which may result
in loss of distribution information of the data, so behave worst and only win on a metric for 5 datasets.
The XG-Boost method sets class weight parameters according to the IR directly, so it improves the
performance of the positive class to some extent but it may come at the cost of significant performance
reduction of the negative class. The CS-SVM gets very high Recall values on most of the datasets. This
is because it excessively enlarges the class weight of the positive class based on the IR, which makes
the positive samples classified finely but impairs the accuracy of negative samples meanwhile, so they
do not perform well on the comprehensive metrics. The MSHR-FCSLR is a maximum likelihood
estimation algorithm that is easy to implement but often has poor classification performance when
the feature space is large. A typical example includes SPECT. The MSHR-FCSBPNN is a local search
optimization algorithm that is prone to getting stuck in local optima, and the network parameters are
greatly affected by the characteristics of the samples.

Two reasons can be given for the advantage of our method. The first is the contribution of the
MSHR on resampling datasets, and the second is that the FCSSVM seeks a fine cost-weight balance
between the two classes to achieve good comprehensive performance.

4.3.4 Comparison of the RIME Algorithm and the Particle Swarm Optimization (PSO)

Taking the pageblocks dataset with the highest IR as an example, the optimization performances
of the RIME and the PSO on the cost weights of the FCSSVM were explored. The (a) and (b) of
Fig. 5 show the change processes of the fitness value, respectively, which is set as the arithmetic mean
of the introduced five metric values given by the optimized FCSSVM on the validation dataset, and
50 iterations were recorded. To make the comparison fair, these two algorithms are all run 5 times.
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Figure 5: Comparison of the optimization process of RIME and PSO

Five runs of the RIME all achieved a higher fitness value (0.723) in no more than 10 iterations,
while those of the PSO only got 0.627. In addition, the RIME only takes 48.17 s for 50 iterations as
the PSO takes 192.34 s. That means the RIME takes an advantage over the PSO on both optimization
results and efficiency.

5 Conclusion and Future Works

This article proposes an imbalanced data classification method consisting of a new hybrid resam-
pling method MSHR and a fine cost-sensitive SVM FCSSVM. Among them, the MSHR measures
sample separability based on the sample Silhouette value calculated by Mahalanobis distance to iden-
tify pseudo-negative samples, and based on which to generate new positive samples (over-sampling),
and finally removes the pseudo-negative samples (under-sampling). The MSHR not only alleviates
the imbalance in the sample number of the two classes, but also to some extent suppresses the inter-
class overlapping, making class boundaries cleaner, and thus improving classification performance.
The FCSSVM is different from traditional cost-sensitive models which only consider sample number
imbalance and directly obtain cost weights based on the IR value. It also considers the impact of class
distribution on classification performance by finely optimizing the cost weight parameters based on
a fitness value reflecting the validation accuracy, so it can improve the classification performance
further. The experimental results show that the proposed method can achieve better classification
performance on both mildly and extremely imbalanced datasets, and the application of the RIME
optimization algorithm also plays an important role in it. Our future work will focus on how to better
optimize the threshold of sample Silhouette value for discriminating pseudo-negative samples and the
cost weight values of classifiers, especially improvement of the optimization efficiency.
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