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ABSTRACT

The precise detection and segmentation of tumor lesions are very important for lung cancer computer-aided
diagnosis. However, in PET/CT (Positron Emission Tomography/Computed Tomography) lung images, the lesion
shapes are complex, the edges are blurred, and the sample numbers are unbalanced. To solve these problems,
this paper proposes a Multi-branch Cross-scale Interactive Feature fusion Transformer model (MCIF-Transformer
Mask RCNN) for PET/CT lung tumor instance segmentation, The main innovative works of this paper are as
follows: Firstly, the ResNet-Transformer backbone network is used to extract global feature and local feature in
lung images. The pixel dependence relationship is established in local and non-local fields to improve the model
perception ability. Secondly, the Cross-scale Interactive Feature Enhancement auxiliary network is designed to
provide the shallow features to the deep features, and the cross-scale interactive feature enhancement module
(CIFEM) is used to enhance the attention ability of the fine-grained features. Thirdly, the Cross-scale Interactive
Feature fusion FPN network (CIF-FPN) is constructed to realize bidirectional interactive fusion between deep
features and shallow features, and the low-level features are enhanced in deep semantic features. Finally, 4 ablation
experiments, 3 comparison experiments of detection, 3 comparison experiments of segmentation and 6 comparison
experiments with two-stage and single-stage instance segmentation networks are done on PET/CT lung medical
image datasets. The results showed that APdet, APseg, ARdet and ARseg indexes are improved by 5.5%, 5.15%,
3.11% and 6.79% compared with Mask RCNN (resnet50). Based on the above research, the precise detection and
segmentation of the lesion region are realized in this paper. This method has positive significance for the detection
of lung tumors.
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NSCLC Non-Small Cell Lung Cancer
CIFEM Cross-scale Interactive Feature Enhancement Module
FPN Feature Pyramid Network
CIF-FPN Cross-scale Interactive Feature fusion FPN network
AP Average Precision
IoU Intersection over Union
AR Average Recall
BoT Bottleneck Transformer

1 Introduction

Lung cancer is a disease in which cells proliferat randomly due to a genetic mutation. Lung
cancer can be classified into central-type lung cancer and peripheral-type lung cancer according
to the lesion location. Early central lung cancer is a tumor confined to the bronchial cavity or
infiltrating the lobar/segmental bronchial wall, without invasion of lung parenchyma and metastasis
[1]. There are early-stage peripheral lung cancer, is a tumor with its diameter ≤2 cm, and without
metastasis. Compared with peripheral lung cancer, central lung cancer overlaps with hilus pulmonis
and cardiovascular, so central lung cancer is more difficult to detect [2]. Lung tumors can be divided
into benign tumors (such as pulmonary hemangioma) and malignant tumors (such as lung cancer)
according to the lesion characters. Lung malignant tumors can be further divided into primary lung
malignant tumors and metastatic lung tumors. Primary lung cancer can be further divided into small
cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) [3] according to the cell difference.
Therefore, lung cancer is one of the most life-threatening cancers in the world [4]. In lung tumors, lung
cancer accounts for a relatively high proportion, and early detection and diagnosis are crucial to the
treatment of patients.

Medical imaging technology is the routine and preferred method for the detection and staging of
lung cancer. It is useful for medical research, computer-aided diagnosis, radiotherapy and evaluation
of surgical results [5]. The patient pathological information can be obtained by medical images in a
non-invasive way and improve the diagnosis accuracy. Medical images are divided into anatomical
structure images and metabolic function images. Anatomical structure images can provide anatomical
structure information of organs and location information, such as CT images, which have high spatial
resolution [6]. However, it does not provide detailed molecular information, such as the metabolic
function of cancer cells. Metabolic function images can show the metabolism of the human body by
injecting radionuclides into the body. Because cancer cells are more active than normal cells and tissues
and take up more 18F-Fluorine DeoxyGlucose (18F-FDG), these radioisotopes accumulate in cancer
areas and have high metabolic properties.

Therefore, The metabolic information of the cells in the lesion area can be clearly detected, such
as PET images, which have obvious contrast degree between malignant tumors and normal tissues, but
the anatomical structure information cannot be provided, the lesions cannot be accurately located, and
the image spatial resolution is low [6]. Hence, how to fuse PET and CT images is getting more and more
important [7]. The medical imaging of lung tumors is complex. The lung cancer lesions show burrlike
characteristics of different sizes, most of them have cavitation sign, air bronchiole sign, honeycomb
sign, ground glass sign, and a few also have calcification sign. PET/CT images can make full use
of the complementary information of CT and PET modal images, It can help doctors make more
precise diagnoses and assessments. Therefore, PET/CT images have become an effective tool for tumor
detection, recognition, staging and monitoring [8]. Effective fusion strategy can improve image quality
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[9]. However, it is a time-consuming, laborious and subjective task to extract the features of lesion
lesion by hand. Instance segmentation is an effective method to solve this problem, this paper proposes
a Multi-branch Cross-scale Interactive Feature fusion Transformer model (MCIF-Transformer Mask
RCNN) for PET/CT lung tumor instance segmentation, which is a further development of Mask
RCNN and a positive attempt for precise segmentation about lung tumors.

2 Related Work

Image segmentation is to segment medical images into several regions of interest with specific
properties and unique meanings based on some similar features in medical images. Semantic segmen-
tation is used to predict the classification of each pixel in the input medical image. Different from
the previous two, instance segmentation is based on pixel-level semantic segmentation combined with
the target detection task. It is to perform instance-level segmentation and object-level recognition
of organs or lesions in the detection box, and its segmentation accuracy and efficiency are better
[10]. In addition, the traditional segmentation method can only deal with relatively simple scenes.
Due to the complex features of medical images, blurred edges between different tissues or between
tissues and lesions, irregular shape of lesion regions, and irregular beating of organs such as the
heart leading to the existence of data noise, the traditional methods are prone to the problem of
missed and false detections, and the segmentation effect is not ideal. In recent years, deep learning
methods based on convolutional neural networks have been widely used in the field of computer vision,
especially in the medical image processing fields such as CT images, X-ray images, ultrasonic images,
PET images and MRI images, which can achieve accurate localization and segmentation of lesion
regions. Example instance segmentation models such as Wan et al. [11], Mask RCNN [12], Cascade
RCNN [13], YOLACT [14], and SOLO [15] prove that convolutional neural networks can not only
achieve good results at the pixel level, but also enable instance-level learning and effectively provide
object-by-object labeling of target object information. In 2023, Xinjun et al. [11] proposed a model
of Multi-scale context information fusion for instance segmentation. In 2017, He et al. [12] proposed
the Mask R-CNN model, which added mask prediction branch and used ROI Align instead of ROI
Pooling based on Faster R-CNN to effectively solve the two-stage instance segmentation problem. In
2019, Huang et al. [16] proposed Mask Scoring R-CNN model, which based on Mask R-CNN using
MaskIoU head for mask scoring, which effectively improves the accuracy of instance localization
or mask segmentation. In 2019, Zhou et al. [17] proposed the Corner Mask-RCNN model, which
adds corner point prediction head to fit the edge parts and effectively obtain the details of instance.
In 2020, Homayounfar et al. [18] proposed the LevelSet R-CNN model, which uses Chan-Vese level
set segmentation method based on the Mask R-CNN model, and obtains adaptive hyperparameters,
feature tensors and symbolic distance function (TDSF) initialization by inputting ROI into a series of
convolutions, which effectively solves the problem of Mask R-CNN output mask with low resolution.
In 2021, Lin et al. [19] proposed S-Mask-RCNN, which adds a spatial attention mechanism on the
basis of the feature extraction network ResNet. In 2021, Long et al. [20] proposed P-Mask-RCNN,
which based on the probability of occurrence of pulmonary embolism, that is, to extract anchor points
from candidate regions to eliminate most invalid anchor points. Transformer technology are applied
to instance segmentation, Tao et al. [21] discussed the current development trend of Transformer
technology in depth from the perspective of Four Secrets of Vision Transformer, which has good
guidence. Although many researchers propose relate research work on instance segmentation and
achieve some results, the application of instance segmentation in medical images are limited in some
aspects. In addition, for non-small cell lung cancer (such as adenocarcinoma), Small lesion size leads
to the lung tumor features are not obvious. The lung tumor appearances lead to changes in adjacent
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structures, Hence, Due to the poor ability of the model to express lesion features in medical images,
the ability of the model to extract lesion features at different scales is insufficient. Aiming to these
problems, this paper proposes a multi-branch cross-scale interactive feature fusion transformer model
for PET/CT lung tumor instance segmentation. The main contributions are as follows:

(1) ResNet-Transformer backbone network is designed. This method combines the global and
local feature information in the lung image, and the multi-head self-attention BoT module is used in the
feature extraction process of lung tumors, it is good to improve the feature representation ability from
multiple dimensions by establishing a long-distance dependence relationship between global pixels at
the top level.

(2) A cross-scale interactive feature enhancement auxiliary network is constructed. The Cross-
scale Interactive Feature Enhancement Module (CIFEM) is used to interactively associate the feature
maps of different scales extracted from the backbone network. The lesion feature expression of the
backbone is enhanced by aggregating adjacent context information to effectively supplement the
missing details information.

(3) A cross-scale interactive feature fusion FPN network is designed. The Cross-scale Interactive
Feature Fusion Module (CIFM) is used to conduct bidirectional interactive fusion between low-
level detail information and high-level semantic information. The focus on tumor lesions is further
enhanced by aggregating the feature information of adjacent stages.

3 MCIF-Transformer Mask RCNN Model Design
3.1 Overall Structure of MCIF-Transformer Mask RCNN Model

MCIF-Transformer Mask RCNN (Multi-branch Cross-scale Interactive feature Fusion Trans-
former model) is proposed in this paper. The overall structure of the model is shown in Fig. 1. The main
steps of the model are as follows: 1) The ResNet-Transformer backbone network is used to extract
tumor lesion features of different scales in PET/CT lung images, which is divided into five stages. In
Stage 0, Stage 1, Stage 2 and Stage 3, basic residual blocks are used to extract features. In Stage 4,
the multi-head self-attention BoT module is used to extract non-local feature information. 2) The
cross-scale interactive feature enhancement auxiliary network is designed to supplement the shallow
information into the deep features. The fine-grained attention to the lesion region is further enhanced
by using the cross-scale interactive feature enhancement module. 3) The cross-scale interactive feature
fusion FPN network is constructed to carry out the bidirectional interactive fusion between deep and
shallow features, and more accurate and effective lesion features are obtained by enhancing low-level
information such as details, location and texture in deep features. 4) The feature map is travelled by
sliding window in RPN, and the foreground and background are distinguished in the corresponding
anchor box and the classification probability is calculated, and the offset of coordinate points is
regressed. 5) The classification, boundary box and mask information of the lesions are regressed
through three prediction branches.

There are 3 parts in the MCIF-Transformer Mask RCNN model: Feature extraction, feature
fusion and feature prediction. The innovation work of this paper mainly focuses on the first two
steps. For the feature extraction part, the backbone and auxiliary networks are constructed to enhance
the perception ability of fine-grained features of the lesion. The ResNet-Transformer backbone
network is used for feature extraction of preprocessed PET/CT lung tumor images. The BoT module
with global attention is used to replace the basic residual block at the top level to establish the
dependency of long-distance features among pixels in non-local space. The cross-scale interactive
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feature enhancement auxiliary network is designed to aggregate adjacent feature maps of different
resolutions and re-label the importance of spatial and channel features of lung tumors, so as to enhance
the feature expression of lesions in the backbone network. In the feature fusion part, the cross-scale
interactive feature fusion FPN network is designed to achieve bidirectional interactive fusion between
low-level feature information and high-level semantic information of different scales features, and
further enhance the feature expression ability of the model.

Figure 1: Structure of MCIF-transformer mask RCNN model

3.2 ResNet-Transformer Backbone Network

The resnet50 is used as the backbone of the ResNet-Transformer backbone network [22], In Stage
0 to Stage 3, the modules are composed of the basic bottleneck residual block. In Stage 4, the module
is composed of the Bottleneck Transformer (BoT) [23], its structure is shown in Fig. 1. In this network,
the non-local spatial information of the highest feature map is extracted by adding a multi-head self-
attention module. The ability of the model to extract lesion features from PET/CT lung images is
improved by focusing on the global region, so as to obtain more accurate lesion features.

The PET/CT lung tumor images are inputted into the backbone network and processed in Stage
0 to Stage 4 successively from low-level to high-level. In Stage 0, Stage 1, Stage 2 and Stage 3, lesion
feature images of different sizes are extracted by basic residual blocks, and 3, 4 and 6 bottleneck blocks
are stacked in series in each residual block of C2, C3, C4. This is a way to model the lesion globally
and extract the global features. In Stage 4, the three bottleneck blocks in the top level are replaced with
BoT modules, which are composed of 1 × 1 convolution, average pooling, multi-head self-attention
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(MHSA), batch normalization (BN) and ReLU activation function. MHSA is used to replace the 3
× 3 spatial convolution at the corresponding position in ResNet bottleneck block to learn the global
information in high-level lung tumor feature maps, This is a way to model the lesion globally and
extract the global features, and the rich lesion association features in the lung image are learned by
modeling the remote semantic feature relationship. On the basis of capturing the original local lesion
information, the backbone network establishes the global dependence relationship between pixels and
learns the long-distance spatial correlation between pixels in the same feature map.

3.3 Cross-Scale Interactive Feature Enhancement Auxiliary Network

The feature map of superficial lung tumor has rich lesion details, such as contour, texture and
location, but lacks the coarse-grained semantic information of the overall image. The feature map of
deep lung tumor has semantic features, but lacks the fine-grained spatial information of the lesion
region. In order to extract more lesion features and pay full attention to the fine-grained information,
this paper designs an auxiliary network to achieve an interactive fusion of cross-scale shallow feature
information and deep semantic information. The cross-scale interactive feature enhancement module
is used to aggregate the feature maps of adjacent stages of the backbone network with different
resolutions, as shown in Fig. 2. So as to enhance the attention to lesion features between channels
and within each channel. Irrelevant noise except lesion is suppressed. In the feature extraction part,
the backbone and auxiliary network are used to achieve feature selection of global and adjacent tumor
features in lung images, so that the model could focus more on the lesion region.

Figure 2: Cross-scale interactive feature enhancement module

The cross-scale interactive feature enhancement auxiliary network is composed of five stages
(Stage 0, Stage 1, Stage 2, Stage 3, Stage 4). C1, C2, C3, C4 and C5 are feature layers that are extracted
from Stage 0 to Stage 4 separately. In Stage 1, low-level feature C1 and high-level feature C2 are cross-
scale fused by CIFEM1, and the results are added with high-level feature C2. The fusion results of
Stage 1 are used as the input of the feature fusion network and Stage 2. In Stage 2, C2, C3 and CIFEM1
output are fused by CIFEM2. The fusion results of Stage 2 are added with high-level feature C3. The
fusion results of Stage 2 are used as the input of the subsequent feature fusion network and Stage 3.
Similarly, Stage 3 and Stage 4 adopted the same cross-scale feature interactive enhancement method
as Stage 2.

The CIFEM is the key technology of the auxiliary network, as shown in Fig. 2. Through this cross-
scale feature interaction mechanism, the features in the five stages of the network are enhanced. In the
CIFEM module, this paper further optimizes the instance segmentation task of cross-scale features,
and realizes the fine-grained instance segmentation and coarse-grained semantic segmentation of lung
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tumors. Let i = 1, there only two adjacent feature layers C1 and C2 are inputted into CIFEM1. Let
i ≥ 2, there are 3 input feature maps about CIFEM2, CIFEM3 and CIFEM4, the previous feature
layer, the output of the previous CIFEM and the current feature layer.

The pseudo-code of CIFEM (Algorithm 1) is expressed as:

Algorithm 1: Cross-scale interactive feature enhancement module
Input: Input feature maps of adjacent scales: χi−1, χi, 3 ≤ i ≤ 5
Output: Output images CIFEMi

1: f(i−1,i) = Conv1×1 (χi−1) ⊕ χi/∗ After 1 × 1 convolution, χi−1 and χi feature maps are added and fused.
∗/
2: f(i−1,i,i−1) = f(i−1,i) ⊕ CIFEMi−1/∗ The f(i−1,i) and CIFEMi−1 are added and fused.∗/
3: fGroup = reshape

(
f(i−1,i,i−1)

)
/∗ Change the shape of the f(i−1,i,i−1) to group channels.∗/

4: cain, sain = chunk
(
fGroup

)
/∗ The feature map is divided into two parts along the channel dimension. ∗/

5: CA = σ (GlobalAvgPool (cain) × w1 ⊕ b1) × cain/∗ Processed by the channel attention mechanism.∗/
6: SA = σ (GN (sain) × w2 ⊕ b2) × sain/∗ Processed by spatial attention mechanism.∗/
7: CIFEMi = cs (concat (CA, SA))/∗ After concatenating the feature maps of channel and spatial
attention, the channel random mixing operation is used.∗/
End

The input of the CIFEM is composed of the adjacent feature layer of the previous feature layer
(χi−1), the current feature layer (χi) and the output of the previous CIFEM (CIFEMi−1), X ∈ RC×H×W .
Firstly, the channel and size of χi−1 are adjusted by 1 × 1 convolution operation, then the element-
level addition and fusion are carried out with χi, and then the element-by-element addition and fusion
are performed with CIFEMi−1 to obtain cross-scale input feature f(i−1,i,i−1). Secondly, it is processed by
SA Unit. First of all, the input feature f(i−1,i,i−1) is divided into G groups along the channel dimension,
f Group

k = [f1, . . . , fG] , f Group
k ∈ RC/G×H×W . Then each set of features is segmented, that is, divided into two

parts along the channel direction of f Group
k , and input channel attention branch and spatial attention

branch, cain, sain ∈ RC/2G×H×W . In CA, global average pooling (GAP) is firstly adopted to integrate
global spatial information for cain, and then sigmoid activation function is used to convert feature
mapping into probability activation value, so as to re-mark the importance of feature map channel. In
SA, Group Normalization (GN) is used to obtain the spatial lesion feature information by processing
sain, and then Fc (·) is used to strengthen the characteristic representation of sain. Then the CA and SA
outputs are spliced according to the number of channels to realize the integration of internal feature
information, f ′

k = concat (CA, SA) ∈ RC/G×H×W . Finally, all the converged sub-features are fused by
channel shuffle operation in channel dimension to obtain the final output graph. In this paper, cross-
scale proximity information is used to promote the model’s feature perception ability of the lesion
region. In different stages, the model can repeatedly focus on the features of the lesions with finer
scales and more distinguishable fine-grained, so as to enhance the degree of attention to the tumor
lesions in the lung images.

The specific process of the CIFEM is shown in formula (1):

CIFEMi = cs {σ [GlobalAvgPool (chunk (reshape (Conv1×1 (χi−1) ⊕ χi ⊕ CIFEMi−1))) × w1 ⊕ b1] ⊗ cain

+σ [GN (chunk (reshape (Conv1×1 (χi−1) ⊕ χi ⊕ CIFEMi−1))) × w2 ⊕ b2] ⊗ sain} (1)

In formula, χi−1 and χi respectively represent the feature of the adjacent upper layer and the current
feature. CIFEMi−1 represents the output of the previous CIFEM. cs (·) indicates channel shuffle
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operation. reshape (·) indicates the grouping of channels. GlobalAvgPool (·) indicates global average
pooling. σ indicates the sigmoid operation. ⊗ indicates multiply. ⊕ indicates element-level addition.
w1, w2 ∈ RC/2G×1×1, b1, b2 ∈ RC/2G×1×1.

3.4 Cross-Scale Interactive Feature Fusion FPN Network

In the FPN low-level network, the receptive field is small, which can capture the local features of
the lesions in the lung image, and has a strong detail perception ability. In the FPN high-level network,
the receptive field is large, the overall global features of lung images can be obtained, and the semantic
expression ability is strong. Therefore, the fusion of local low-level information and global high-level
information can effectively enhance the lesion region. For this reason, in the feature fusion part of this
paper, the bidirectional interactive fusion method from low-level to high-level and from high-level to
low-level is adopted, and the cross-scale complementary information between adjacent feature layers
is obtained through the down-up path and up-down path, as shown in Fig. 1. Among them, the down-
up path effectively strengthens the low-level feature information in the high-level feature layer, and the
up-down path effectively strengthens the high-level semantic information in the low-level feature layer.
The secondary fusion is used to enhance the feature expression of tumor lesions, effectively improving
the accuracy of lesion recognition.

The cross-scale interactive feature fusion FPN [24] network (CIF-FPN) includes Stage 1 to
Stage 4. In each stage, low-level features and adjacent high-level features are input into the cross-
scale interactive feature fusion module for processing, as shown in Fig. 3. The CIFM is interactively
integrated in the down-up path. The low-level information such as details, texture and location of
lesions in the high-level feature layer are continuously strengthened. Then the fusion features after
layer-by-layer interaction are added and fused successively by elements in the up-down path, so as to
strengthen the high-level semantic information in the low-level feature layer. The ability of the model
to express and identify the lesion region is enhanced by gathering the feature information of each stage.

Figure 3: Cross-scale interactive feature fusion module

The feature maps from Stage 1 to Stage 4 are used as the input of CIF-FPN, which are generated
by the backbone and auxiliary network. There are down-up paths and up-down paths in CIF-FPN.
Convolution and deconvolution operations are shown in Fig. 1, and the basic operations will not be
described here. In CIF-FPN, the first path is the down-up path. In Stage 2, C2 and C3 are inputted into
CIFM1 for interactive fusion. In Stage 3, C3 and C4 are inputted into CIFM2 for interactive fusion.
Similarly, in Stage 4, C4 and C5 are inputted into CIFM3 for interactive fusion. The channel number
of the feature map is adjusted by 1 × 1 convolution operation to 256. The second path is the up-down
path. The feature layer P5 is obtained by the first branch that the output of CIFM3 is adjusted by
3 × 3 convolution operation. The feature layer P6 is obtained by the second branch that the output of
CIFM3 is adjusted by max pooling operation. The feature layer P4 are obtained by 3 × 3 convolution
operation that the output of CIFM2 and the upsampled CIFM3 output are plused using pixel-by-
pixel addition. The feature layer P3 is obtained by 3 × 3 convolution operation that the results of the
upsampled Stage 3 and the output of CIFM1 are plused using pixel-by-pixel addition. The feature
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layer P2 is obtained by 3 × 3 convolution operation and the results of Stage 2 and the C2 are plused
using pixel-by-pixel addition. P2-P6 feature layers are used as input for the subsequent RPN.

The pseudo-code of CIFM (Algorithm 2) is expressed as:

Algorithm 2: Cross-scale interactive feature fusion module
Input: Input feature maps of adjacent scales: χi−1, χi, 3 ≤ i ≤ 5
Output: Output images CIFMi

1: f(i−1,i) = χi−1 ⊕ χi // χi−1, χi are fused element-wise
2: f(i−1,i)avg = AvgPool

(
f(i−1,i)

)
// The average pooling operation is performed on the fusion results

3: f(i−1,i) max = MaxPool
(
f(i−1,i)

)
// The Max pooling operation is performed on the fusion results

4: h = Conv1×1

(
Conv1×1

(
f(i−1,i)avg ⊕ f(i−1,i) max

))
// The pooled features are added and subjected to 1 × 1

convolution
5: z = σ (h) // The value domain is mapped between 0–1 after sigmoid processing
6: CIFMi = z × χi ⊕ χi // Processed by spatial attention mechanism
End

The input of the CIFM is the adjacent scale feature maps χi−1 and χi. Firstly, the low-level feature
map χi−1 and high-level feature map χi are added element-by-element, and the synthesized feature f(i−1,i)

is merged after average pooling and max pooling processing, and then the 1 × 1 convolution, ReLU
activation layer, 1 × 1 convolution and sigmoid activation function are used. The sigmoid activation
function makes the weight compression mapping between 0 and 1. The larger the coefficient is, the
more attention is paid to the pixel feature. Finally, the weight attention map is multiplied with the high-
level feature map χi and then added to obtain the final fusion feature map. In this paper, the cross-scale
interactive feature fusion module is used to further represent the lesion features. The secondary fusion
way is used to highlight the tumor features and suppress the irrelevant background noise.

The specific process of the CIFM is shown in formula (2):

CIFMi = σ {Conv1×1 [Conv1×1 (AvgPool (χi−1 ⊕ χi) ⊕ MaxPool (χi−1 ⊕ χi))]} ⊗ χi ⊕ χi (2)

In formula, AvgPool (·) indicates average pooling. MaxPool (·) indicates max pooling.

4 Experiments
4.1 Datasets

Medical imaging plays a key role in clinical applications in the fields of diagnosis, planning, surgery
and radiotherapy [25]. In this paper, PET/CT medical images can be used to better locate and segment
tumor lesion regions in lung images. The train datasets and test datasets of PET/CT modal medical
are shown in Fig. 4, and the corresponding annotated example images are shown in Fig. 5.
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Figure 4: PET/CT modal lung tumor medical images. (a) Train set and (b) test set

Figure 5: PET/CT lung tumor images and annotated example images

In this paper, the dataset, which is used in the experiment, is obtained from the original PET/CT
images of lung cancer patients provided by the nuclear medicine department of a Grade-A tertiary hos-
pital in Ningxia, and relevant clinicopathological diagnosis data are provided. The clinicopathological
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diagnosis data included textual information such as age, gender, tumor benign or malignant, medical
advice examination conclusion and clinical diagnosis. The PET/CT modal dataset includes 1052
sample images of patients in the age range of 29 to 76 years from January 2018 to June 2020, of
which 946 images are used as the training set and 106 images are used as the test set. Firstly, the
digital imaging and communication in medicine (DICOM) files of the original PET/CT images are
imported into the image processing software MicroDicom viewer and converted into JPG format data.
Secondly, the lung tumor images in the form of mediastinal window and lung window are cropped
using algorithms to maximize the proportion of the whole lung in the image and reduce the redundant
information of the background (where the pixel value is 0). Then, the gold standard labeling of the
lesion contour is completed using Labelme software under the guidance of professional radiologists.
Finally, the corresponding JSON annotation file and label image are generated. The annotation file
included the category label of the lesion, the coordinate value of the annotation point, the width and
height of the image, and the image path.

4.2 Implementation Details

The deep learning framework based on Pytorch is used to implement the MCIF-Transformer
Mask RCNN proposed in this paper. The experimental environment is configured as the server with
Intel(R) Xeon(R) Gold 6154 CPU, 256 GB memory, NVIDIA TITAN V graphics card, python 3.7,
PyTorch 1.7.0 and CUDA version is 11.1.106. During network training, the epoch is set to 300, the
initial learning rate is 0.0001, the batch size is 2, and the stochastic gradient descent (SGD) algorithm
is used as the optimizer to optimize the model, where the parameter momentum is 0.9 and the weight
decay coefficient is 1 × 10−4.

4.3 Evaluation Metrics

In order to comprehensively and objectively evaluate the instance segmentation performance of
MCIF-Transformer Mask RCNN, the intersection over union (IoU), average precision (AP), and
average recall (AR) are used as evaluation criteria to quantitatively evaluate the performance of the
model [26]. In the task of lung tumor detection and segmentation, True Positive (TP) indicates that the
model correctly identifies the lesion region. False Positive (FP) indicates that the normal tissue region
is misdiagnosed as the lesion region. False Negative (FN) indicates that the lesion region is missed by
the model as a normal tissue region. True Negative (TN) means that the model correctly identifies the
normal tissue region. The definition and formula of the evaluation index are as follows:

Intersection over union is a measure of the accuracy of detecting and segmenting targets in
a specific dataset. It includes two parts: The ground truth and the predicted results of the model
algorithm. IoU is used to measure the correlation between the labeled box and the predicted box.
The larger the value is, the higher the correlation is, and the better performance of the model. The
specific calculation formula is shown in (3):

IOU = TP/(TP + FP + FN) (3)

Average Precision is the percentage of the number of correctly identified targets in the total number
of identified targets. It is used to measure the performance of model detectors on each category.
AP50 indicates the AP value when the IoU threshold is 0.5. AP indicates that the AP value of the
threshold of IoU is calculated every 0.05 in the interval of [0.50, 0.95], and then the average value
of the corresponding results of 10 thresholds of IoU is calculated as the final AP value. AP_s is the
number of pixels of small target objects in the image less than 32 × 32 = 1024. The specific calculation
formula is shown in (4):



4382 CMC, 2024, vol.79, no.3

AP = 1
|c|

∑
c

(
1

|th|
∑

t

TP (t)
TP (t) + FP (t)

)
(4)

where, c is the detection category, which usually refers to a single category. th is the threshold value of
each category, and t is the number of detection samples.

Average Recall is the percentage of the number of correctly identified targets in the test set. For
the same model structure, the larger the test set size, the better the AR effect. In this paper, the IoU
threshold is used to calculate the AR value every 0.05 in the interval [0.5, 0.95], and the average of all
results is taken as the final result. AR1 is the average recall of 1 test; AR10 is the average recall of 10
tests. The specific calculation formula is shown in (5):

AR = 1
|c|

∑
c

(
1

|th|
∑

t

TP (t)
TP (t) + FN (t)

)
(5)

5 Experimental Results and Analysis

In order to objectively evaluate the advances and effectiveness of the MCIF-Transformer Mask
RCNN, ablation experiments, comparison experiments of Mask RCNN instance segmentation models
based on different backbones, and comparison experiments of different instance segmentation net-
works are performed on the same PET/CT lung tumor dataset. The average precision and the average
recall are used for quantitative comparison and qualitative analysis, and the model performance is
evaluated from detection (det) and segmentation (seg).

5.1 Peer Competitors

The first set of experiments is to explore the impact of each module on the instance segmentation
performance of the model. The second set of experiments is to verify the influence of different
backbone networks on the instance segmentation results of Mask RCNN. The third set of experiments
is to compare the proposed model with two-stage and single-stage instance segmentation networks.

5.2 Ablation Experiments

In order to verify the effectiveness and feasibility of the ResNet-Transformer backbone network,
a cross-scale interactive feature enhancement auxiliary network (CIFEN) and CIF-FPN are proposed
in this paper to improve the performance of the model. Mask RCNN with resnet50 backbone is used
as the baseline model, and four ablation experiments are performed. Experiment 1, Mask RCNN
(resnet50), Mask RCNN with resnet50 as the backbone network. The Experiment 2, CIFEN-Mask
RCNN, which adds CIFEN based on resnet50 backbone network. The Experiment 3, RT+CIFEN-
Mask RCNN, the backbone of the Experiment 2 is replaced by ResNet-Transformer backbone
network, which replaces the basic residual block with multi-head self-attention BoT module at the
top layer. Experiment 4, MCIF-Transformer Mask RCNN, which adds CIF-FPN based on the
Experiment 3. Table 1 shows the quantitative index comparison of the ablation experimental results
of the proposed model in this paper.

This ablation experiment quantifies the impact of submodules on the overall model detection and
segmentation performance, and the experimental results are shown in Table 1. The APdet, APseg,
ARdet and ARseg of the baseline model Mask RCNN (resnet50) are 60.05%, 62.98%, 41.89% and
42.83%. The baseline model is combined with CIFEM, the indicators of CIFEN-Mask RCNN are
relatively improved by 3.95%, 3.09%, 2.31% and 6.23%. It shows that the auxiliary network based
on CIFEM is constructed by aggregating adjacent scale features and strengthening the attention to
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tumor lesions in lung images. It effectively alleviates the problem of missing detection caused by the
loss of information due to the small size of the lesion in the feature extraction process. The baseline
model is combined with CIFEM and Bottleneck Transformer, RT+CIFEN-Mask RCNN has further
improved the indicators compared with Mask RCNN (resnet50) model. Compared with CIFEN-
Mask RCNN, the APdet is increased by 0.95%, and the APseg, ARdet and ARseg indicators are
slightly decreased. The reason is that when training on small and medium-sized datasets, transformer
lacks the inherent inductive bias of CNN, such as spatial locality and translation invariance [26].
Therefore, when the number of data sets is not sufficient, it is difficult to train the backbone network
weights that introduce the BoT module, so the generalization ability is not strong and the effect is
not very good. After the basic model combined with CIFEM, BoT and CIFM, the four indexes are
improved, the APdet, APseg, ARdet, ARseg are 65.55%, 68.13%, 45.00%, 49.62%. It shows that the
backbone network, auxiliary network and CIF-FPN proposed in this paper can enhance the feature
representation and recognition ability of tumor lesions in lung images by using cross-scale adjacent
high and low layer information. Shallow feature information and deep semantic information are fused
to solve the problem of feature neglect. In order to more intuitively show the instance segmentation
performance of the model, the radar chart is used in Fig. 6 to compare the model performance of
different combination modules. It can be seen that the detection and segmentation performance of
MCIF-Transformer Mask RCNN is better than that of other combination models. It shows that the
introduction of cross-scale feature information interaction in the feature extraction and feature fusion
stages helps to retain the detailed information of the lesion. It effectively alleviates the problem of
insufficient feature extraction of the lesion region in the task of lung image instance segmentation.

Table 1: Results of ablation experiments (%)

Architecture APdet APseg ARdet ARseg
(IoU = 0.50 (IoU = 0.50) (IoU = 0.50:0.95) (IoU = 0.50:0.95)

Mask RCNN (resnet50) 60.05 62.98 41.89 42.83
CIFEN-Mask RCNN 64.00 66.07 44.20 49.06
RT+CIFEN-Mask RCNN 64.95 66.05 44.10 48.63
MCIF-Transformer Mask
RCNN

65.55 68.13 45.00 49.62

In PET/CT lung images, there are complex conditions such as irregular beating of the heart,
and similar highlighting features of other organs and lesions, which lead to the influence of noise
interference data in the process of lesion identification. As the location and edge of some small lesions
are not obvious, the model proposed in this paper also has false negative and false positive results, as
shown in Fig. 7. The false recognition rate of this model is 39.7%. Although the model in this paper
has some false detections due to the weak lesion features, the model can still focus on small lesion
features and accurately locate and segment tumor regions in lung organs for most lung tumor images
on the whole. Fig. 8 shows the 3D grayscale of PET/CT images and the instance segmentation results of
MCIF-Transformer Mask RCNN. It can be seen that the sensitivity to weak lesions and their edges in
the images is increased, and the false positive rate and false negative rate are reduced. The results show
that the overall architecture and each module design of the model are reasonable, and the instance
segmentation performance in the region of interest about PET/CT lung images are improved more
better.
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Figure 6: Radar chart comparison of different module instance segmentation results of MCIF-
Transformer Mask RCNN

Figure 7: Instance segmentation results of partial misidentification examples of MCIF-Transformer
Mask RCNN
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Figure 8: (Continued)
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Figure 8: Instance segmentation results of MCIF-Transformer Mask RCNN

5.3 Comparison Experiments of Mask RCNN Instance Segmentation Models Based on Different
Backbones
In order to verify the effectiveness of using transformer structure in the MCIF-Transformer

Mask RCNN, the model in this paper is compared with the Mask RCNN model with resnet50 and
resnet101 as the backbone, respectively. The detection comparison results are shown in Table 2, and
the comparison of each detection index value is shown in Fig. 9.

Table 2: Comparison results of detection based on Mask RCNN models with different backbones (%)

Architecture APdet AP50det AR1det AR10det
(IoU = 0.50:0.95) (IoU = 0.50) (IoU = 0.50:0.95) (IoU = 0.50:0.95)

Mask RCNN (resnet50) 25.35 60.05 36.32 41.89
Mask RCNN (resnet101) 27.37 61.22 36.84 43.63
MCIF-Transformer
Mask RCNN

29.87 65.55 38.16 45.00

Compared with Mask RCNN (resnet50), Mask RCNN (resnet101) increased by 2.02%, 1.17%,
0.52% and 1.74% in APdet, AP50det, AR1det and AR10det. The detection index values of MCIF-
Transformer Mask RCNN proposed in this paper are 29.87%, 65.55%, 38.16% and 45.00%. Compared
with Mask RCNN (resnet101), the indexes of this model are improved by 2.5%, 4.33%, 1.32% and
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1.37%, respectively. It can be seen that the use of transformer structure in the backbone can effectively
improve the extraction and localization of lesion features by the model.

Figure 9: Comparison of detection index values of Mask RCNN instance segmentation models based
on different backbones

The segmentation comparison results are shown in Table 3, and the comparison of each segmen-
tation index value is shown in Fig. 10. It can be seen that compared with Mask RCNN (resnet50)
in APseg, AP50seg, AR1seg and AR10seg, respectively, Mask RCNN (resnet101) increased by
0.70%, 0.07%, 0.71% and 2.26%. The segmentation index values of MCIF-Transformer Mask RCNN
proposed in this paper are 34.07%, 68.13%, 42.08% and 49.62%. Compared with Mask RCNN
(resnet101), the indexes of this model are improved by 1.94%, 5.08%, 3.12% and 4.53%. Compared
with the first two networks, MCIF-Transformer Mask RCNN has a greater advantage in detecting
and segmenting tumor lesions, which is due to the fact that the first two models only use convolution
to obtain local lesion features, while the model in this paper learns rich correlation features in PET/CT
lung images by learning them on the lowest resolution feature map based on convolution capturing
local information of the image through a mixture of convolution and global self-attention in the
backbone part. Further global information is acquired to enhance the localization and segmentation
accuracy of lesion regions, which can better achieve feature extraction and recognition of global and
local regions in lung images.

Table 3: Comparison results of segmentation based on Mask RCNN models with different
backbones (%)

Architecture APseg AP50seg AR1seg AR10seg
(IoU = 0.50:0.95) (IoU = 0.50) (IoU = 0.50:0.95) (IoU = 0.50:0.95)

Mask RCNN (resnet50) 31.43 62.98 38.25 42.83
Mask RCNN (resnet101) 32.13 63.05 38.96 45.09

(Continued)
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Table 3 (continued)

Architecture APseg AP50seg AR1seg AR10seg
(IoU = 0.50:0.95) (IoU = 0.50) (IoU = 0.50:0.95) (IoU = 0.50:0.95)

MCIF-Transformer
Mask RCNN

34.07 68.13 42.08 49.62

Figure 10: Comparison of segmentation index values of Mask RCNN instance segmentation models
based on different backbones

5.4 Comparison Experiments of Different Instance Segmentation Networks

In order to verify that the model structure of this paper can enhance the attention to the key
features of tumor lesions in lung images and improve the accuracy of instance segmentation, there
are two types of experiments in this section as a whole. The first type is the comparison of two-
stage instance segmentation networks, and the second type is the comparison of single-stage instance
segmentation networks. Experiment 1, Mask RCNN (resnet50), resnet50 is used as the Mask RCNN
of feature extraction network. Experiment 2, Mask RCNN (resnet101), resnet101 is used as the Mask
RCNN of feature extraction network. Experiment 3, Cascade RCNN, resnet50 is used as the Cascade
RCNN of feature extraction network. Experiment 4, Mask Scoring RCNN, resnet50 is used as the
backbone of Mask Scoring RCNN. Experiment 5, YOLACT, resnet50 is used as the backbone of
YOLACT. Experiment 6, MCIF-Transformer Mask RCNN, which is the model proposed in this paper.
Experiments 1 to 4 are the comparison of two-stage instance segmentation networks. Experiment 5 is
the comparison of single-stage instance segmentation network.
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Table 4 lists the results of the comparison between the proposed model and other instance
segmentation networks on the same dataset. It can be seen from the table that the APdet, APseg,
APdet_s, APseg_s of the two-stage instance segmentation network Mask RCNN (resnet50) are
60.05%, 62.98%, 25.71% and 31.45%. The APdet and APseg of Mask RCNN (resnet101) are 61.22%
and 63.05%. The APdet and APseg of Cascade RCNN are 62.20% and 63.70%. The APdet and APseg
of Mask Scoring RCNN are 60.10% and 62.50%. The APdet and APseg of the single-stage instance
segmentation network YOLACT are 57.12% and 57.48%. For the average precision of detection
and segmentation tasks, MCIF-Transformer Mask RCNN is better than other networks in the four
indicators, APdet reaches 65.55%, APseg reaches 68.13%, APdet_s and APseg_s respectively reaches
30.96% and 34.44%. The main reason is that compared with the mainstream networks, the MCIF-
Transformer Mask RCNN can effectively express the features of tumor lesions in lung images by
reasonable aggregation the spatial detail information and abstract semantic information of cross-scale
features. The existing methods such as Mask RCNN ignore the interactive fusion of cross-scale feature
information and focus only on the image features of the current single layer. The feature fusion part
of YOLACT network lacks the feature information of transmits location, edge, and detail from low-
level to high-level, which is conducive to identifying tumor lesions. In this model, the backbone and
auxiliary network are used to interactively fuse adjacent shallow and deep features. The Transformer-
based BoT module is used in the top layer of the backbone network to effectively capture the global
information in the lung tumor image through the global multi-head self-attention mechanism. A cross-
scale interactive feature enhancement auxiliary network is designed to enhance the attention to the
lesion region. A cross-scale interactive feature fusion FPN network is constructed, and the down-
up interactive fusion path from the low-level to the high-level is added to enhance the lesion feature
information in a bidirectional interactive way. The size of the whole lung image is 356 × 356 pixels, the
size of the lesion is 7 × 7 ∼ 26 × 26 pixels, and the lesion accounted for 0.4% of the image. Compared
with the overall PET/CT image, the data distribution of tumor lesion is uneven, and it is a target
object with the feature information both weak and small. Therefore, it can be seen from the results in
the sixth row of Table 4 that the detection and segmentation indexes of the model AP_s proposed in
this paper are significantly improved. Other networks are tested on the same dataset, and the results
show different performance, as shown in Figs. 11 and 12. Fig. 11 shows the 3D histogram of AP
values of the proposed model and the comparison networks. The X-axis represents different networks.
From left to right, these represent Mask RCNN (resnet50), Mask RCNN (resnet101), Cascade RCNN,
Mask Scoring RCNN, YOLACT, MCIF-Transformer Mask RCNN. The Y-axis represents the average
precision of detection (APdet) and the average precision of segmentation (APseg). The z-axis is the
value corresponding to the two evaluation indicators. Similarly, Fig. 12 shows the 3D histogram of
AP_s values for different instance segmentation networks. The results show that the proposed model
achieves superior detection and segmentation performance in the PET/CT lung datasets.

Table 4: Comparison results of different instance segmentation networks (%)

Type Architecture APdet APseg APdet_s APseg_s
(IoU = 0.50) (IoU = 0.50) (IoU = 0.50:0.95) (IoU = 0.50:0.95)

Two-stage Mask RCNN
(resnet50)

60.05 62.98 25.71 31.45

Mask RCNN
(resnet101)

61.22 63.05 28.28 32.20

(Continued)
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Table 4 (continued)

Type Architecture APdet APseg APdet_s APseg_s
(IoU = 0.50) (IoU = 0.50) (IoU = 0.50:0.95) (IoU = 0.50:0.95)

Cascade
RCNN

62.20 63.70 28.30 32.60

Mask Scoring
RCNN

60.10 62.50 26.30 31.90

Single-stage YOLACT 57.12 57.48 19.87 24.49
proposed MCIF-

Transformer
Mask RCNN

65.55 68.13 30.96 34.44

Figure 11: Comparison of 3D histogram of AP results for different instance segmentation networks

Figure 12: Comparison of 3D histogram of AP_s results for different instance segmentation networks



CMC, 2024, vol.79, no.3 4391

6 Conclusions

The detection and segmentation of tumor lesions in PET/CT lung images have important clinical
significance for non-invasive diagnosis and accurate evaluation of lung cancer. In this paper, Mask
RCNN is studied and MCIF-Transformer Mask RCNN model for PET/CT lung tumor instance
segmentation is proposed, which is a further development of Mask RCNN and a beneficial attempt to
accurately segment lung tumors. ResNet-Transformer backbone network is constructed to strengthen
the non-local spatial attention to the lesion region. The recognition of lesion features is improved and
richer semantic classification information is obtained. A cross-scale interactive feature enhancement
auxiliary network is proposed to aggregate adjacent backbone features of different sizes, and the
network is used to generate auxiliary prediction information with deep and shallow fusion features
to guide the enhancement of backbone network features. A cross-scale interactive feature fusion FPN
network is proposed to supplement detailed information from low-level to high-level and transfer
semantic information from high-level to low-level by second fusion. The context information between
adjacent feature maps with different resolutions is effectively aggregated, and the focus degree and
expression ability of weak and small key features of lung tumors are enhanced. In order to verify
the effectiveness and feasibility of the MCIF-Transformer Mask RCNN, the ablation experiments,
the Mask RCNN instance segmentation models based on different backbones and the comparison
experiments of different instance segmentation networks are conducted on the clinical dataset.
Compared with Mask RCNN (resnet50), the proposed model improves APdet and APseg by 5.5%
and 5.15%. The results of ablation experiments show that the detection and segmentation accuracy of
the ResNet-Transformer backbone network, the cross-scale interactive feature enhancement auxiliary
network and the cross-scale interactive feature fusion FPN network designed in this paper are
improved compared with models of other composite modules. The results of comparison experiments
show that the proposed model is significantly improved in both APdet and APseg compared with other
networks. By focusing on the global information and aggregating the deep and shallow information
at the global, local and adjacent aspects, the detection and segmentation of the lesion region are
effectively supported. This model also has some shortcomings and limitations, such as: 1) In this paper,
the multi-branch and cross-scale interactive fusion Transformer model is used to automate the tumor
lesions localization and segmentation in PET/CT lung images. The results show that the model with
cross-scale interactive fusion of feature information has better performance than the model that only
focuses on the image features of this layer. The main reason for this result is that the shallow network
has a small perception field and a small overlapping region between perception fields, which enables
the network to capture local lesion information in lung images. For example, texture features, contour
features, location features and other fine-grained lesion features in shallow features. The deep network
has a large perception field, and the increase of overlapping regions between receptive fields enables the
network to obtain the overall global features of lung images, so the deep feature map is rich in coarse-
grained abstract features with strong semantics. Therefore, the integration of cross-scale local low-level
features and global high-level feature are very important for the fine-grained features representation
of focal areas. 2) The deep convolutional neural network achieves good results in the feature extraction
task of instance segmentation. The local feature of lung image is obtained by convolutional operation,
and the relationship between pixels is established in the local domain. However, modeling long distance
features by stacking convolutional layers will lead to network gradient disappearance and degradation.
Instance segmentation requires instance-level labeling of lesion regions, In lung images, global context
information is crucial to precise localization and segment tumor lesions. Therefore, it is one of the
future research directions to improve and utilize the global self-attention mechanism for medical
image instance segmentation. 3) Because the model in this paper aggregates feature maps at different
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levels many times, the overall calculation of the model is large, which has certain limitations on the
light weight of the model. In future studies, The model can be lightweight by replacing convolution
with linear operations, grouping channels, and cutting unnecessary feature layers, This can effectively
reduce the consumption of computing resources so that the model can be deployed on hardware devices
with limited memory, which is of great significance for the popularization of computer-aided diagnosis
system for lung cancer. which has certain reference significance and clinical value for lung cancer
computer-aided diagnosis.
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