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ABSTRACT

To enhance the efficiency and expediency of issuing e-licenses within the power sector, we must confront the
challenge of managing the surging demand for data traffic. Within this realm, the network imposes stringent
Quality of Service (QoS) requirements, revealing the inadequacies of traditional routing allocation mechanisms
in accommodating such extensive data flows. In response to the imperative of handling a substantial influx of data
requests promptly and alleviating the constraints of existing technologies and network congestion, we present an
architecture for QoS routing optimization with in Software Defined Network (SDN), leveraging deep reinforcement
learning. This innovative approach entails the separation of SDN control and transmission functionalities, central-
izing control over data forwarding while integrating deep reinforcement learning for informed routing decisions. By
factoring in considerations such as delay, bandwidth, jitter rate, and packet loss rate, we design a reward function to
guide the Deep Deterministic Policy Gradient (DDPG) algorithm in learning the optimal routing strategy to furnish
superior QoS provision. In our empirical investigations, we juxtapose the performance of Deep Reinforcement
Learning (DRL) against that of Shortest Path (SP) algorithms in terms of data packet transmission delay. The
experimental simulation results show that our proposed algorithm has significant efficacy in reducing network
delay and improving the overall transmission efficiency, which is superior to the traditional methods.
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1 Introduction

For power grid enterprises to effectively conduct power engineering infrastructure, operations
and maintenance, marketing, and other business activities, seamless cross-departmental interaction is
essential to ensure reliable data sharing. This is achieved by issuing electronic licenses for data storage
and sharing, thereby guaranteeing trusted data sharing between departments. However, in order to
achieve efficient and rapid electronic license issuance in power business scenarios, higher network
Quality of Service (QoS) [1] is imperative. This entails satisfying users’ requirements concerning the
delay, throughput, jitter rate, and packet loss rate of the network. When dealing with large-scale
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data transmission and traffic, ensuring the stability of network services is crucial to prevent network
paralysis caused by congestion. Traditional network routing schemes typically rely on the shortest path
algorithm for calculation, which has proven insufficient to meet the demands of current network traffic
with extensive resource requirements. These traditional approaches often suffer from slow convergence
speeds and are prone to network congestion [2,3].

Software Defined Networking (SDN) employs the separation of transfer and control by utilizing
the control layer’s development interface to offer services to the upper network layer, while ensuring
unified control of the data forwarding layer for efficient traffic transmission [4]. Implementing SDN
architecture can significantly enhance network performance and utilization, facilitating comprehen-
sive network environment management [5]. The versatile features of SDN find applications in diverse
scenarios such as edge computing [6], routing optimization, and others. In today’s SDN routing
algorithm, Dijkstra’s fixed exploration strategy algorithm [7] is mainly used, which considers the
shortest path problem and does not consider other network metrics, which will limit the exploration of
the network environment, in the face of complex networks, there will be many limitations. The various
algorithms of Reinforcement Learning (RL) involve a process of searching for the optimal solution in
the process of continuous exploration and utilization, mainly solving the resource scheduling decision
problem [8]. Through the design of reward functions and state action problems, the process of dynamic
transition and state is determined. It can be combined with the routing optimization algorithm to
continuously explore and optimize the QoS as the index to find the optimal path forwarding. Deep
Reinforcement Learning (DRL) adds deep learning to the agent in reinforcement learning and uses
the perception ability of deep learning to deal with complex network environment and routing decision
problems more effectively, to achieve better routing strategy, DRL is mainly used in route design and
resource management, and there are applications of DRL in games [9], video [10]and dynamic resource
allocation [11]. Deep Deterministic Policy Gradient (DDPG) based routing algorithms are commonly
employed to solve decision problems in continuous action space. When facing unknown and complex
network conditions, DDPG can adjust its policy to adapt to the new environment through learning.
When the network topology or load changes, DDPG can adjust the routing strategy through learning
to optimize the network performance. Compared with traditional routing algorithms, DDPG has
higher flexibility and adaptability to dynamic network conditions.

In the power industry, electronic licenses need to be issued quickly to ensure timely data interaction
and sharing. Traditional routing algorithms fail to meet the QoS requirements of this scenario. We
combine the SDN architecture and deep reinforcement learning algorithm and propose a QoS routing
optimization algorithm based on deep reinforcement learning in SDN. Considering the QoS index
requirements of the scene, we design the reward function to provide the optimal QoS service. The
main contributions of this paper are as follows:

1. We propose an overall routing architecture based on deep reinforcement learning in SDN.
SDN is combined with deep reinforcement learning and applied in routing scenarios. The agent
architecture in reinforcement learning is put into the SDN controller layer, and the routing
was put into the data forwarding layer. Using the characteristics of SDN transfer and control
separation can effectively improve the transmission efficiency of the network.

2. We propose the DDPG-based routing optimization algorithm in SDN. Taking QoS as the
optimization objective, the delay, bandwidth, jitter rate and packet loss rate as metrics are
comprehensively considered, the reward function is designed, and the DDPG algorithm is used
to learn the optimal routing strategy to provide the optimal QoS service set in this paper.
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3. We have carried out a large number of experimental simulations. The experimental results show
that the DDPG algorithm in the routing optimization scenario, compared with the traditional
routing algorithm, can efficiently process data requests and reduce data transmission delays.

The rest of the paper is structured as follows: Section 2 summarizes the related work. Section 3
presents the system model architecture. Section 4 introduces the routing algorithm based on deep
reinforcement learning in SDN. In Section 5, the experimental simulation is carried out. Conclusions
are given in Section 6.

2 Related Work

To solve the problem of network congestion and meet the demands of current mass traffic. There
is also many related research to solve this practical problem. At present, most of the research on QoS
in SDN network is based on a single data index, which has low algorithm complexity and is simple to
realize. It can also optimize routing traffic to a certain extent, but it is easy to cause local optimum. It
only optimizes a single parameter without considering the constraints of multiple QoS parameters, so
it can only solve a specific part of the problem [12].

Most of the traditional routing traffic forwarding methods use the Shortest Path First method to
select route forwarding, such as the Open Shortest Path First (OSPF) [13] protocol, the forwarding
traffic only considers the shortest path, namely delay, without considering other factors in QoS, which
is easy to cause channel congestion and cannot meet the demands of today’s high data traffic.

There have been extensive studies on the application research of SDN [14,15]. There have been
many studies on SDN and artificial intelligence technology in routing scenarios in recent years.
Gopi et al. [16] and Shirmarz et al. [17] used SDN technology to enhance the traditional routing pro-
tocol, which has limitations and does not combine network operation knowledge to realize intelligent
routing. Xu et al. [18] proposed a route randomization defense method based on deep reinforcement
learning to resist eavesdropping attacks. Compared with other route randomization methods, it has
obvious advantages in security and resistance to eavesdropping attacks. Yu et al. [19] proposed DROM
routing optimization framework, which uses DDPG algorithm to optimize SDN routing, and can
deal with multi-dimensional action space. By maximizing the reward, the network state updates the
link weight continuously, to select QoS routes that meet the conditions. Stampa et al. [20] proposed a
deep reinforcement learning agent for routing optimization under the SDN framework, which selects
routes according to the current routing state, to minimize network delay. Some related studies use
Q-learning algorithm to optimize routing in QoS [21], and the whole training process uses Markov
Decision Process (MDP) for training, which can achieve low delay and high throughput to a certain
extent. However, Q-learning uses the Q-table value to store the reward value of the training process.
When the number of routes increases, the selection of paths also increases greatly, and the storage
of Q-table will bring a lot of memory overhead. Some related studies use Deep Q-Learning (DQN)
algorithm for routing optimization [22], and use neural network to replace the traditional Q table.
However, DQN algorithm can only be applied to discontinuous action and network state space, and
today’s network state transition is very fast, so it is not suitable for use in today’s network transition
and traffic transmission is large.

The above references can improve the performance of routing by using SDN and DRL technology,
but only consider the delay parameter in the QoS index and optimize the network delay, and do not
consider other indicators of network status. In this paper, SDN and DDPG algorithm are combined
to optimize the routing, and the QoS of the routing is optimized by considering factors such as packet
loss rate, jitter rate, delay, and bandwidth, to provide users with a better network experience. Therefore,
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using the global network topology to realize intelligent QoS routing optimization in SDN architecture
to improve QoS while ensuring network quality of service has become an urgent problem to be solved
in current research.

The above papers can improve the performance of routing by using SDN and ML technology, but
in QoS indicators, only delay is optimized without considering other indicators of network status. In
this paper, SDN and DRL technology are combined to optimize the routing, and the factors of packet
loss rate, jitter rate, delay and bandwidth are comprehensively considered to optimize the QoS of the
route to achieve the optimal QoS. Therefore, using the global network topology to realize intelligent
QoS routing optimization in SDN architecture, and ensuring the quality of network service while
improving QoS, has become a problem to be solved in current research.

3 Routing Architecture Based on Deep Reinforcement Learning in SDN

The system model architecture utilizes in this paper adopts SDN architecture and DRL. SDN’s
separation of forwarding and control can effectively improve the problem of network congestion and
low efficiency and combines the decision-making ability of reinforcement learning and the perception
ability of deep learning and is well-suited for the scenario of routing optimization. In the SDN control
layer, the DRL layout sends the action through the SDN controller to the data forwarding layer for
path selection. In this section, the routing architecture based on deep reinforcement learning under
SDN will be introduced in detail.

SDN can effectively improve the congestion and inefficiency of current networks [23]. SDN is built
by separating the control and data layers of the network devices used today. The SDN framework
is divided into application layer, control layer and data forwarding layer from top to bottom [24].
Information transfer between layers the control layer and the application layer are transmitted through
the north interface, and the information transfer between the control layer and the data layer is the
south interface. The advantages of SDN architecture are 1) the network structure is clearly layered, and
the functions are clearly distributed; 2) the network transmission and configuration are unified and
operated by the controller, programmable; 3) the control layer and data forwarding are structurally
coupled, which can improve the efficiency of data transmission. SDN’s structure of separating the
transfer and control layers and centralized control can offer enhanced flexibility for data handling
and can accelerate the overall network transmission efficiency more effectively, which has been widely
used in recent years.

The RL model is a kind of MDP architecture. The process of RL is a continuous interaction
between the intelligence and the environment for action selection and state change, and a reward value
is returned, and the interaction process converges until the reward value reaches its maximum. Its
representative algorithms are Q-learning [25], but as the number of environmental states increases,
Q-table will occupy larger storage resources and time-consuming to find, and when the number of
environmental states is immeasurable, Q-table cannot support storing all the states. DRL can solve the
problems of Q-learning. Deep reinforcement learning combines the decision-making ability of RL with
the perceptual ability of deep learning. The representative algorithms are DQN which combines neural
network and Q-learning, but it is not applicable to the environmental situation of continuous action.
Deterministic Policy Gradient (DPG) algorithm [26] can be used in the case of continuous action
changes but is prone to overfitting problems. The DDPG algorithm [27] can solve these problems,
which is based on the combination of DPG and DQN algorithms on the Actor-Critic method. The
algorithm used in this paper for the deep reinforcement learning module is DDPG, and the DDPG
algorithm is described in detail next.
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The overall process of the DDPG algorithm is shown in Fig. 1 and employs the experience replay
technique. The experience replay is a set of data (st, at, rt, st+1) for each state transition into a relay buffer,
where st is the current state of the environment, at is the action made in the current environment, rt

is the real reward value obtained by making the action, and st+1 is the state of the environment after
making the action. After reaching the set number of cache pools N a random uniform collection of
M (M < N) datasets is performed to train the neural network, using randomly sampled datasets in
order to eliminate the temporal correlation between datasets. The Actor-Critic algorithm is used in the
DDPG algorithm, where each module has two neural networks, an online network for training and
learning, and a target network, both of which are identical in structure. Firstly, the online network is
initialized with Q

(
s, a|θQ

)
and μ (s|θμ), and the target network is initialized with Q′ and μ′, and the

initialization assignment of the parameters of this network is θQ′ ← θQ, θμ′ ← θμ The training dataset
is adopted by the empirical playback algorithm. The detailed process of training is described in the
following.

Figure 1: DDPG training process

First the agent acquires the state s1 and performs t→1, T for cycling for the same learning and
training. According to the current environment st, the corresponding action at = μ (st|θ u) is made
according to the actor function of the online network. The action at is made, the reward rt and the
new environment state st+1 are obtained, and (st, at, rt, st+1) is put into the replay buffer R. When the
amount of data in the replay buffer reaches the set number N, the parameters in the neural network
are updated by randomly selecting M data sets in the replay buffer R. The reward value yi obtained
at the execution of that action, the actual reward value currently obtained plus the predicted reward
value for future actions obtained with the objective function critic, uses the Time Differential (TD)
method as in Eq. (1), where γ is the discount factor, representing the constant decline of the reward.

yi = ri + γ Q
(
si+1, μ′ (si+1|θμ′) |θQ′)

(1)

According to the current state st makes the corresponding action at, as the input of Q
(
s, a|θQ

)
,

the reward value is derived, and the TD-error is performed between the yi calculated with the TD
algorithm to calculate the loss function as in Eq. (2), which is used to update the online critic network
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parameters.

L = 1
N

∑
i

(
yi − Q

(
si, ai|θQ

))2
(2)

The parameters in the online actor network are updated using the product of the gradient of the
online critic network and the gradient of the online actor network, as shown in Eq. (3). The equations
for updating the critic and actor parameters of the target network are shown Eqs. (4) and (5).

∇θμJ = grad [Q] ∗ grad [μ] = 1
N

∑
i
∇aQ

(
s, a|θQ

) |s=si ,a=μ(si)∇θμμ (s|θμ) |si (3)

θQ′ ← τθQ + (1 − τ) θQ′
(4)

θμ′ ← τθμ + (1 − τ) θμ′
(5)

The SDN architecture itself, with its inherent separation of the transfer and control layers, offers
a platform for network optimization. By integrating DRL, specifically the DDPG algorithm, into the
routing optimization process, we aim to achieve QoS routing optimization. The overall architecture is
depicted in Fig. 2. In this architecture, the network topology resides within the data forwarding layer
of the SDN architecture, serving as the environment element in the MDP model. The DRL agent,
utilizing DDPG, operates within the control layer of SDN, functioning as an agent element within the
MDP. The agent receives real-time network state information from the environment, serving as input
to the DDPG neural network. It then outputs actions with maximum Q-value to the SDN controller,
which centrally routes the next hopping action. Subsequently, the network state transitions to the next
state, with actual network data provided to the agent as a parameter for the reward value calculation
based on QoS metrics. This reward value is crucial for updating the neural network parameters within
the DDPG algorithm employed by the agent. The neural network parameters in the DDPG algorithm
are continuously trained and updated to achieve convergence, thereby obtaining the optimal routing
and forwarding policy. Consequently, this approach enables the identification of the optimal path for
route forwarding to meet the specified QoS targets.

Figure 2: Overall system architecture for deep reinforcement learning-based routing in SDN
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4 Deep Reinforcement Learning Based Routing Algorithm in SDN

The deep reinforcement learning used in this paper uses the DDPG algorithm, which has been
described in detail about the algorithm training process in the previous section. The DDPG algorithm
can be used for continuous action space scenarios, and the neural network used to record the reward
values is used for training records. The design and implementation details of each element of DDPG
are described in detail below. A directed graph G (V, E) is used to represent the routing network, where
V denotes the set of all routes and E denotes the set of links between routes. The number of nodes N
= |V|, and the number of links L = |E|.

State: In the RL process, the state reflects the characteristics of the current environment in which
the agent is located. In DRL based routing scenarios, states represent the transmission status of packets
in the network. It starts from the source node to the destination node. The total number of nodes in
the network is N, and the packet goes through each node in the network. For each QoS metric, a |N|
∗ |N| two-dimensional matrix R is defined. dij stands for bandwidth, delay, packet loss rate and jitter
rate in the current network packet in the QoS metric per unit time from the source node di to dj. The
state matrix is shown in Eq. (6).

R =
⎡
⎢⎣

d11 · · · d1N

...
. . .

...
dN1 · · · dNN

⎤
⎥⎦ (6)

Action: Action is the route that the agent chooses for the next hop based on the current state
and reward. In routing as is the specific routing rules issued by the agent to the network. Suppose
the network is equipped with E edges, the set of actions is defined as A = [a1, a2, . . . , a|E|]. Each
communication link (i, j) ∈ E in this network.

Reward Function: According to the current network state and the behavior made by the agent
the shift to the next network state feedback to the reward, the reward can be set according to different
networks with different indicators of the reward function. In this paper the reward design parameters
are delay D, bandwidth B, packet loss rate L, jitter rate J of QoS, delay, jitter rate, packet loss rate in
QoS the smaller represents the better network quality. Then the reward function is shown in Eq. (7),
where w1, w2, w3, and w4 take values in the range of (0,1).

Reward = −dij ∗ w1 + bij ∗ w2 − lij ∗ w3 − jij ∗ w4 (7)

Routing Optimization: The routing optimization algorithm based on DDPG under SDN is shown
in Algorithm 1. The algorithm initializes the parameters of critic network and actor network as well
as the target network parameters and replay buffer. In the training process of DDPG algorithm,
the current routing network state st is obtained from the SDN controller, and the action at is made
according to the current policy and noise, and the current state is converted into st+1, and the reward
value rt obtained currently is calculated. The size of the reward value r is influenced by the routing
QoS metrics delay, bandwidth, packet loss rate, and jitter rate. After that, a set of data (st, at, rt, st+1) is
put into the replay buffer, and when the set target number is reached, the specified number is randomly
taken from the replay buffer to update the parameters of the critic network, actor network and each
parameter in the target network until each parameter reaches convergence. If the source node i to
the destination node wants to find the QoS optimal path, the agent obtains the routing network
information from the SDN controller and outputs the path that satisfies the largest value of yij in
node i to j. Thus, the routing is optimized to improve the QoS so that the network can provide services
more stably.
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Algorithm 1: Routing optimization based on DDPG in SDN
Input: The origin di and the destination dj;
Output: di to dj to the optimal path pij;

1. Set critic-network Q
(
s, a|θQ

)
and actor-network u (s|θ u) randomly generated weight θQ

and θ u;
2. Set target network parameters θQ′ ← θQ, θ u′ ← θ u;
3. Empty experience replay buffer R;
4. Set pij = {};
5. for episode 1 to M do:
6. Initializes a random process N for action exploration;
7. None example initialize the current route status s1;
8. for t←1 to T do:
9. the current network information is obtained from SDN controller;
10. choose the at = u (st|u) + Nt based on the current strategies and detection noise;
11. execute action at and the environment state changes to st+1;
12. update the network information from SDN controller;
13. calculate the current reward value rt according to Eq. (7);
14. if number of relay buffer < N then:
15. store (st, at, rt, st+1) data to R;
16. else:
17. M data sets are randomly drawn from relay buffer R;
18. calculate value yi according to Eq. (1);
19. update critic θQ according to Eq. (2) and actor θ u according to Eq. (3);
20. update target network parameters according to Eqs. (4) and (5);
21. until the network parameters converge;
22. end
23. end
24. end
25. while dk == dj:
26. calculate the rewardmax acquired from the next hop path dk;
27. pij adds a routing path dk;
28. k++;
29. end
30. return pij

5 Experiment
5.1 Environment and Parameter Setting

The network environment simulated in this paper is barabasi-albert network type with 500 nodes
and the average node degree is 3. The DRL module is implemented based on PyTorch framework. The
relevant parameters for using deep reinforcement learning are set as follows: The random sampling
training capacity is M = 16, the capacity of the cache pool is N = 1000, the discount factor γ = 0.99,
and the neural network parameters are 0.01,τ = 0.5. The number of training rounds is 30, and the
iteration step of each round is 2000. The reward function parameters w1, w2, w3, and w4 are set to be
0.9. Specific parameter settings are shown in Table 1.
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Table 1: Parameter setting

Parameter Set

Number of network nodes 500
Node degree 3
N 1000
M 16
γ 0.99
τ 0.5
Learning rate 0.005
Steps 50

5.2 Experimental Result

Regarding the DDPG algorithm, the number of network packets is 5000 for 50 rounds of training
and learning, and the Shortest Path uses Dijkstra algorithm to find the shortest route. The meaning
of the experimental performance index is as follows:

Average delay time per episode: The average of the delay times (s) in each training round.

Percent of empty nodes per episode: Percentage of idle nodes in each training round.

Average delay time: The average of the delay time (s) experienced by the packet transmission

Average packet idle time: The average time (s) that a packet is idle between sending and receiving.

Average non-empty queue length: The average number of non-empty elements in a queue.

Maximum number of packet nodes held: The maximum number of packet nodes held.

Percent of working nodes at capacity: The percentage of worker nodes that have reached their
maximum capacity.

Fig. 3 shows that with the increase of training rounds, the average delay time of DDPG algorithm
shows a downward trend. Before the number of rounds reaches 10, the downward trend is large; after
the number of rounds reaches 10, the downward trend gradually decreases; when the number of rounds
reaches 20, the average delay time gradually reaches convergence. The results indicate that DDPG
algorithm is more effective in routing environment.

Fig. 4 shows that the percentage of idle nodes increases with the number of training times. When
the training round reaches 10, the percentage of idle nodes increases greatly, and when the training
reaches 20, the proportion of idle nodes gradually converges. After the training of DDPG algorithm
reaches a certain convergence, the optimal path of routing is selected, that is, the path with relatively
fewer routing hops and faster transmission will be selected, so the proportion of occupied nodes will
be reduced.

Fig. 5 shows the average delay time comparison as the number of packets increases. It can be seen
from the figure that with the increase of data packets, the delay of Shortest Path algorithm increases
greatly, and the delay of DDPG algorithm increases slowly. When the data packet reaches 5000, the
average delay of DDPG algorithm is 182.55 units less than that of Shortest Path algorithm. DDPG
algorithm has better performance in terms of delay.
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Figure 3: Average delay time per episode

Figure 4: Percent of empty nodes per episode

Figure 5: Average delay time
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Fig. 6 shows the average waiting time of data packets with the increase of data packets. It can
be seen from the figure that the waiting time of data packets in Shortest Path algorithm increases
greatly with the increase of the number of data packets, while the waiting time of data packets in
DDPG algorithm increases slowly with the average waiting time of data packets less. The average
packet waiting time of DDPG algorithm is 82.2 units less than Shortest Path algorithm.

Figure 6: Average packet idle time

Fig. 7 illustrates the change in the length of the average nonempty queue as the number of packets
increases. It can be seen from the figure that with the increase of the number of data packets, the change
of the average non-empty queue length in the Shortest Path algorithm increases greatly, and the average
non-empty queue length in the DDPG algorithm is stable without large fluctuations. When the data
packet reaches 5000, the average non-empty queue length of DDPG algorithm is 61.481 less than that
of Shortest Path algorithm.

Figure 7: Average non-empty queue length

Fig. 8 illustrates the variation of the maximum number of packet nodes as the number of packets
increases. It can be seen from the figure that with the increase of data packets, the maximum number
of packet nodes in the Shortest Path algorithm changes little, but is above 140, while the maximum
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number of packet nodes in the DDPG algorithm increases gradually, but the number of packet nodes in
the DDPG algorithm is less than the maximum number of packet nodes in the Shortest Path algorithm.

Figure 8: Maximum number of packet nodes held

Fig. 9 illustrates the capacity percentage of the working nodes as the packets increase. It can be
seen from the figure that the capacity percentage of working nodes of the Shortest Path algorithm
increases more than that of the DDPG algorithm. When the data packet is 5000, the workload
percentage of DDPG is nearly 25% less than that of the Shortest Path algorithm.

Figure 9: Percent of working nodes at capacity

To show the impact of different w values in the reward function on the performance, we conduct
comparative experiments. Fig. 10 illustrates the effect of different values of w on the delay. Among
them, when w1 is set to 1, only the delay factor is considered, while the other w values are set to 0.
When w1 is set to 1/4, the other values of w are also set to 1/4, indicating that all factors have the same
weight. When w1 is set to 0, the delay factor is not considered. According to the adjustment to different
performance requirements, the w value can be adjusted accordingly.
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Figure 10: Effect of different w values on latency

In summary, DDPG algorithm is employed in the routing optimization scenario, in the face of a
large number of traffic data requests, compared with the traditional routing algorithm, the optimal
routing path is customized, the QoS optimal path is selected comprehensively, the packet queue length
is reduced, the data request can be processed in time, the packet waiting time is reduced, and the delay
is reduced.

6 Conclusion

To achieve efficient and fast electronic certificate issuance in power business scenarios, traditional
network routing schemes pose significant challenges. To solve the existing problems, we propose a QoS
routing optimization method based on deep reinforcement learning in SDN. Through the combination
of SDN architecture and DDPG algorithm, a reward function based on QoS measurement was
designed to obtain the optimal network transmission path. Through the characteristics of SDN
transfer and control separation, the optimal network transmission path was uniformly communicated
to the data transmission layer, so as to improve the network transmission rate and provide the optimal
QoS. The experimental results show that the algorithm can effectively improve the efficiency of
network transmission, reduce the delay of processing data packets, and effectively reduce network
congestion. In the future, we will consider multiple objectives such as security, performance and
resource utilization into the routing optimization algorithm, find the optimal solution to the multi-
objective problem, and compare multiple routing optimization algorithms at the same time.
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