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ABSTRACT

This study proposes a prediction model considering external weather and holiday factors to address the issue of
accurately predicting urban taxi travel demand caused by complex data and numerous influencing factors. The
model integrates the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and
Convolutional Long Short Term Memory Neural Network (ConvLSTM) to predict short-term taxi travel demand.
The CEEMDAN decomposition method effectively decomposes time series data into a set of modal components,
capturing sequence characteristics at different time scales and frequencies. Based on the sample entropy value
of components, secondary processing of more complex sequence components after decomposition is employed
to reduce the cumulative prediction error of component sequences and improve prediction efficiency. On this
basis, considering the correlation between the spatiotemporal trends of short-term taxi traffic, a ConvLSTM
neural network model with Long Short Term Memory (LSTM) time series processing ability and Convolutional
Neural Networks (CNN) spatial feature processing ability is constructed to predict the travel demand for urban
taxis. The combined prediction model is tested on a taxi travel demand dataset in a certain area of Beijing. The
results show that the CEEMDAN-ConvLSTM prediction model outperforms the LSTM, Autoregressive Integrated
Moving Average model (ARIMA), CNN, and ConvLSTM benchmark models in terms of Symmetric Mean Absolute
Percentage Error (SMAPE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R2 metrics.
Notably, the SMAPE metric exhibits a remarkable decline of 21.03% with the utilization of our proposed model.
These results confirm that our study provides a highly accurate and valid model for taxi travel demand forecasting.
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1 Introduction

The rapid development of the internet and transportation has led to a notable diversification in
passengers’ travel modes [1]. However, the indiscriminate search for passengers by unoccupied taxi
drivers has resulted in a pronounced temporal and spatial imbalance in taxi supply and demand,
further exacerbating urban traffic congestion issues. Therefore, effective prediction of taxi travel
demand within a specific region is important for achieving effective urban taxi dispatching and
preventing urban traffic congestion [2,3].
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Taxi travel demand is affected by external factors such as weather and holidays, and is character-
ized by non-linearity, non-smoothness and spatio-temporal correlation [4]. At present, considerable
research efforts by experts and scholars have been dedicated to short-term traffic flow prediction,
encompassing both linear and non-linear models. Traditional linear prediction models, such as time
series prediction models [5] and Kalman filter models [6], have found widespread application in
predicting passenger flow. Despite their widespread adoption, these models often exhibit low com-
putational efficiency and significant prediction errors, particularly when confronted with the intricate
and highly nonlinear nature of current short-term traffic flow scenarios [7]. Nonlinear prediction
models, including grey theory [8], support vector machine [9], and neural network model [10], offer
effective solutions to the aforementioned challenges. For example, Yuan et al. [11], employing a two-
dimensional approach involving time and space, formulated a passenger flow prediction method based
on a Bayesian network. However, due to the increasing scale and complexity of taxi flow data, this
type of model is no longer able to capture the features in taxi flow data well, resulting in a decrease in
prediction efficiency [12].

In recent years, the rapid advancements in data mining, machine learning, and related technologies
have given rise to numerous deep learning methods, demonstrating an aptitude for capturing intricate
nonlinear relationships and associated features within traffic flow data [13]. These models have
significantly enhanced the precision of passenger flow prediction, gaining widespread application in
traffic flow forecasting. Zhu et al. [14] combined deep learning theory with support vector machines
to construct a Support Vector Machine Based on Deep Learning (DL-SVM) model for passenger flow
prediction in urban rail transit, due to the significant temporal and spatial correlation of traffic flow
between road sections. Han et al. [15] transformed the subway network into a graph and established
a graph convolutional neural network (GCNN) for passenger flow prediction, demonstrating good
performance and interpretability. Liu et al. [16] introduced an Attention-based Multiple Graph
Convolutional Recurrent Network to capture dynamic and potential spatiotemporal correlations in
traffic flow data. Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN) are
mainstream deep learning models. RNN is particularly powerful in modeling temporal data, and
CNN can more effectively capture the spatial correlation of data, but both are relatively prone to the
problem of gradient vanishing. To solve this problem, Long Short-Term Memory Neural Networks
(LSTM) have emerged, which rely on gating mechanisms to solve gradient vanishing and exploding
problems, and are suitable for longer time series. They are widely used by many scholars in traffic
flow prediction [16–19]. For example, Du et al. [20] introduced a method for urban traffic passenger
flow prediction based on LSTM, demonstrating superior results compared to traditional prediction
models. Shi et al. [21] took an innovative approach by first extracting features from passenger flow data
through principal component analysis (PCA) and subsequently constructing a prediction model based
on LSTM. Lu et al. [22] proposed a short-term traffic flow prediction method based on Autoregressive
Integrated Moving Average Model (ARIMA) and LSTM neural networks. Zhang et al. [23] considered
weather and holiday events and used a residual neural network framework to model the temporal
compactness, periodicity, and trend characteristics of crowd traffic.

The above findings demonstrate the remarkable performance of deep neural networks in predict-
ing traffic flow using big data. Despite these advancements, our comprehension of traffic flow data
remains constrained, and there persists an ongoing challenge in fully harnessing the intricate features
of traffic flow to enhance performance while accommodating external influences. First, the analysis of
traffic flow data confronts obstacles arising from factors like incomplete or inaccurate data collection,
exerting an impact on the accuracy and reliability of predictions. Second, despite the inclusion of
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external influences in the modeling process, there exists a challenge in fully capturing and integrating
these factors into the prediction model, thereby constraining its overall effectiveness.

The evolution of computer network signals has revealed striking similarities between signals and
traffic flow. Researchers have leveraged this insight, introducing signal decomposition algorithms to
process traffic flow data, consequently leading to substantial improvements in prediction accuracy
[24]. Li et al. [25] proposed a prediction framework based on empirical mode decomposition and
support vector regression (EMD-SVR). Compared with the traditional passenger flow prediction
methods, the prediction accuracy has been significantly improved. Cao et al. [26] verified that the
Ensemble Empirical Mode Decomposition (EEMD) is more suitable for traffic prediction than the
Empirical Mode Decomposition (EMD). However, the noise residue problem and computational
complexity of the EEMD algorithm are relatively high.

Due to the characteristics of taxi travel demand, traditional time-series models struggle to
effectively learn deep features in the data [27,28]. To improve the prediction accuracy, this paper
proposes a combined prediction model combining CEEMDAN [29] and ConvLSTM [30], Among
them, CEEMDAN analyzes and processes the taxi travel demand data to reduce the data complexity,
and ConvLSTM learns the spatio-temporal correlation based on the processed taxi travel demand
data. The main contributions of this study are as follows:

(1) CEEMDAN Decomposition. The CEEMDAN method is suitable for dealing with nonlinear
and complex taxi travel demand data, and is able to capture the characteristics of different time scales
and frequencies in the data, which in turn reduces the complexity of taxi travel demand data and
improves the predictability of the data.

(2) Sample Entropy Evaluation. The modal components after decomposition still have the
problem of modal aliasing, therefore, the sample entropy is used to assess the complexity of the
components and the components are reconstructed using the K-means clustering algorithm, which
avoids the waste of arithmetic power and at the same time reduces the cumulative prediction error of
each component sequence.

(3) ConvLSTM Neural Network Model. Considering the spatiotemporal correlation between
external factors such as weather conditions, holidays, and taxi traffic, a ConvLSTM neural network
model is constructed. This model incorporates the LSTM time series processing capability and CNN
spatial feature processing ability, the model can effectively explore the spatio-temporal correlation in
the cab travel demand data, and then obtain more accurate prediction results.

Section 2 delineates the framework of the combined CEEMDAN-ConvLSTM prediction model,
elucidating the innovative approach proposed in this study. Section 3 delves into the decomposition
and reconstruction modules within the framework. Section 4 expounds upon the prediction module
encapsulated within the proposed framework. Section 5 engages in a comprehensive case study,
comparing and analyzing the efficacy of our proposed model against mainstream benchmark models
in the field. The objective is to assess and validate the effectiveness of our prediction model. Lastly,
Section 6 encapsulates the culmination of this work, presenting a summary of the findings and offering
insights for future directions in this domain.

2 Proposed Methodology

This study proposes a taxi travel demand prediction model based on CEEMDAN ConvLSTM,
and the overall framework of the model is shown in Fig. 1. This mainly includes two parts: (1)
Decomposition and reconstruction module of temporal data, which performs modal decomposition
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and reconstruction on taxi travel demand data. (2) The taxi travel demand prediction module
predicts and fuses the reconstructed components to generate the final prediction result. The proposed
methodology, through the integration of decomposition, reconstruction, and prediction, endeavors to
provide a robust and accurate prediction model for taxi travel demand. The subsequent sections delve
into each module in detail, elucidating the intricacies of their respective processes.

Figure 1: Overall prediction framework

3 Decomposition and Reconstruction of Taxi Travel Demand
3.1 CEEMDAN Algorithm

The CEEMDAN algorithm mitigates the problem of modal aliasing in the EMD algorithm by
introducing adaptive Gaussian white noise at each stage of decomposition. This model diminishes
the noise residue of the EEMD algorithm, and enhances the completeness of the decomposition
process, resulting in an almost zero reconstruction error. The decomposition process of the algorithm
is illustrated in Fig. 2, and the details are as follows:

(1) Add Gaussian white noise ε0ωi (t) with initial amplitude ε0 to the original signal yt, (i = 1,
2,..., I), where ωi (t) is a white noise sequence that follows a standard normal distribution, to obtain
a new signal yi (t) = y (t) + ε0ωi (t). The new signal is decomposed by EMD to obtain the i modal
components of the first stage IMFi

1. The overall average of modal components can be obtained from
the first eigenmodal components of CEEMDAN decomposition IMF1:

IMF1 = 1
I

I∑

i=1

IMFi
1 (1)
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Figure 2: The CEEMDAN decomposition algorithm

(2) Calculate the residual error after removing the first modal component:

r1 (t) = yi (t) − IMF1 (2)

(3) Define Ek represent the Kth modal component obtained by EMD decomposition. Add the
noise component ε1E1 (ωi (t)) to the residual r1 (t), and then decompose to get the second-order modal
component as follows:

IMF2 = 1
I

I∑

i=1

E1 (r1 (t) + ε1E1 (ωi (t))) (3)

(4) Repeat steps (2), (3), for k = 1,2,..., n, to get the residual after removing the Kth component
and the K+1th modal component:

rk (t) = rk−1 (t) − IMFk (4)

IMFk+1 = 1
I

I∑

i=1

E1 (rk (t) + εkEk (ωi (t))) (5)
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(5) When the residual rk (t) cannot continue to decompose, the decomposition terminates. The
final residual signal is:

rn (t) = yi (t) −
n∑

k=1

IMFk (6)

3.2 Component Evaluation and Reconstruction

After the completion of the modal decomposition, using the IMF component directly as the
prediction model input results in a substantial computational load, potentially leading to error
accumulation. To address this, sample entropy [31] is employed for assessing component complexity
and as a reference for subsequent component reconstruction, as illustrated in Fig. 3.

Figure 3: Component evaluation and reconstruction

Sample entropy, as a model-free method, presents several advantages in evaluating data complex-
ity. Firstly, it requires no prior knowledge or assumptions, making it directly applicable to various
data types, thereby enhancing flexibility and analysis applicability. Secondly, sample entropy can
measure the diversity and uncertainty of data. A higher sample entropy indicates more complex data,
greater variability, and diversity, offering significant value in studying and analyzing intricate datasets.
Furthermore, sample entropy is not constrained by data dimensions or distributions, making it suitable
for high-dimensional and nonlinear data. It proves useful in the analysis of multimodal data and plays
a pivotal role in comparing and evaluating decomposition results. In summary, as a model-free method,
sample entropy demonstrates broad applicability and strong adaptability across diverse data types
and high-dimensional datasets. Its notable advantages lie in its wide-ranging application, making it a
crucial indicator for evaluating component complexity.

The K-means clustering algorithm has advantages, including simplicity, scalability, interpretabil-
ity, robustness, and parallelism. These advantages make the K-means algorithm a widely utilized and
effective clustering method, well-suited for processing large-scale high-dimensional datasets, and able
to interpret and visualize clustering results. At the same time, it also has a certain degree of fault
tolerance and parallelism processing ability. Therefore, this algorithm is employed for clustering the
evaluated results.
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4 The Prediction Model for Taxi Travel Demand

To achieve effective short-term taxi travel demand prediction across diverse city areas, it is
imperative to consider series encompassing spatial and temporal structures. The LSTM network proves
to be well-suited for processing time series data. As a variant of recurrent neural networks, it addresses
the gradient disappearance issue by introducing a “gate control” mechanism, enhancing the neural
network’s memory capacity compared to the traditional RNN model. In the LSTM architecture, input
data at each time step undergoes processing through the structures of the “forget gate,” “input gate,”
“candidate gate,” and “output gate.” These gate control mechanisms regulate information flow within
the network by dynamically adjusting their respective weights in real-time. This approach a empowers
LSTM to effectively capture long-term dependencies, fulfilling the requirements for sustained memory
in network data. The formulas governing the “forget gate,”“input gate,”“candidate gate,”and “output
gate” in the LSTM network are presented as follows:

it = σ (Wxixt + Whiht−1 + Wci ◦ ct−1 + bi)

ft = σ
(
Wxf xt + Whf ht−1 + Wcf ◦ ct−1 + bf

)

ct = ft ◦ ct−1 + it ◦ tanh (Wxcxt + Wxcht−1 + bc)

ot = σ (Wxoxt + Whoht−1 + Wco ◦ ct + bo)

ht = ot ◦ tanh (ct) (7)

where, σ is the sigmoid or tanh function, Wxi,Wxf ,Wxc,Wxo respectively are the node weight matrix of
“input gate”, “forget gate”, “memory unit” and “output gate” bi, bf , bc, bo respectively are the node
threshold matrix of “input gate”, “forget gate”, “memory unit”and “output gate”. However, the model
makes it difficult to extract local spatial features. To solve this problem, the ConvLSTM network is
used to replace the dot product operation in the original LSTM with the convolution operation. The
core idea behind ConvLSTM is to introduce convolution operations into the cyclic structure of LSTM
to capture the local features and global association information of spatiotemporal sequences. This
enhancement enables the ConvLSTM network to effectively deal with prediction problems associated
with spatiotemporal series. The structure of the model is shown in Fig. 4.

Figure 4: The ConvLSTM network structure
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Where, it control the “input gate”, which controls the selection of new data and the output of the
previous neuron. The input gate determines what information the neuron receives. ft control “forget
gate”, forgetting the output of the previous neuron in proportion to controlling how much information
from the previous neuron is retained to enter that neuron. ct is the cell state of the time t neuron,
which combines the cell state of the previous neuron with the input of time t to form a new cell state.
The “output gate” outputs the cell state in proportion to the current cell state as the output of this
cell through the gating mechanism. The following is the calculation formula for each variable in the
ConvLSTM network:

it = sigmoid (Wxi ∗ Xt + Whi ∗ ht−1 + Wci ◦ ct−1 + bi)

ft = sigmoid
(
Wxf ∗ Xt + Whf ∗ ht−1 + Wcf ◦ ct−1 + bf

)

ct = ft ◦ ct−1 + it ◦ tanh (Wxc ∗ Xt + Wxc ∗ ht−1 + bc)

ot = sigmoid (Wxo ∗ Xt + Who ∗ ht−1 + Wco ◦ ct + bo)

ht = ot ◦ tanh (ct) (8)

where, Wxi, Wxf , Wxc, Wxo respectively are the weights in different convolution operations, and bi, bf ,
bc, bo respectively are the biases of convolution operations. “∗” denotes the convolution operation. Xt

is the input of the neuron at time t; ht−1 is the output of the neuron at time t-1.

5 Experimental Process and Analysis
5.1 Dataset and Experimental Environment

The experiments detailed in this article were carried out on servers with the following device spec-
ifications: CPU-Intel (R) Core (TM) i7-12600K, GPU-NVIDIA GeForce RTX 4070, and operating
system-Windows 11. The algorithms and models were implemented using the Python language.

The data used in the experimental part of this study includes two parts: (1) Taxi travel demand data
for a certain area in Beijing from November 2015 to April 2016. Obtain the demand for taxi boarding
and alighting in the region through statistical analysis of taxi boarding and alighting points; (2) The
weather data of Beijing from November 2015 to April 2016 and the statutory holidays in China. Refer
to Fig. 5 for a comprehensive overview of the various datasets employed in this study.

Fig. 5 facilitates a more intuitive comprehension of taxi traffic data characteristics. Primarily, it
is evident that taxi traffic data displays a non-linear trend, showcasing curve-like fluctuations rather
than adhering to a linear trajectory. Secondly, the data demonstrates nonstationary, revealing trends
and fluctuations over time rather than maintaining a constant pattern. Additionally, taxi traffic data
exhibits periodicity, indicating a discernible pattern or regularity within a specified time range. In the
holiday data, numerical values are assigned as follows: 0 denotes working days and compensatory
days, 1 denotes weekends, and 2 denotes statutory holidays, such as the Spring Festival.
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Figure 5: The various temporal data used in this study

5.2 Taxi Time Series Data Decomposition

5.2.1 Data Decomposition

Applying the CEEMDAN decomposition algorithm as detailed in Section 2.1.1, the taxi travel
demand data associated with boarding and alighting in the specified region undergoes decomposition
into multi-component Intrinsic Mode Functions (IMF) and residual components of different orders.
The results of this decomposition are visually presented in Fig. 6.

Upon observing diverse modalities within taxi travel demand data, insights into the characteristics
and fluctuations in taxi demand based on the frequency and complexity of these modalities can be
gleaned. Primarily, through the decomposition results, the complexity of the data can be discerned
by considering the frequency arrangement of the components. High-frequency components signify
rapid changes and complexity in taxi demand, potentially linked to short-term events or specific
situations. For instance, peak hours during the day or particular holidays may lead to abrupt increases
or decreases in demand.
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Figure 6: Decomposition results of taxi boarding and alighting demand

Low-frequency components signify relatively stable trends and alterations. These components may
be associated with long-term trends or major influencing factors, such as economic development levels
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and market competition. Monitoring changes in low-frequency components enables comprehension
of the overarching trends and influencing factors in taxi demand.

Furthermore, analyzing residual components aids in understanding special situations or aspects
of taxi demand data not elucidated by the main components. Residual components may encompass
random noise or other data that remains unaccounted for by the primary components.

5.2.2 Component Reconstruction

For multiple IMF components obtained through modal decomposition, direct prediction can
incur a significant computational burden and easily lead to error accumulation. Therefore, it is
necessary to reconstruct the decomposed components through appropriate standards and methods.
According to the evaluation method in Section 3.2, the sample entropy index is used to evaluate the
components and the evaluation results are shown in Fig. 7.

Figure 7: Component evaluation index values

According to the calculation results of sample entropy, the sample entropy of each component
decomposed by the algorithm gradually decreases with the decrease in frequency. This trend implies
that, as the decomposition process progresses, the complexity of the obtained IMF components
gradually decreases. Based on the evaluation results of sample entropy, the K-means clustering
algorithm is used for clustering to obtain a component reconstruction scheme, as shown in Fig. 8.

Figure 8: Component reconstruction scheme
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According to the component reconstruction scheme in Fig. 8, the decomposed components
depicted in Fig. 6 undergo reconstruction. The final reconstructed components are categorized into
“High-frequency component,” “Medium-frequency component,” and “Low-frequency component.”
The visualization of the reconstruction results is presented in Fig. 9.

Figure 9: Component reconstruction results of taxi boarding and alighting demand

Throughout the reconstruction process, we first merge components with similar frequencies,
including low frequency, frequency, and mediate frequency components, as well as residual compo-
nents. This amalgamation of components with analogous frequencies aims to diminish redundant
information within the data and extract more representative features. Specifically, for the “Low-
frequency component”, a summation operation is executed on lower-frequency components to yield
smoother and more comprehensive low-frequency components. These components typically encapsu-
late long-term trends and gradual shifts in the data. Similarly, for the “High-frequency component,”
analogous frequency high-frequency components undergo summation to generate smoother and more
holistic high-frequency components. This process aids in amalgamating subtle vibrations and swift
changes within high-frequency components, thereby mitigating noise in the data. Furthermore, the
merging of the “Medium frequency component” and the residual component is imperative. The
“Medium frequency component” typically embodies moderate changes and fluctuations in the data,
while the residual component comprises randomness or noise unexplained by other frequency ranges.
Integrating these components enhances our ability to capture mesoscale changes and irregularities
within the data. The overarching objective of component reconstruction is to alleviate excessive decom-
position and modal aliasing issues inherent in decomposition algorithms. This process concurrently
reduces randomness and nonlinearity in the reconstructed data, thereby enhancing the predictability
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of temporal data. Additionally, component reconstruction contributes to a reduction in computational
complexity, fostering more efficient and accurate analyses and applications.

5.3 Model Training and Testing

External factors, such as weather, and the decomposed components are individually input into
their respective ConvLSTM models for training. The training parameters for the ConvLSTM model
are pre-defined before commencing the training process, as detailed in Table 1.

Table 1: Table of model parameters

Parameter Meaning Value

Input_size The input dimension 8
Hidden_size Number of hidden layers 128
Output_size Output dimension 8
Epoch Model training rounds 100
Batch_size Training batch size 20
Lr Learning rate 0.05
Time_step Sliding window step 12

Each reconstructed component is divided into training, validation, and testing sets in chronologi-
cal order, with the following divisions: 70%, 10%, and 20%, respectively. The three ConvLSTM models
use the training set and validation set in the training process. The loss rate variation curves of the
“High-frequency component”, “Medium frequency component”, and “Low-frequency component”
during the training process are shown in Fig. 10.

Figure 10: (Continued)
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Figure 10: Changes in loss rate during the training process of three components

The graphical representation reveals distinct features among components during the training
process. The “High-frequency component” experiences pronounced oscillations, indicating higher
complexity and a greater fitting challenge, leading to substantial fluctuations in the model loss. In con-
trast, the training losses for the “Low-frequency component” and “Medium frequency component”
exhibit comparatively stable patterns. The overall trend of the model’s loss curves during the training
phase on both the training and validation sets displays a gradual descent, indicating the model’s
convergence. This convergence is achieved relatively swiftly. As the loss on the training set diminishes,
the loss on the validation set follows suit, gradually decreasing and stabilizing. This observation
suggests that the model does not exhibit overfitting across diverse datasets, yielding more favorable
training outcomes.

The trained model is used to test the CEEMDAN-ConvLSTM model in this study using a
component test set of taxi alighting demand and boarding demand. The predicted results of the model
are shown in Fig. 11.

Figure 11: (Continued)
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Figure 11: The prediction of taxi boarding and alighting demand

Based on the results depicted in the figure, it is evident that the CEEMDAN ConvLSTM model
performs well in predicting the travel demand for taxis in the region. The model demonstrates a
commendable ability to accurately capture the evolving trends in taxi travel demand, showcasing
its potential in tasks related to temporal data prediction. However, concerning the “High-frequency
component”, we also noticed some challenges. Due to the high complexity of the “High-frequency
component”, the model may encounter certain difficulties in predicting the “High-frequency com-
ponent”, resulting in poor prediction accuracy. This issue may be caused by rapid changes in high-
frequency components and subtle vibrations.

To further evaluate the accuracy of the prediction results, a quantitative analysis is imperative. This
includes comparing with actual observation data, as well as using appropriate evaluation indicators
to measure the accuracy and bias of prediction results. Through this comparison with observed data,
the model’s efficacy in predicting taxi travel demand can be thoroughly evaluated, providing insights
into its accuracy and reliability.

5.4 Comparative Analysis of Experimental Results

The evaluation indexes used in this paper include SMAPE (Symmetric Mean Absolute Percentage
Error), RMSE (Root Mean Square Error), MAE (Mean Absolute Error), and R2 (Coefficient of
Determination). The values of each evaluation index obtained using the CEEMDAN-ConvLSTM
model are shown in Table 2.

Table 2: Model performance evaluation index (CEEMDAN-ConvLSTM)

Model RMSE MAE SMAPE (%) R2

Taxi boarding demand 36.21 33.21 12.47 1.01
Taxi alighting demand 34.12 32.21 14.19 0.97
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To further validate the effectiveness of the prediction model constructed in this article, the same
dataset was used to train and test LSTM, ARIMA, CNN, ConvLSTM, EEMD ConvLSTM, and
non reconstructed CEEDMAN ConvLSTM models. The predictive effect of each model on the taxi
boarding demand in the test set is presented in Fig. 12.

Figure 12: Prediction results of taxi boarding demand for each model

The comparative analysis presented in Fig. 12 highlights the predictive efficacy of the proposed
model to other benchmark models. Generally, all models, except for CNN, demonstrate a commend-
able ability to accurately forecast the trends in taxi travel demand. A detailed examination reveals that,
in comparison to other models, the model introduced in this study aligns more closely with actual data,
exhibiting particularly precise predictions during peak periods of taxi travel demand.

The prediction results of the various models are quantitatively analyzed through the various
indicators proposed above, and the comparison results are shown in Table 3.



CMC, 2024, vol.79, no.3 3893

Table 3: Comparison of performance evaluation indexes of each model

Model RMSE MAE SMAPE (%) R2

LSTM 48.67 37.07 20.49 0.85
ARIMA 39.58 37.78 19.31 0.86
CNN 54.02 40.44 28.14 0.72
ConvLSTM 38.30 33.73 18.32 0.90
EEMD-ConvLSTM 36.78 33.51 17.69 0.92
CEEMDAN-ConvLSTM (no reconstruction) 37.13 33.45 16.88 0.94
CEEMDAN-ConvLSTM (proposed) 35.17 32.71 13.33 0.99

Comparing the evaluation metrics of commonly used LSTM, ARIMA, CNN, and ConvLSTM
models, it is evident that the predictive performance of the model proposed in this paper is significantly
enhanced with the integration of the time series decomposition algorithm. It is demonstrated that the
ConvLSTM model can effectively deal with taxi travel demand data with spatio-temporal correlation.
Comparison of the EEMD-ConvSTM model shows that CEEMDAN is more suitable for nonlinear
and complex cab travel demand data and improves the predictability of the data. With CEEMDAN-
ConvLSTM without reconstruction, the method proposed in this paper still has higher accuracy,
proving that reconstruction reduces the cumulative prediction error of each component sequence. In
summary, the CEEMDAN-ConvLSTM combined model proposed in this paper has lower RMSE,
MAE, MAPE, and SMAPE error indices and higher R2. To show more intuitively the performance
improvement of the model proposed in this paper compared with other models, the improvement ratio
of each index aspect is statistically shown in Table 4.

Table 4: Comparison of performance evaluation indexes of each model

Contrast model RMSE
(Reduce %)

MAE
(Reduce %)

SMAPE
(Reduce %)

R2

(Increase %)

LSTM 27.75 11.76 34.94 16.47
ARIMA 11.15 13.42 30.97 15.11
CNN 34.90 19.11 52.63 37.5
ConvLSTM 8.19 3.02 27.24 10
EEMD-ConvLSTM 4.39 2.39 24.65 7.61
CEEMDAN-ConvLSTM (no reconstruction) 5,29 2,22 21.03 5.32

It is evident that the model proposed in this paper has a significant improvement in all indicators,
especially in the SMAPR index, which is reduced by more than 21.03% compared with other models.
This indicates that the combination model proposed in this article is more suitable for the prediction
task of taxi travel demand, and has good stability and accuracy. This paper proposes that one of the
primary reasons for the notable improvement in model performance lies in the utilization of empirical
modal decomposition methods to decompose the raw data. This process leads to better extraction of
the periodicity and trend of the data, thereby enhancing the model’s ability to understand the data and
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improve prediction accuracy. Additionally, the incorporation of ConvLSTM contributes to a stronger
learning ability for spatiotemporal properties in the data.

6 Conclusion

This study proposes a prediction model, CEEMDAN-ConvLSTM, which considers external
weather and holiday factors for predicting short-term taxi travel demand. Firstly, the CEEMDAN
decomposition algorithm is applied to decompose the taxi travel demand sequence , and the resulting
complex sequence components are processed through sample entropy. This approach effectively
reduces the impact of noise or outliers in the sequence on the prediction results. Meanwhile, the
CEEMDAN-ConvLSTM combined prediction model combines the advantages of CNN and LSTM,
aiming to extract spatial features and predict long-term time series. Specifically, CNN captures spatial
relationships in input data, while LSTM captures long-term dependencies in time series. Through
a series of experiments, we demonstrate that the proposed CEEMDAN-ConvLSTM combination
prediction model outperforms common prediction models in short-term taxi travel demand predic-
tion. This superior performance is attributed to the comprehensive advantages of the CEEMDAN
decomposition algorithm and ConvLSTM utilized in this study. Compared with other benchmark
models, the CEEMDAN-ConvLSTM model performs better in terms of accuracy and stability. In
summary, the CEEMDAN-ConvLSTM combination prediction model in this study has significant
advantages in short-term taxi travel demand prediction and can provide technical support for actual
taxi dispatch planning.

Despite the achievements, many challenges still need to be addressed. Future research endeavors
will concentrate on data privacy protection and collaborative training, considering the complexity
and diversity of real-world scenarios. Additionally, incorporating federated learning will be explored
to advance prediction methods in the field of transportation.
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